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Abstract—The control of quality is an obligatory stage of
any welding work which makes problem of timely detection of
welding defects is important for industry nowadays. Through
digitisation it possible to solve this problem more efficiently
and eliminate the human factor. This paper presents a real-
time industrial automated video analytics system for weld defect
detection. The system uses deep learning to analyze video images
and detect weld defects in real-time. Experiments showed that
the system can effectively detect weld defects with high accuracy
and speed. A safety and trustworthiness analysis of the system
showed that it can be reliable and safe for use in industrial
manufacturing. The proposed solution has several key advantages
for the industry: it allows for real-time data processinga and
requires low computing power, making it an energy-efficient and
cost-effective solution.

I. INTRODUCTION

Inspection of the quality of welded joints is an obligatory

stage of any welding work. Visual inspection is an obligatory

stage of non-destructive testing and is often performed by the

welder himself, which implies human factor and increases the

risk of a missed defect. Despite its apparent simplicity, visual

inspection of welded joints requires careful attention. The

problem of quality assessment of welded joints is proposed

to be effectively solved by automation of their assessment

processes and use of artificial intelligence technologies. Soft-

ware and hardware complex (automated system) of video

analytics of welding defects control will allow timely detection

of defects in the weld and their classification. The proposed

solution can also be used for educational purposes, providing

information on possible causes of defects, ways of their

prevention and avoidance.

Modern existing solutions [1], [2] require a lot of resources

to operate in real time and almost always requires the col-

lection of its own dataset for the development of applied

practical solutions [3], [4], which is rather labour-intensive and

costly. These requirements limit their practical applicability,

particularly in resource-constrained environments. Thus, the

main contribution of our research is the development of a

video analytics system capable of detecting welding defects

in real time while operating on limited hardware and with

small datasets.

To achieve this goal we have defined the following prob-

lems: collection and analysis of requirements for such in-

dustrial video analysis systems (software, hardware, subject

area); development of a method for preparing and training

a deep learning model on small amounts of data with the

formation of data requirements; projecting and developing

a video analytics system taking into consideration all the

requirements; its security and trustworthiness analysis. The

solution of these problems will allow to develop and create

a modern video analytics system, which will be able to detect

welding defects in real time with high accuracy and require

small computing resources. The scientific novelty of this work

lies in several key areas:

• Development of an efficient deep learning model: Unlike

many existing approaches that require large datasets, our

research focuses on the creation of a neural network ca-

pable of accurate detection and classification of welding

defects with a limited number of training images. This

approach addresses the challenge of dataset scarcity in

industrial settings.

• Optimization for low-resource environments: We propose

a system architecture optimized for real-time performance

under limited hardware constraints, making it suitable for

deployment in a wide range of industrial conditions.

• Trust and security in automated systems: We introduce

a security and trustworthiness framework for automated

video analytics in industrial environments, addressing

safety concerns and ensuring reliability in defect detec-

tion processes.

Each finding may also be applied to another related R&D

problems. We also aggregated the experience of our previous

works in this study: the real-time underwater rainbow trout

video surveillance system [5] and event driven image recog-

nition [6].

The rest of the paper is organized as follows. Section II

provides a literature review that forms the properties and

requirements for state-of-the-art video analytics systems for

welding defects. Section III presents a summary of the main

welding defects of the study and the collected dataset. Section

IV provides an analyses of the environmental and hardware

constraints of the system. Section V shows our approach

of real-time industrial automated video analytics system for

welding defect detection. Section VII discusses safety issues

associated with the use of automated systems in manufactur-

ing. Section VII summarizes the key findings of this study.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 585 ----------------------------------------------------------------------------



II. RELATED WORK

The development of automated video analysis systems,

particularly for welding defect detection, has gained significant

momentum in recent years by exploiting advances in neural

networks and real-time detection technologies. Consider the

related works in the context of our task’s requirements (Ta-

ble I)

Recent advancements in edge-centric video data analytics

for industrial IoT systems, as explored in [7] and [8], highlight

the shift towards local processing of video streams for real-

time event detection and smart assistance services in manu-

facturing environments, demonstrating improved efficiency in

equipment monitoring and contextual personnel recognition.

