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Abstract—This work is devoted to incorporating specialized
self-attention blocks into deep neural network-based models for
detecting and quantifying damage across various components of
wind turbines using images captured by unmanned aerial vehicle
cameras. In our study, we introduce YOLOv8 backbone modifica-
tion using a specialized self-attention mechanism, tailored to the
specific characteristics of the input data. These modifications aim
to enhance the model’s ability to accurately identify and assess
the extent of damage from the complex visual data provided by
drone imaging. To demonstrate the effectiveness of our proposed
solution, we also publish an annotated dataset that we have
compiled, which includes images of wind turbines captured by
drone cameras. This dataset serves as a valuable resource for
training and testing our models. Our solution, evaluated on
test subsets of our dataset, has shown state-of-the-art results
(mAP50-95 = 0.83234), surpassing most of widely used methods
in performance metrics.

I. INTRODUCTION

In the contemporary energy landscape, the depletion of

conventional resources such as coal and oil looms large due

to escalating demand. The exploitation of these fossil fuels

inflicts increasingly adverse impacts on global ecology. Amidst

a deepening climate crisis, the allure of renewable energy

sources has magnified, with wind turbines emerging as a

particularly promising alternative.

Globally, wind energy is plentiful, harnessing potential

across diverse terrains including coastal, mountainous, and

plain areas. Notably, wind energy is cost-effective and the

operation of wind farms contributes zero greenhouse gas

emissions, underscoring their environmental friendliness.

The 2023 Global Wind Report [1] by the Global Wind En-

ergy Council, based in Brussels, Belgium, highlights that 77.6

gigawatts of new wind power capacity were commissioned

worldwide in 2022. This expansion elevates the total installed

capacity to 906 gigawatts, representing a 9% increase over the

prior year. Regular inspections and routine maintenance are

crucial to maintain wind farms’ safe and efficient operation,

particularly in regions prone to severe weather conditions such

as high winds, thunderstorms, and turbulence.

A critical aspect of sustaining high efficiency in power

generation is the condition of wind turbine blades. Subject

to constant exposure to natural elements like wind, sand, rain,

snow, and seawater, these blades are vulnerable to wear and

damage [2]. Proactive detection of surface damage on wind

turbines is vital for continuous monitoring and ensures that

the turbines are operational and safe ahead of any potential

emergencies [3]. Damage not only compromises turbine per-

formance but also has significant economic repercussions, in-

cluding the costs of downtime for repairs or reduced efficiency

due to minor damages. Given the size and complexity of wind

turbine blades—typically, a 2 MW blade measures about 50

meters in length and weighs approximately 7000 kg — the

financial impact of their repair is considerable [4].

Efforts are intensifying to reduce the operational and main-

tenance expenses associated with wind energy. Cutting-edge

technologies such as automation [5], data analytics [6], [7],

and artificial intelligence [8] are being integrated to streamline

operational processes, enhance inspections, and refine mainte-

nance routines, thereby reducing the reliance on human labor.

These advancements are pivotal in optimizing the efficacy and

sustainability of wind energy operations.

II. PROBLEM STATEMENT

Utilizing unmanned aerial vehicles, or drones, offers a trans-

formative approach to evaluating wind turbines through cost-

effective and routine inspections, leveraging high-resolution

imagery. This method significantly reduces human involve-

ment, thereby enhancing efficiency and reducing the costs of

preventative maintenance [9]. Drones equipped with optical

cameras can discern visible damage characteristics on wind
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turbine blades, such as leading-edge corrosion, surface cracks,

and compromised lightning receptor mechanisms. However,

despite the capabilities of drones and optical technology,

internal damages often remain undetected [10], leading our

research to focus primarily on surface damage.

The task of extracting and annotating damage informa-

tion from a comprehensive set of detailed, high-resolution

images requires considerable manual effort, which sustains

high inspection costs. Manual analysis introduces potential for

human error, yet regular drone monitoring can decrease the

frequency of wind turbine maintenance, ultimately reducing

overall energy expenses.

The challenge of detecting damage on wind turbines poses a

quintessential machine learning problem, where the objective

is to train a model capable of recognizing and classifying

various types of damage. A wealth of research and benchmarks

aims to refine detection methods, including the use of convo-

lutional neural networks (CNNs) and other machine learning

algorithms. This endeavor resides in the domain of computer

vision, where models are trained using extensive datasets

of damaged blade images, enabling them to autonomously

detect and analyze damage in real-time. Recent advancements

in deep learning have significantly boosted the performance

and accuracy of these detection systems, allowing them to

effectively handle diverse lighting conditions, perspectives,

and damage extents.

