
An End-to-End flow control mechanism for
improvement data delivery reliability in

SpaceWire
Alexey Abramov, Pavel Volkov

St. Petersburg State University of Aerospace Instrumentation
67, Bolshaya Morskaya st. 190000, St. Petersburg Russia

alexey.abramov@guap.ru, volkov@aanet.ru

Abstract

Data reliability and validity of the data are one of the main problems of transmitting
information over a wired communication channel in real time nowadays. At the same time we
must do not forget that the redundancy that occupied due to the use of different methods (like
noise-coding), increases the volume of transmitted information, that in turn leads to an increase
in the time of data transmission. With a large volume of data transmitted and the requirements of
immediate response, some methods to improve the reliability of information transmission are not
effective.

This article describes one of the methods for improving the reliability of data transmission
over SpaceWire standard [1].

Index Terms: SpaceWire, Protocol, Reliable Data Delivery, Flow control, End-to-End.

I. INTRODUCTION

Overload is key issue that must be addressed when designing computer networks. Solving this
problem is a complex task. Overloading occurs when the number of packets transmitted over the
network, starts to approach the value of allowable bandwidth. The best way to solve this problem
is to keep the number of packets in the network below the level at which the bandwidth begins to
fall sharply.

SpaceWire is a spacecraft communication network based in part on the IEE 1355 standard of
communications. It is coordinated by the European Space Agency (ESA) in collaboration with
international space agencies including NASA, JAXA and RSA.

A SpaceWire system comprises several units connected together with SpaceWire links, either
directly or indirectly via one or more SpaceWire routers. The SpaceWire links are high-speed,
bi-directional, point-to-point communication links operating at a baud rate of between 2 and 400
Mbits/s. SpaceWire runs over a cable containing four twisted pairs. At each end of a SpaceWire
link is a coder/decoder (CODEC) [2] which encodes packets of data to be transmitted into a
serial bit-stream and decodes an incoming serial bit-stream into a data packets. The serialized
data is encoded using a data-strobe (DS) technique where the strobe changes state at a bit
interval whenever the data remains constant. This allows simple clock recovery in the receiver
by XORing the data and strobe signals together and provides better skew tolerance than data-
clock encoding. The DS signals are transmitted using low-voltage differential signaling (LVDS).
SpaceWire CODECs are used in both nodes and routers and consequently form an important
element of any SpaceWire system.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 3 --

A. Flow control mechanism in SpaceWire
The data is serialized in the transmitter and encoded through the SpaceWire link using DS

encoding. Data is only transmitted when the CODECs at each end of the SpaceWire link have
reserved buffer space using the SpaceWire flow control mechanism. When space for eight more
data characters in the receive buffer is available then a FCT (Flow Control Token) is transmitted
to allow eight data characters to be transferred. In this way buffer overruns are detected as a link
error by the CODEC. The serial data-strobe encoded bit-stream is received, error checked and
decode into SpaceWire characters in the receiver. Receiver data characters which were requested
using F T are placed in the receiver buffer.

The recovery scheme described in the SpaceWire standard is implemented internally in the
CODEC. Errors detected in the CODEC include incorrect parity bit received, escape character
sequence error, receiver disconnection error, receiver credit error (data character received when
not expected), transmit credit overflow and character sequence error at startup.

When an error is detected the SpaceWire link is disconnected and the tail of the packet
currently being received is assumed to be lost. To preserve the packet structure used in
SpaceWire system an EEP (Error End of Packet) character is added to the tail of the packet. This
indicates the packet was partly received but an error occurred before the normal packet EOP
(End Of Packet) marker was received. As the SpaceWire link has been disconnected then the

ate to free any
reserved buffer space. The transmitter error recovery scheme clears the tail of the packet being
transmitted when the error was detected from the transmitter FIFO. Therefore when the next link
start-up and connection occurs the next data character to be transmitted is the head of the next
SpaceWire packet. In this way the error recovery system is transparent to the host system which
needs only to perform the SpaceWire packet level protocol. So, there is no mechanism in
SpaceWire standard to retransmit the packet is assumed to be lost. Apparently, it is an urgent
issue for specific tasks [3], and thus, there is necessity to create a protocol for reliable data
delivery over SpaceWire.

II. RELIABLE DATA DELIVARY

The main requirements for Reliable Data Delivery Protocol (RDDP) are to utilize SpaceWire
capabilities to provide a packet delivery protocol that is able to detect and recover lost packets.
The protocol is also required to be simple as possible and flexible so that it can be adapted as
needed to different host data throughput requirements.

To increase data delivery reliability RDDP is based on one of the retransmitted packets
method – sliding window method with window size equals 1, also known as method of idle time
of a source [4].

RDDP specifies a packet format than is consistent with the standard SpaceWire packet.
RDDP does not dictate packet routing through a SpaceWire network be it point-to-point or
composed of multiple routers. Packet routing is handled by the SpaceWire layer, so protocol
does not try to improve on SpaceWire packet routing. The one-byte destination logical address
(DLA) is sufficient to get a SpaceWire packet to its destination though a variety of network
configuration.

Figure 1 illustrates RDDP perspective for packet routing. For RDDP, there is no “path” to the
remote end point, only a DLA. Protocol does not have, and does not require, knowledge of how a
packet gets to its destination. This keeps protocol simple and allows any implementation using
this protocol to remain independent of possible SpaceWire network changes. Figure 2 shows
protocol packet format.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 4 --

Figure 1. Protocol Packet Routing

Figure 2. Protocol Packet format

Packet’s field description:

• DLA – Destination logical address of receiver. The range of values from 32 to 254.