Recent research has focused on the use of convolutional

neural networks (CNNs) for welding defect detection. For

example, Manas Mehta presented a new CNN architecture

that incorporates innovative modifications including ECA-

Net integration for increased attention and [9] filtering. The

addition of Bidirectional Feature Pyramid Network (BiFPN)

association for bidirectional information flow and Adaptive

Spatial Feature Fusion (ASFF) improved feature fusion at

different scales. The results of the study showed a marked

improvement in accuracy (6.5 %) and detection reliability

compared to traditional method, but sacrificed runtime. In our

solution, we propose to achieve high accuracy while keeping

the speed of recognition by using a neural network based on

YOLO architecture with a single pass over the image.

Real-time welding defect detection using video analytics has

become a central theme in recent research. Almasoudi devel-

oped an advanced real-time defect detection system using a

hybrid model combining CNNs and recurrent neural networks

(RNNs), achieving impressive speed and efficiency in finding

a defect in real-time without sacrificing accuracy [4]. Their

results highlight the potential of combining different neural

network architectures to improve performance in dynamic

environments.

Table I S

Project property Existing solutions Proposed system
Analysis of welding Implemented in part. Executed in full.
defects in real time Most solutions Keeping the speed
with a processing sacrifice runtime of recognition by
speed of at least 20 for accuracy [2]. using a neural
frames per second Many of these also network with a
on an industrial require more single pass over
panel computer powerful hardware the image and

than a panel [4] neural network
industrial computer. quantization.

Detection and Executed in full. Executed in full.
classification of However, requires This accuracy is
undercuts, weld datasets that achieved by careful
thickness, surface require several preparation of the
porosity, weld and tens of thousands dataset and
product with an of images [3]. setting up the
accuracy of at defect analysis
least 80 percent model.

In summary, there are many techniques and mechanisms

currently presented in research to improve the efficiency and

accuracy of automated video analysis systems. Our work

builds on this fundamental researches by focusing on inte-

grating neural networks with robust video analysis techniques

to develop a state-of-the-art welding defects detection system.

III. DATASET

The development of an automated video analytics system

for controlling surfacing defects requires a requires dataset

of images representing various types of defects. Before data

collection, we formulated properties for such dataset to suc-

cessfully solve the subsequent tasks (Table II). Following a

thorough review of existing datasets, we selected a subset of

defects most relevant to surfacing defects, specifically:

1) undercut;

2) weld thickness;

3) surface porosity.

Having these 3 classes is an important manufacturing need,

because these defects were chosen due to their prevalence

in welding processes and potential consequences for product

quality and safety.
To collect and annotate the dataset, we relied on open-source

repositories and online datasets. Unfortunately, we found only

one publicly available dataset relevant to our research, which

is based on the AtomicHack 2.0 dataset. This decision is

related to the reason that practice shows to achieve good initial

performance requires about a thousand images for each class

of defects. Finally, our dataset consists of 2153 images of

welding defects, annotated with the following classes:

1) adjacent defects (adj): splashes, arc burns, etc.

2) integrity defects (int): craters, slag, pores, etc.

3) geometry defects (geo): undercut, lack of fusion, over-

lap, etc. (class label: geo)

With regard to the requirements it’s high important to us

train the model to learn to distinguish and find each class as

soon as possible. For this purpose, we selected the data so that

the amount of defects in the images was as large as possible

and obtained an average of 3.5 objects in each image.
Although our dataset is a good starting point, it has several

limitations. Firstly, the dataset is relatively small, which may

not be sufficient to train a robust machine learning model.

Second, many of the images were taken from public sources,

and the dataset was not originally specifically targeted at

welding defects on our practice products, which may lead to

reduced accuracy when performing real-world tests on images

of our practice products.