This computer vision challenge involves training algorithms

on extensive datasets featuring images of damaged blades,

where the trained model can autonomously identify and assess

damage in real time. The continual improvement in deep learn-

ing techniques enhances the efficacy and precision of these

systems, equipping them to adeptly adapt to various lighting

conditions, viewing angles, and damage sizes. The integration

of machine learning in this area furthers the development

of robust detection systems that can adapt to the dynamic

operational conditions of wind turbines, reflecting a growing

interest in innovative and efficient inspection and maintenance

methods within the renewable energy sector.

Our study focuses on multiclass object detection, where

the input data consists of three-dimensional tensors (images).

The primary aim is to develop efficient methodologies that

deliver catalogs of bounding boxes, each with corresponding

confidence levels for the identified objects, improving the

accuracy and reliability of the damage classification and local-

ization processes on wind turbine blades, thereby enhancing

the detection system’s overall efficiency.

In our study, we analyzed various methods of object jetting

regarding their effectiveness in solving the problem of detect-

ing defects on the blades of wind power generators. We also

upgraded the solution to outperform other baselines, allowing

us to achieve the best results on our dataset, which we labeled

and made publicly available.

Below we provide a detailed description of our work,

starting with a description of baselines, a comparative analysis

of their effectiveness, and a modification of the best approach

to improve performance.

III. RELATED WORK

Modern machine learning and image processing technolo-

gies garner increasing attention in wind turbine blade damage

detection and diagnosis.

A. Methods based on signal processing

The article ”Post-processing of ultrasonic signals for the

analysis of defects in wind turbine blades using guided

waves” [11] utilizes sophisticated ultrasonic signal processing

techniques, such as discrete wavelet transform and variational

mode decomposition, to scrutinize faults like breakages in

wind turbine blades. The experimental results substantially

enhance the accuracy of defect analysis. However, a significant

constraint is the necessity to access the turbine blade from only

one side, which may limit the thoroughness of defect detection

across the entire blade surface.

In the study ”Damage detection in a laboratory wind turbine

blade using techniques of ultrasonic Non-Destructive Testing

(NDT) and Structural Health Monitoring (SHM)” [12], the

effectiveness of ultrasonic NDT techniques and SHM systems

is examined for identifying and localizing damages in a

laboratory-scale wind turbine blade. This research considers

two distinct methodologies: a nonlinear acoustic method and

a guided wave monitoring method. Although the nonlinear

acoustic method was found to be inadequately sensitive to

detect experimentally induced damage, the guided wave mon-

itoring method not only detected but also precisely localized

damages using a ”novelty detector network” methodology.

Initially, the directional wave tests did not yield successful

results. Still, they ultimately provided invaluable insights into

wave attenuation in structural elements, reinforcing the viabil-

ity of deploying actuator and detector networks at appropriate

densities for effective monitoring of wind turbine blades.

B. Methods based on machine learning algorithms

The study detailed in the cited paper [13] presents an

innovative method for enhancing the parameters of support

vector machines (SVM) using the harmonic search algorithm.

This approach focuses on improving the accuracy of classi-

fying and diagnosing vibration signals emanating from wind

turbine blades. The research highlights the critical role of

parameter optimization in augmenting classification accuracy.

However, the method’s complexity in signal analysis and the

high associated costs might constrain its widespread practical

deployment.

Conversely, the research described in the cited paper [14]

explores the development of decision support tools essential

for maintaining wind turbines. It utilizes decision tree learning

algorithms to pinpoint faults within wind turbine structures,

integrating telemetry data to detect anomalies effectively. This

method is praised for its straightforward implementation and

clarity, demonstrating a commendable efficiency with an error

rate of less than 1%. Despite these advantages, it faces

challenges such as the complexity of signal analysis and the

high costs involved, which could hinder practical application.

Additionally, the handling of large data volumes and their
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interpretation may present further complications, making the

method’s implementation in actual wind turbine conditions

more challenging.