• PID – Number of protocol (ECSS-E50-11 draft B). It equals 254.

• SLA – Source logical address of the transmitter. The range of values from 32 to 254.

• Packet Control – Packet control information.

• Data Length – length of “Application Data”.

• Application Data – it s a “sending information” of sending packet; this field does not use
for ACK or NACK.

• Type – Type of message (0 – Data, 1 – ACK, 2 – NACK, 3 – reserved).

• PN – Number of packet. Without this field it is not clear to understand what we have
received:

• It’s a copy of the packet due to retransmit because of expired timeout.

• Transmitter itself specifically sends it a second time.

Transmitter defines a sequence number for each sending packet. RDDP uses a positive
acknowledgment (ACK) for each correctly packet transmitted. If an ACK is not received within
a timeout interval, then packet is retransmitted. After a maximum number of retries have been
exhausted for a packet, the transmitter will declare that there is an error occupied while sending
the packet. The requirement for the receiver to acknowledge each packet allows the transmitter
to detect lost packet if an ACK is not received. On the receiver end, a packet is acknowledged if
it has a valid Cycle Redundancy Check (CRC) character and header. Moreover RDDP uses a
negative acknowledgment (NACK) to change a current sequence number on the transmitter.
RDDP state machines of transmitter and receiver are present on Figure 3 and Figure 4 below.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 5 --

Transmission attempt
for current sequence
packet number = 0

Sequence packet
number = 0

Create packet

Send packet

Waiting for ACK/NACK

Current packet is
transferred

successfully

Change current
sequence packet

number

Increase transmission
attempt for current

sequence packet number.

Error occupied while
sending current packet

Correct
ACK received

Incorrect received
ACK/ NACK

Correct NACK received

Did not receive correct ACK/NACK in time T

Current packet has
been already

transmitted less
than N times

Current packet has been
already transmitted N

times

Figure 3. RDDP State machine of the transmitter

Waiting for packets

Increase amount of
correct received

packets

Refresh information
about received

packet

Create and send
ACK

Create and send
NACK

Incorrect
received
packet

Correct copy
of received

packet

Correct received packet with
wrong sequence number

Correct
received
packet

Figure 4. RDDP State machine of the receiver

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 6 --

III. RDDP IMPLEMENTATION

RDDP was implemented as a module on top of two different drivers, such as:

1. Driver MCB-01.2.ASIC ver. 1.411 (without OS, MIPS32 architecture)

2. Driver MCB-01.2m.FPGA ver. 1.63 (without OS, MIPS32 architecture).

It performs the functions of the transport layer of the OSI model. Module is written in C.
Timeout interval is fixed (there is no adaptive definition mechanisms of timeout interval).

A. RDDP usage requirements
Several requirements to protocol usage are:

• Module provides reliable data delivery between two SpaceWire devices end-to-end
connected.

• Module needs to be used on both sides at the same time.

• Maximum size of packet depends on the host system architecture.

• Programmer needs to keep in mind about the maximum size of the packet when writing
an application. Thus he is in charge to “cut the information to pieces” which must be fit
in the packet.

• In a network is admissible to use only logic addressing with no heading removal.

• It is impossible to use simultaneously module at one device and directly driver functions
on other for packet transmitting.

• Before working with module it should be initialized.

• After working with module it should be reinitialized.

B. Module functions
Three functions of the module are accessible to programmer, who is writing an application:

1. unitDataACK_init() – function to initialize the module.

2. unitDataACK_sendPacket([dstLA], [srcLA], [channelNum], [packetAddress],
[sizeInBytes]) – function to transmit the packet from one device (host) to another. It does
not return management to the application until the package will not be transmitted or the
is no way to transmit the packet.

3. unitDataACK_deinit() – function to deinitialize the module.

Details can be found in the protocol documentation [5].

C. Tested devices
Module has been written for several SpaceWire:

1. SpaceWire MCB-01 board with the SpaceWire bridgeMCB-01.2.ASIC (ver. 0645) with 4
SpaceWire links (400 Mbit/s)and processor CPOS_2 (100 MHz) on board.

2. SpaceWire MC24EM board with the SpaceWIre bridge MCB-01.2m.FPGA with 4
SpaceWire links (182 Mbit/s) and processor MC__24 (50 MHz) on board.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 7 --

IV. CONCLUSION

RDDP does not attempt to duplicate or improve on the considerable capabilities provided by
SpaceWire. Certainly, lacks of method of idle time of a source are especially appreciable on low-
speed links, but on the other hand it is flexible and simple as possible. It built on top of
SpaceWire the ability to recover lost packets, and to ensure to higher lever processes that packets
are as error free as possible. The implemented module based on the RDDP ready to be applied to
SpaceWire applications, which could be run on SpaceWire MC24EM board and SpaceWire
bridge MCB-01.2m.FPGA board.

REFERENCES

[1] “SpaceWire: Links, nodes, routers and networks”, ECSS-E-ST-50-12C, 31 July 2008.

[2] Chris McClements, Steve Parkes, Agustin Leon, “The SpaceWire CODEC”, International
SpaceWire Seminar (ISWS 2003) 4-5 November 2003, ESTEC Noordwijk, The Netherlands.

[3] A. Krimchansky, W.H. Anderson C. Bearer, “The Geostationary Operational Satellite R
Series SpaceWire Based Data System Architecture”, International SpaceWire Conference 22-24
June 2010, St. Petersburg, Russia.

[4] N. Olifer, V. Olifer, "Computer Networks: Principles, Technologies and Protocols for
Network design", Wiley India Edition, First edition.

[5] MiT, “Reliable Data Delivery Protocol”, ver. 1.2, 13 October 2010.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 8 --