Table II: S

Characteristic name Value Importance
Number of classes 3 High
Number of images 2153 Average

Number of annotations 7439 Average
Number of average 3.5 High

annotations per image
Median image ratio 2160x2160 pixels Small

Despite these limitations, the dataset can be used as a source

of information for developing an automated video analysis
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system for detecting cladding defects. It is planned to augment

this dataset with additional images and annotations in order to

increase its reliability and accuracy. The finalized version of

the dataset will be more versatile than if we were to rely solely

on our own images, as it will be based on a variety of data

sources.

IV. ENVIRONMENTAL AND HARDWARE REQUIREMENTS

A system of this nature must be able to withstand high

temperatures, magnetic interference, vibration and noise while

maintaining its accuracy and reliability. In addition, the system

must be economically viable, requiring minimal investment

in hardware and power consumption. Working with subject

matter experts, we have extracted a number of requirements

and constraints for the development of such a system.

Composition of the hardware-software part shall be as

follows:

1) Hardware part should consist of a data acquisition device

in the form of a video surveillance camera and a data

processing and output device in the form of an industrial

panel computer;

2) Software part realized on client-server architecture.

The use of high-tech equipment such as specialised cameras

and sensors can be prohibitively expensive and impractical in

many industrial environments.

The requirements for hardware in our case are as follows:

1) General requirements:

a) Maximum operating temperature not less than

+60°C;

b) Protection against dust and moisture not less than

protection class IP-50.

2) Requirements to the data acquisition device - CCTV

cameras:

a) The data source is a video camera or IP video

camera;

b) Receive video stream from IP-cameras via

RTSP/RTMP protocol or directly;

c) The image resolution of the video camera is not

less than 1920x1080 pixels;

d) Network stream bandwidth not less than 8192kbps;

e) Support the transmission of at least 20 frames from

the camera per second.

3) Requirements for data processing and output device in

the form of industrial panel computer:

a) Screen resolution not less than 1024x768 pixels;

b) Processor not worse than a 4-core Intel Core i3-

8145U of the 8th generation;

c) At least 8 GB of RAM;

d) Storage capacity of at least 256 GB;

e) Processing speed of at least 20 frames per second

for a frame with the image of a welded joint

obtained from a video surveillance camera.

All these constraints must be carefully considered in the

design and development of this type of system to ensure that

it is practical and realisable in a real industrial environment.

To address these challenges, we have selected the following

hardware components for our system:

• CCTV cameras: our choice was HiWatch DS T215 C.

This camera meets all our requirements and is equipped

with a motorized pan-tilt-zoom mechanism, allowing it to

rotate 360° and adjust its angle of view. This feature is

particularly useful in industrial settings, where the camera

may need to be adjusted to capture different areas of the

production process.

• Industrial Panel Computer: we have selected a compact

and rugged industrial panel computer RePC-PCS150T

that is capable of withstanding high temperatures up to

85°C. Although it is not a high-performance computer, its

processing power is sufficient for our system’s require-

ments.

Welding defect detection must be able to run with real-time

execution speed, to allow correction of found defects as soon

as possible early in the manufacturing process, reducing costs

and delays. By selecting these hardware components, we have

ensured that our system can operate efficiently in an industrial

environment while minimising cost and energy consumption.

The choice of hardware components for the system must be

carefully considered to ensure its practicality and feasibility in

real industrial applications.

V. VIDEO ANALYTICS SYSTEM

This section presents the architecture and developed pro-

totype of the video analytics system for welding defects

detection, including the procedure of defect detection and

classification, and the results of our early experiments on

training neural networks for this task. The performance of

different neural network models and future research directions

for developing similar systems are also discussed here.

A. System Architecture

The proposed our real-time industrial automated video

analytics system for welding defects detecting is founded

upon a client-server microservices architecture (Fig. 1), a

paradigm that has garnered significant attention in recent

years due to its scalability, flexibility, and maintainability. This

architectural approach is particularly well-suited for complex

industrial manufacturing environments, where the need for

adaptability and fault tolerance is paramount. By decoupling

the microservices approach allows us to decompose the system

into smaller, independent services that can be developed,

deployed, and scaled independently.