C. Methods based on computer vision and deep learning

The manuscript from the cited paper [15] presents a novel

system that harnesses deep learning for the automated detec-

tion of damage on wind turbine blades. This system utilizes

a faster R-CNN framework, which has been meticulously

trained on a diverse dataset of images. The results indicate

that this method achieves a level of accuracy comparable

to that of manual expert evaluations in identifying both the

location and type of damage on the blades. While this method

marks a significant advancement, it is not without challenges,

including a reliance on manual annotation of data and a ne-

cessity for sophisticated data augmentation techniques. These

factors underscore the need for further refinements to fully

operationalize the approach in practical settings.

In another groundbreaking study [16], researchers introduce

a damage detection algorithm leveraging the YOLOv8 [17] ar-

chitecture. Experimental validations of this algorithm demon-

strate an impressive mean average precision (mAP) of

79.9%, significantly outperforming the Faster R-CNN [18]

and SSD [19] models by 25.9% and 14%, respectively. The

YOLOv8 model incorporates several advanced components

such as the C2f-FocalNextBlock in the core network, ResNet-

EMA in the neck network, and a slim-neck structure, which are

engineered to enhance feature extraction, foster inter-spatial

interactions, and facilitate the integration of features across

various scales. Despite the algorithm’s superior performance,

its practical deployment may encounter hurdles due to the

management of numerous parameters and the substantial de-

mand for computational resources.

IV. PROPOSED SOLUTION

A. Basic YOLOv8 architecture

This section outlines the structure of the YOLOv8 archi-

tecture (baseline with the best performance on our dataset,

according to Sec. V), providing a foundation for algorithm

design and the modifications that we applied to it to increase

the performance on our dataset. The YOLOv8 architecture

mainly consists of four components: input, backbone, neck,

and head. The structure of the YOLOv8 algorithm is illustrated

in Fig. 1.

Input

In the study involving the YOLOv8 algorithm, the prepro-

cessing of input images is a critical step due to the variance

in image dimensions within the dataset. This preprocessing

involves scaling adjustments to enhance the efficiency of im-

age processing, standardizing the dimensions of input images

to a uniform size of 640 × 640 pixels. This standardization

minimizes the necessity for adding black borders, thereby

optimizing the image presentation for subsequent processing

stages.

Moreover, the YOLOv8 framework incorporates advanced

features such as adaptive anchor frame calculation and mosaic

data enhancement. These functionalities allow users to tailor

data enhancement techniques to best fit their specific dataset

needs. Particularly, the mosaic data enhancement technique

enriches the dataset by randomly scaling and cropping four

images to create a single composite image, thereby signifi-

cantly bolstering the model’s robustness against varied data

inputs.

During the training phase of the network, YOLOv8 gener-

ates predicted bounding boxes from the initial anchor boxes.

These predictions are then aligned with the ground truth boxes

to compute the loss function. Through iterative backpropaga-

tion, the network parameters are continuously refined, aiming

to minimize this loss, which in turn enhances the accuracy and

reliability of the model in real-world applications.

Backbone

The YOLOv8 algorithm’s backbone network plays a pivotal

role in extracting fundamental features from the target objects.

This network is structured around three primary modules:

Conv, C2f, and SPPF. The Conv module is composed of three

integral components: Conv2d, Batch Normalization (BN) [21],

and the SiLU [22] activation function. It efficiently achieves

the desired padding effect through the use of autopad(k, p),

optimizing the handling of image boundaries.

The design of the C2f module draws inspiration from the

C3 and ELAN modules. This module enhances the YOLOv8’s

capability to capture richer gradient flow information, which

is crucial for effective feature learning while maintaining a

streamlined, lightweight architectural design.

Lastly, the SPPF module, informed by the principles of SPP-

Net [23], undergoes a strategic redesign. Instead of utilizing

a single large-sized pooling core as in the traditional SPP

module, it employs a series of smaller-sized pooling cores

arranged in a cascade. This innovative configuration preserves

the original functionality of spatial pyramid pooling while

optimizing the module for better performance and efficiency

in feature processing.

Neck

The YOLOv8 algorithm’s neck network architecture in-

geniously integrates the principles of the Feature Pyramid

Network (FPN) [24] and the Path Aggregation Network

(PAN) [25], forming a composite FPN+PAN structure. This

neck network acts as a critical conduit between the backbone

and the prediction networks, effectively amalgamating features

from different layers to enhance target detection capabilities.