The following main microservices have been identified for

our system:

• Camera connection module: responsible for connection

and processing the video feed from camera.

• Image preprocessing module: image conversion to the

size of the input layer of the neural network, image

conversion to a vector format suitable for input to the

neural network.

• Defect detection module: defect detection and classifica-

tion, obtaining areas with probability of defects of certain
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Fig. 1 Architecture of the hardware-software complex (automated system)

of video analytics of surfacing defect monitoring

classes in them. Also filtering the results, discarding

repetitive and significantly overlapping regions, discard-

ing regions with low confidence of the neural network in

the result.

• Prediction processing module: logging of defect detection

events into the database, saving the image with the

recognised defect.

• Process coordinator module: coordination of Camera

connection module, Image preprocessing module, Defect

detection module, Prediction processing module. Adjust-

ment of module settings, tracking of their status and

status, logging of system information.

• API: communication of the web interface with the soft-

ware part of the system.

• Authorisation service: authorisation and verification of

system users.

• Web-interface: interaction with the user, displaying the

system results in a graphical interface.

The advantages of this architectural approach are multi-

faceted. Firstly, the scalability of our system is significantly

enhanced, as each microservice can be scaled independently

to meet the demands of the industrial manufacturing environ-

ment. Secondly, the flexibility of our system is improved, as

we can leverage a diverse range of programming languages,

frameworks, and databases to develop each microservice.

Thirdly, the maintainability of our system is enhanced, as up-

dates or replacements of individual services can be performed

without affecting the overall system. Finally, the fault tolerance

of our system is improved, as the failure of one microservice

does not necessarily impact the operation of other services.

B. Defect Detection and Classification

The procedure of welding defect detection and classification

is presented in Fig. 2. The following is a detailed description

of the processing procedure.

1) Image Acquisition. At this stage, an initial image of the

weld with a resolution of NxM pixels should be obtained

from the camera. This could be done with ffmpeg

program or OpenCV libraries over RTSP protocol, in

case IP-camera over the internet, or Device driver, in

case of USB cameras. receiving an image from the

camera in RGB or Grayscale format.

2) Image preprocessing. The image is being converted into

a format that can be accepted by the neural network.

The image is resized to match the size of the input layer,

which in our case with YOLO networks is 640 pixels.

The image is then converted into a float 16 tensor.

3) Neural Network Application. This step involves using

a neural network to detect and classify defects in the

image from the previous step, as well as identify re-

gions with probabilities of defect presence. The output

is presents as the prediction matrix of each grid cell

consisting of the coordinates of the defect areas in the

format (x, y, w, h), the IoU metric and the probability

of distribution of each class.

4) Post-processing. On this step we are using the non-max

suppression method [10] to filter the predictions and

select the most accurate areas with cladding defects, dis-

carding repeated and overlapping regions, and discarding

regions with low confidence. The output contains a list

of predictions for each defect, including the coordinates

of the defect area in the (x, y, w, h) format, and the IoU

(intersection over union) metric value. It also includes

the probability of the defect being present.

5) Saving and Displaying Results. Finally, the results of

the image processing are saved to the database and

displayed in the web-interface. This process involves

saving the image and the coordinates of the bounding

boxes around the detected defects, as well as logging

information about the events that occurred during the

processing, such as the timestamps, types, numbers, and

coordinates of the defects. The process of displaying

defects in the web interface involves representing them

as a rectangular area and calculating their probability

using methods from OpenCV and Pillow libraries. This

process also includes notifications for the user.

The engineered system provides a robust and efficient

solution for automated video analytics control of surfacing

defects. The use of a neural network enables the system to

learn from data and improve its performance over time. The
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Fig. 2 Procedure of detecting surfacing defects and their classification

system’s architecture is designed to be scalable, flexible, and

easy to maintain, making it suitable for industrial settings. The

use of a microservices approach and deep learning algorithms

enables the system to provide high accuracy and robustness

in defect detection and classification. The system’s ability to

detect and classify defects in real-time enables prompt action

to be taken to prevent defects from affecting product quality.

C. Training & Early Experiments

Recently, numerous solutions exist to the task of object

detection. And deep learning-based methods show one of the

best results. Among these methods, YOLO (You Only Look

Once) models have gained significant attention due to their

high accuracy and speed [11], [12]. One of the main criteria

for selecting the solution should be the ability to train the

neural network on your specific class of objects and a set of

points. It should also be possible to use your own dataset for

training and convert annotations to the required format.

• The size and number of parameters and the number of

layers directly affect the speed of inference. Modern

computer vision tasks often require the ability to work

in real time.

• Sufficient accuracy. In many tasks, even a slight error

of a couple of pixels can be crucial. For example, it is

important for determining the defect dimensions so that

they can also be corrected automatically in the future.

• Having weights pretrained on the dataset with additional

object classes can lead to better performance.

Neural networks YoLov8, YoLov9, YoLov10, in tiny and

medium variants, were trained as early experiments for the task

of welding defects. The models were trained for 300 epochs

with a batch size of 16. The learning rate was set to 0.001,

and the momentum was set to 0.9.

Table III N

Neural network
model

Inference,
ms

Accuracy (mAP50)

Overall
Weld
seam

Defect Detail

Yolo8 nano 0.7 0.84 0.97 0.57 0.99
Yolo8 medium 2.7 0.83 0.97 0.53 0.99
Yolo9 tiny 0.8 0.67 0.91 0.12 0.98
Yolo9 medium 2.9 0.73 0.97 0.21 0.99
Yolo10 tiny 0.8 0.77 0.95 0.37 0.95
Yolo10 medium 3.2 0.79 0.96 0.42 0.96

Precise localization of defects bounding box is less impor-

tant than correctly classifying defects in this case, because

fix up requires manual intervention of human worker that

will locate exact position and boundaries of defect themselves

knowing position from system. Therefore mAP50 metric was

chosen. For situations where defect detection and correction

preformed autonomously mAP50-95 metric could be explored

in the future work.

The results of the experiments are presented in Table III.

As can be seen from the table, the YoLov8 medium model

achieved the highest accuracy. Results shows that neural

network learned to detect detail itself on the image with high

accuracy and also weld seam relatively well, but the accuracy

for defect detection is quite low. This could be attributed to the

fact that welding defects in training dataset are rather different

from each other as many of them were taken from public

sources but weld seam being always clearly visible and well

defined. These experiments show that the developed prototype

is already fully operational and shows sufficient results of

accuracy and speed in detecting defects for solving applied

problems. For future research it is recommended to improve

dataset quality with regard weld defects.

VI. IMPROVEMENT OF THE SYSTEM SECURITY

This section discusses security concerns related to the

use of automated systems in production, as well as general

security concerns associated with neural networks. It also

proposes solutions to enhance the security of the system under

development.

A. Industrial Safety Considerations

When using deep neural networks, it is important to take

into account the security issues of their use. In the case of

the problem of detecting defects in an industrial environment,

the main safety criterion is a high level of trust in the video

analysis system. Therefore, we assume that the trust and

security of the system modules should be inextricably linked.

From the perspective of the manufacturer, it is essential that

the system integrates into the production environment in a safe

manner. To ensure this, the system should meet the following

criteria:

• Accurate and reliable detection of welding defects.

• A minimum number of false positive and false negative

detection.
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• Access to the system should be limited to authorized

users, and all actions within the system must be autho-

rized.

• The system should continue functioning in case of a

module failure.

B. Security Issues of Neural Networks

The use of neural network algorithms gives rise to a

number of potential risks. The key issue with artificial neural

networks lies in the fact that humans do not fully comprehend

the mechanism of their operation. At its essence, a neural

network represents a ”black box”, allowing for the insertion

of ”backdoors” in its code, enabling remote control over the

functioning of the model [13]. These vulnerabilities can remain

undetected until triggered, making them difficult to identify.