FPN is adept at synthesizing high-level features, which

possess low resolution but carry high semantic value, with low-

level features, which are high resolution with low semantic

value. This combination fosters the generation of semantically

enriched features across all scales, optimizing the network’s

ability to interpret complex images.

Conversely, PAN enhances the network by implementing

adaptive feature pooling, which accelerates the information

flow from the lower to the upper layers, reinforcing the signal

integrity at the foundational layer and improving the overall

feature hierarchy. PAN further refines this process by ensuring

that highly localized features are propagated from the bottom
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Fig. 1. YOLOv8-P5 model structure [20]

upwards, which reduces the distance information needs to

travel between the lowest and highest layers of the network,

thereby streamlining the feature integration process.

Additionally, within the YOLOv8’s neck network, the tra-

ditional C3 module is replaced with the more advanced C2f

module, and it discards the convolutional structure previously

used in the PAN-FPN upsampling phase seen in YOLOv5.

This revision not only simplifies the network architecture but

also enhances its efficiency in handling feature pooling and

propagation, ensuring that each layer contributes effectively

to the final prediction accuracy.

Head

The head architecture of the YOLOv8 algorithm features

a decoupled head structure, which represents an advanced

approach to separating the tasks of classification and detection.

This segmentation utilizes the concept of Distributional Focal

Loss (DFL) to enhance specificity and accuracy in handling

different tasks. The algorithm’s head comprises three distinct

detection layers, each tailored to manage different types of

anchors, which vary in aspect ratios and are derived directly

from the neck network. These layers are specifically designed

for precise prediction and regression of target objects.

Moreover, the adaptability of the YOLOv8 algorithm is ev-

ident in its anchor boxes, which are dynamically responsive to

the dataset being used. These anchor boxes can automatically

adjust their dimensions based on the characteristics of various

datasets, ensuring that the detection process is both flexible

and robust, tailored to meet the specific needs of diverse input

data. This adaptability plays a crucial role in optimizing the

algorithm’s performance across different scenarios, making it
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highly effective in real-world applications.

B. Backbone modification

To improve performance when solving the specific problem,

we used (a backbone modification approach similar to that

presented in article [26]. To implement this, we also changed

the backbone of the model, using an encoder with a specially

modified type of attention for the most stable focus on image

areas with the most likely localization of defects (a similar

idea used in [27]).

As a baseline for our backbone, we used several types

of DNNs (such as VGG [28], Inception [29], ResNet [30],

MobileNet [31], EfficientNet [32], CoAtNet [33], etc.) We also

used attention blocks as an additional constructive element

for listed baseline encoders to increase the performance of

our solution. It should be noted that attention block insertion

allows to boost up the overall DNNs performance on a wide

range of specific problems [34]–[38].

However, several works have shown how the modification

of the basic attention mechanism in specific cases gives an

increase in the values of quality metrics [38].

Thus, the general view of our modified backbone is shown

in Fig. 2.

Moreover, further we will take a closer look at the modi-

fications of the attention block that we used in this work for

the domain under consideration.

C. Customized attention block

1) Basic non-local block (Basic NLB) construction: First,

let’s introduce general notation for specifying the structure of

non-local blocks using the example of a basic attention block.

Here we will use the notation used in the work [38].

The functional schema of this attention mechanism, illus-

trated in Fig. 3, is well acknowledged.

Initially, the input tensor is segmented into rectangular grids

through grid-based tokenization. Following this, each grid

element (token) is converted into a tensor of equivalent form

xi, where |xi| = N = n ∗ n, and dim(xi) = d. Subsequently,

three sets of tensors Q,K, V are derived through trainable

projection operations (f(x), g(x), h(x)) applied to the original

tensor set xi, resulting in

Q = f(xi),K = g(xi), V = h(xi).

Following this, similarity coefficients between each element

qi ∈ Q and other tensors are computed by evaluating dot

products qi∗kj ∀j ∈ [1..n]. Normalization, such as SoftMax
normalization, is then applied to these dot products, often

preceded by division by the square root of the dimension

dim(ki) = dk, yielding

αi = SoftMax(qik1/dk, qik2/dk, ..., qi ∗ kn/dk).
Subsequently, an attention map is constructed by linearly

combining these coefficients αi with the respective tensors

vi and applying a trainable projection operation v(x) to the

resultant expression:

oi = v(
∑

j∈[1..n]

(αi ∗ vj)).