”Backdoors” can be introduced into the model during its

training by the developer. Additionally, there exists a technique

known as ”Trojan attack”, which allows for the selection of

triggers to activate specific neurons within the neural network

without requiring access to training data [14].

Additionally, there is the issue of adversarial attacks, which

involves manipulating input data to compromise the outputs of

neural networks. This type of threat is particularly relevant for

detection and classification algorithms. Data distortion occurs

when an invisible disturbance is superimposed on the input

image, which is then fed into the neural network’s input

[15]. This interference can lead to inaccurate classification

or detection of objects. The problem takes place when the

attacker has access to the data source feeding the model.

Another type of threat to machine learning models is data

poisoning. In this scenario, malicious data is intentionally

introduced into the training dataset, leading to the incorrect

training of the model [16]. This issue is particularly prevalent

in situations where the data originates from untrustworthy

sources.

In addition to deliberate security threats, there are also

unintentional hazards associated with the intricacies of neural

network training. A phenomenon known as ”overfitting” arises

when a neural network fails to generalize data effectively

and generates erroneous predictions [17]. This issue can have

severe repercussions when deploying neural networks in pro-

duction environments.

C. Cyber Immune Approach to System Development

In order to enhance the level of confidence in the deploy-

ment of neural network algorithms in industrial settings, it is

prudent to adopt a cyber immune approach. This is a method-

ology based on the MILLS [18] and FLASK [19] technologies,

proposed by Kaspersky Lab [20]. Rather than pursuing a

comprehensive search for all possible sources of vulnerability,

this approach focuses on identifying trusted and untrusted

elements within the system architecture. This strategy enables

the maintenance of a robust and trustworthy system operation

in the face of potential threats by leveraging components that

bolster data integrity and effectively prevent compromised

information from infiltrating other system modules.

The main stage preceding the development of an architec-

ture, according to the cyber immune approach, is the definition

of security goals and assumptions. In our case, the main

security goal is to adequately detect surfacing defects. We

do not allow the case when a defect is not handled by the

defect detection module. More precise security goals can be

defined by specifying the values that need to be protected

during the system’s operation. An example for our system

is given in Table IV. It presents possible negative scenarios,

consequences, and threat levels for each value of the system.

Table IV R

Risk Vulnerability Consequences Risk Level Mitigation
Measures

Loss of
video
analytics
data

Equipment
failure,
property
damage

Missed
defects,
downtime,
financial
losses

High Regular data
backups,
monitoring
systems for
equipment
status

False
positives
from the
system

Low quality
of analysis
algorithm

Resource
overuse,
reduced trust
in the system

Medium Improve
analysis
algorithms,
train the
model on
more data

Incorrect
calibration
of equipment

Configuration
errors

Incorrect
data inter-
pretation,
welding
quality

High Regular
checks and
calibration
of
equipment,
operator
training

Software
failures

Vulnerabilities
in software

System
downtime,
data loss

High Update
software,
vulnerability
testing

The security assumptions include the following:

1) The camera used is reliable and trustworthy.

2) The employees interacting with the system are qualified,

trustworthy, and authorized to use the system.

3) Camera connection module, image processing module,

prediction processing module and web-interface are

trustworthy and reliable.

4) The dataset is prepared by reliable and trusted members

of the research team.

Thus, in the first iteration of development, we focus on

the surface defect detection module as the main untrusted

entity. As can be observed from the Table IV, the primary

risks are associated with this component of the system. In

further iterations, the architecture policy may change due

to the clarification of security assumptions during testing.

Adversarial attacks and data poisoning are not typical for our

case, due to the security assumption number 4. The main

potential source of threat is the presence of ”backdoors” in the

selected neural network model. The problem of retraining is

also likely, but it is usually identified at the stage of preparing

the model for implementation.
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D. Development of a Cyber Immune System Architecture

In order to prevent security threats in an implemented

system, a cyber immune architecture for the project was

developed. The diagram can be seen in Fig. 3. The diagram

depicts the trusted computing base of the surface defect control

system, highlighting the security domains. Additionally, there

is a qualitative assessment of these domains based on the com-

plexity and size of the code within each module. Developing

a cyber immune architecture presents a challenge in ensuring

the reliability of complex and XL-class domains, as it requires

substantial time and resources.

Fig. 3 Cyber immune system architecture

Let us take a closer look at the principles of marking

security domains in this particular example.

• We consider the camera module to be trusted, since it

is assumed that its configuration and connection will be

performed by the staff of the research group. The camera

communicates via the network interface only with the

host on which the defect detection module is deployed,

which eliminates the possibility of remote connection

and compromise of its operation. Thus, the output of the

camera can be considered high-integrity data.

• The camera connection module and image preprocessing

module are also considered trusted domains, since its

programming is handled by staff.

• At the level of the defect detection module, a YOLO

neural network architecture is used, which, according to

the issues described above, makes it difficult to consider

it a trusted entity. Therefore, we assume that the defect

detection module generates low-integrity data that must

be verified and processed at the prediction processing

module level.

• The quantitative analysis of the module reveals a high

level of complexity in the code, but it also has a medium

volume, making it possible to use a cyber immune

approach. Thus, the prediction processing module is

considered a domain that increases integrity and provides

high-integrity output data in the Web interface that the

user interacts with.

The above method is just the first step towards developing

a cyber immune system that meets security requirements.

Other stages of developing a cyber immune architecture policy

include modeling negative work scenarios, unit testing and

clarifying the trusted computing base. In the future, we will

continue to develop more detailed security measures for spe-

cific domains in order to enhance data integrity. The main areas

that need to be addressed in order to increase the reliability

of neural networks in industrial settings include the use of

explainable AI techniques, the implementation of feedback

loops, regularization, and standardization of industrial AI

usage. Additionally, there are other possible solutions that may

be explored in further research.

VII. CONCLUSION

This paper introduces an industrial automated real-time

video analysis system for welding defect detection that builds

on the foundation laid by the previous researchers in this

field. In contrast to existing solutions, which often require

significant computational resources and large datasets, our

system is engineered to operate in real-time with low hardware

requirements. Using a deep learning approach and a client-

server microservices architecture, our system achieves high

accuracy and reliability in welding defect detection, making it

a valuable tool for quality control and process optimization in

industrial manufacturing environments.

The problem solving process resulted in environmental

constraints and hardware requirements based on real industry

demands. For example, these requirements allow the camera

and computer to be placed in an intensive welding area.

Based on the experience gained, a system architecture is

developed to detect welding defects using artificial intelligence

and computer vision technologies in real time. The neural

network trained on a welding defect dataset demonstrates an

overall accuracy of 0.84 (mAP50 metric) with an inference

time of 0.7ms. The obtained results may also be applied to

other related R&D problems. Key finding of this study:

• Hardware requirements for harsh environmental condition

near welding operations;

• Hardware requirements for minimal required processing

power;

• Dataset quality and quantity requirements;

• Comparison of different neural networks for task of

welding defect recognition;

• System architecture for software realization;

• Cyber Immunity approach for ensuring security of pro-

posed system;

With Industry 4.0 developing, the demand for intelligent and

autonomous quality control systems will only grow. Future
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R&D directions may include exploring the possibility of

applying such systems to other industrial processes, integrating

it with new technologies such as IoT and edge computing,

developing more advanced algorithms to further predictive

analytics for defect occurrence and improve detection accuracy

and efficiency. In addition, the development of more robust and

secure systems will be critical to ensuring widespread adoption

of automated video analytics in industrial manufacturing. By

pushing the boundaries of what is possible with automated

video analytics, we can unlock new levels of productivity,

efficiency and innovation in the manufacturing sector.
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