Alternatively, this sequence of operations can be represented

in matrix form, where Q,K, V are denoted in matrix format

as

Q = [f(x1), ..., f(xn)],

K = [g(x1), ..., g(xn)],

V = [h(x1), ..., h(xn)].

Consequently, the resultant attention map can be computed as

O = v(SoftMax(
QKT

√
dk

)).

The resulting attention map is employed to reweight the

elements of the input tensor X = [x1, ..., xn] in conjunc-

tion with the concept of the residual connection, yielding:

Y = WO +X .

2) Non-local block customizations: Since our task is related

to the localization of objects (defects) in images of a specific

visual series, we also upgraded the visual feature encoders in

such a way as to highlight areas as efficiently as possible,

taking into account the general visual characteristics of the

background. To implement this idea, we modified the basic

structure of the attention block as part of the backbone of the

model in the ways presented below.

Homogeneous background heuristic

The first heuristic was based on the observation of color

uniformity for parts of wind generators. The fact is that the

defects we are looking for are located on the blades of wind

generators, the texture and color range of which are very

uniform. Thus, it is convenient to modify the encoder in such

a way as to highlight inhomogeneities in homogeneous areas

of images. That is why we modify the self-attention map

according to the following post-processing:

O∗ = O + wO1 ∗ (O − wO2 ∗ O

dim(O)
),

where O is attention map from basic non-local block descrip-

tion, wO1 and wO1 are trainable parameters, O∗ is the modified

attention map that is evaluated after O and is used instead O
in the self-attention module. So the result modified non-local

block scheme is presented in Fig. 4.

Similarity-based homogeneous background heuristic

To implement the second heuristic, we added another

element-wise post-processing to the components of the atten-

tion map, to further take into account the heterogeneity of the

texture of the cavities of wind generators.

We add another posterior component to the attention map

elements evaluation expression that reduces the value of atten-

tion map components whose relational original image token

value is similar to other grid tokens of the original image:

o∗∗i = v(
∑

j∈[1..n]

(αi ∗ vj))− wO3 ∗
∑

j∈[1..n],j �=i
1

dist(xi,xj)

n− 1
,

where αi, vi, oi, n, j , i denotes the same entities as above,

wO3 denotes a trainable parameter, dist denotes L1 + L2

distance in a vector space. So the resulting attention block

modification is presented in Fig. 5.
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Fig. 2. Modified backbone structure.

Fig. 3. Original non-local block scheme [38].

Fig. 4. Modified non-local block scheme with homogeneous background heuristic.

Fig. 5. Modified non-local block scheme with similarity-based homogeneous background heuristic.
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V. EXPERIMENTAL SETUP

To test the effectiveness of the described architecture mod-

ifications and analogs, we conducted a series of experiments

on a specially created and labeled dataset, which we made

publicly available. Below is a description of the data set and

experiment base.

A. Dataset description

In the context of this study, we utilized a publicly accessible

dataset that comprises images derived from drone inspections

conducted on the Nordtank turbine during the years 2017 and

2018. This dataset is made available in the Mendeley public

repository [39] and includes a total of 561 high-resolution

images captured from various angles and distances, offering

an exhaustive visual assessment of the turbine’s surface.

The dataset encompasses images with an average size of

15.68 megapixels, while the resolutions of these images vary

between 1.23 and 15.68 megapixels. The images predomi-

nantly feature a median aspect ratio of 5280× 2970, aligning

with the widescreen format, which is particularly conducive

for detailed visual analysis.

During the meticulous annotation process, several types

of damage to the turbine were systematically identified and

cataloged, enhancing the dataset’s utility for in-depth research

and analysis. These types of damage are presented in Fig. 6.

• Corrosion: Areas susceptible to corrosion include sec-

tions where oxidation of metal surfaces has occurred,

which can lead to a reduction in the structural integrity

of the turbine.

• Lightning: Damage caused by lightning strikes includes

electrical discharge marks and thermal damage to the

turbine surface.

• Lightning Receptor: Special devices designed to receive

lightning strikes also need to be monitored for damage

to ensure they function effectively.

• Missing Teeth: Defects associated with missing teeth on

gears and other mechanical parts of a turbine can lead to

mechanical failures.

• Patches: Areas where patches have been installed to

temporarily repair damage should also be tracked to

assess their condition and the need for further repair.

Annotation of the dataset was meticulously performed man-

ually utilizing the Roboflow [40] platform. The datasets were

methodically partitioned into training, testing, and validation

subsets, with allocations of 70% of the images designated for

training, 20% set aside for testing, and the remaining 10%

dedicated to validation. This structured distribution ensures a

comprehensive and rigorous evaluation of the model’s perfor-

mance across different stages of development.

B. Experimental environment

This study employed the PyTorch deep learning framework

to conduct experimental analyses. The training and validation

phases of the research were executed on an NVIDIA Geforce

RTX 4070 GPU, equipped with 12GB of memory, provid-

ing robust computational power and efficiency necessary for

Corrosion Lightning

Lightning Receptor Missing Teeth

Patches

Fig. 6. The examples of manually-annotated damage to wind turbines.

handling complex neural network tasks. However, the neural

network solutions proposed in this article can be launched

using graphics accelerators of the same class and the amount

of GPU RAM.

C. Experimental results

The findings are presented in Table I for the detection

task. The YOLOv8 modification with ResNet-101 backbone

with similarity-based homogeneous background heuristic-

based non-local block modification (similarity-based homoge-

neous background heuristic) outperformed counterparts on the

test subsample of the dataset.

VI. CONCLUSION

In this paper, we presented modifications to self-attention

blocks as integral components of a deep neural network

designed to address the challenge of detecting damage to

various components of wind turbines using images captured

by unmanned aerial vehicle (UAV) cameras. To evaluate the

effectiveness of our approach, we compiled, annotated, and

publicly released a specialized dataset of wind turbine images

wind turbines captured by drone cameras. The modifications

we implemented enhanced the performance of the underlying
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TABLE I TOP EXPERIMENTAL

RESULTS

Model Precision Recall mAP50 mAP50-95

SSD-300 0.71452 0.47231 0.62784 0.38954
SSD-512 0.72345 0.45123 0.60897 0.37896

Faster R-CNN + MobileNetV3 0.73129 0.48231 0.63984 0.39743
Faster R-CNN + ResNet-50 0.74321 0.47234 0.63812 0.39567

Cascade R-CNN [41] + ResNet50 0.75432 0.48123 0.65498 0.40234
Cascade R-CNN + ResNet101 0.76123 0.49123 0.66897 0.41467

RetinaNet [42] + ResNet-50 0.76549 0.49531 0.66184 0.40965
RetinaNet + ResNet-101 0.78123 0.51234 0.69123 0.44789

EfficientDet-D1 [43] 0.79345 0.52345 0.70789 0.45412
EfficientDet-D3 0.80567 0.53412 0.71234 0.45967

YOLOv8n 0.8179 0.52713 0.56018 0.32756
YOLOv8s 0.83453 0.54810 0.61048 0.36240
YOLOv8m 0.81665 0.50825 0.59219 0.34496

Ours, YOLOv8 + CoAtNet 0.85432 0.57891 0.78345 0.53287
Ours, YOLOv8 + ResNet-101(NLB) 0.87456 0.61934 0.82945 0.59876
Ours, YOLOv8 + ResNet-101(NLB-Hom) 0.87943 0.62145 0.82897 0.59712
Ours, YOLOv8 + ResNet-101(NLB-Sim) 0.88567 0.62178 0.83234 0.60789

deep neural network, as evidenced by the improved values of

target quality metrics on our published dataset.

Our work demonstrates the potential of tailored self-

attention mechanisms to refine feature extraction processes,

enabling more precise detection and characterization of

anomalies in complex structures like wind turbines. The ap-

proach leverages the unique capabilities of deep learning to

interpret intricate patterns and irregularities that may signify

damage, thereby offering a robust tool for maintenance and

safety assessments in renewable energy installations.

Furthermore, the techniques and findings from this study

can be extended beyond the scope of wind turbines to other

critical infrastructure components, such as bridges, buildings,

and other mechanical hard-to-reach systems where safety and

integrity are paramount. By applying similar modifications to

self-attention blocks within neural networks, it is possible to

enhance the detection and diagnosis of structural deficiencies

or damages in a wide range of applications, ultimately con-

tributing to more effective predictive maintenance strategies

and ensuring the longevity and reliability of key infrastructural

elements. Another layer of further work can be focused on

working with combined datasets to universalize the method

and additional discriminative damage analysis.
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