
Architecture of Reflective Artificial Intelligent
Agents

Sergey Listopad
Kaliningrad Branch of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Kaliningrad, Russia
ser-list-post@yandex.ru

Abstract—Mechanisms of reflection in a team of specialists
are special means of coordinating and synchronizing the activities
of individual members. Thanks to them, team members are able
to reason "for another", develop a solution, simulate its
transmission to themselves and, in accordance with this solution,
build their further reasoning. This allows significally reduce the
duration and intensity of conflicts between team members. In this
regard, relevant computer modeling of long-existing teams of
specialists solving practical problems at a round table is
impossible without modeling reflection. For this purpose,
reflective-active systems of artificial heterogeneous intelligent
agents are proposed. This paper considers the architectures of
intelligent agents of various reflection ranks, as well as the
functional structure of the system itself.

I. INTRODUCTION

The traditional subject-object paradigm is irrelevant to the
processes of managing complex organizational structures, such
as logistics centers, energy distribution or medical
organizations [1]. Such structures are not passive objects, but
evolving networks of interacting subjects, which are
characterized by activity, reflection, communicativeness,
sociality, etc. When managing and automatically solving
problems arising in these structures, it is necessary to consider
them as self-developing reflective-active environments [1]. For
this purpose, the concept of reflective-active system of artificial
heterogeneous intelligent agents (RASAHIA) is proposed [2],
within the multi-agent paradigm [3–5], as a computer model of
a team managing complex organizational structures.
RASAHIA’s agents are autonomous software entities
characterized by activity and reactivity, capable of reasoning,
interacting and reflecting.

The foundations of mathematical modeling of reflective
processes and control are laid in the works of V.A. Lefebvre,
who considered reflection as the ability of the object-researcher
to model other objects and itself, its actions and thoughts [6].
D.A. Novikov and A.G. Chkhartishvili proposed the concept of
equilibrium in reflexive games [7]. In [8], an approach based
on fuzzy logic was proposed for formalizing the reflection of a
medical expert. In [9], the concept of constructing a virtual
intelligent agent-assistant that reflectively models its user is
considered. The research [10] is devoted to the development of
self-learning mechanisms for autonomous intelligent robots
when constructing a trajectory in an environment with
obstacles unknown a priori.

In RASAHIA, the reflective abilities of agents serve to
reduce the duration of negotiation processes during the
development of a coordinated idea of the problem area, the
goals of the system and the order of interaction, making it
possible to attract new agents from the external environment
and RASAHIA’s self-organization in the strong sense [11]. The
essential feature of RASAHIA is the presence of second-rank
reflective agents, which suggests that the system may contain
both agents without reflection and those capable of first-rank
reflection [6]. Second-rank reflective agents try to distinguish
reflection rank of other agents in the system based on an
analysis of their behavior to provide own effective reflective
control of both types of agents. This paper presents
RASAHIA’s functional structure and the architectures of its
reflective agents, developed in accordance with the
methodology [12] and the system’s model [2].

II. TYPICAL FUNCTIONAL STRUCTURE OF REFLECTIVE-ACTIVE

SYSTEMS OF ARTIFICIAL HETEROGENEOUS INTELLIGENT

AGENTS

The typical functional structure of RASAHIA (Fig. 1)
describes the subsystems of agents and their functionality,
information flows and relationships between them, as well as
their interaction with the environment, which is considered as a
multi-agent system of a higher level. At the same time, each of
the presented agents can be a lower-level RASAHIA. The
proposed structure acts as a basis for developing a system for a
specific problem. During this process the number and
composition of agents have to be specified, which are not
predetermined in the typical structure.

The interface subsystem of RASAHIA is an intermediary
between the system agents and its users, as well as the control
object. The interface agent requests input data from the user
and presents the result of the problem solving, as well as
provide the user with the system configuration and visualize
the processes in RASAHIA [13]. The interface agents receive
information about control object’s state and issue control
actions through software interfaces.

The technological subsystem provide service functions to
other agents of the system. Translator agent is included in the
process of transmitting messages between a pair of agents if
they do not support a single language and cannot communicate
with each other directly. The intermediary agent ensures the
“yellow pages” service, i.e. provides names of agents with

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 878 --

specific abilities. The basic ontology is a technological element
of RASAHIA, ensuring that agents understand the semantics of
each other’s messages within basic communication to
coordinate their own ontologies, built on its basis, goals and
problem solving protocols.

The management subsystem ensures the effective
interaction of other agents and directs RASAHIA’s self-
organization. The protocol control agent monitors that the
agents’ actions comply with the problem solving protocol they
have agreed upon. The facilitator agent ensures the effective
joint work of the agents of the problem solving subsystem, in
particular, assesses the current situation in it, initiates the
actions of agents that stimulate or suppress conflicts arising
between them [14]. The composition management agent
attracts agents from the pool in the environment to the problem
solving subsystem, simulating the methods of selecting
specialists for real teams [15], and also excludes agents from
RASAHIA, placing them in the pool.

The problem solving subsystem is designed for computer
modeling of group work of specialists on solving a problem.
This subsystem ensures the implementation of the principle of
necessary diversity by modeling the reasoning of specialists in
different fields and using different problem solving methods.
The decision-making agent, having received the information
necessary for solving the problem from the interface agent,
decomposes the problem into sub-problems, distributes them
between specialist agents, collects and evaluates their solutions,
forms the result of the system’s work. The specialist agent,
modeling the reasoning of a real specialist, solves a sub-
problem or the problem as a whole depending on the
instructions of the decision-making agent. The agents of this

subsystem can be created by different developers, which
potentially leads to differences and contradictions in their
ontologies and goals. However, due to the reflective modeling
of each other’s reasoning, the intensity of conflicts and the
duration of negotiations are reduced.

III. ARCHITECTURES OF INTELLIGENT REFLECTIVE

SPECIALIST AGENTS

The architectures of specialist agents of different ranks of
reflection are developed based on their micro-level model [2].
The required set of actions of a specialist agent in accordance
with the formal model [2] and the typical functional structure
of RASAHIA (Fig. 1) can be described as follows:

where ag
msgACT is a set of service actions on receiving and

transmitting messages, interpreting and composing them, which
are standard for all agents; ag

fncACT is a set of actions on

modeling the reasoning of specialists when solving a problem
or its parts; ag

migACT is a set of actions of an agent on moving to

the pool in the environment and back; ag
refACT is a set of

actions in accordance with the reflective control model refc

(7) from [2]; ag
recACT is a set of actions in accordance with the

method agrec for making recommendations of specialist

agents from agent pool based on the experience of previous
joint work; ag

negACT is a set of actions (method) on coordinating

among agents their domain models, goals and protocols [2].

The set ag
refACT of actions in accordance with the model of

reflective control (1) depends on the rank of reflection of the
specialist agent. The set of actions of an agent with a zero rank
of reflection, i.e. not possessing reflection, is empty

The set 1
ag

refACT of actions of agent with the first rank of

reflection is described by the expression

where ag
rmdlACT are the actions of modeling other agents by

reflective agents based on the options they propose for solving
the problem; ag

rctrACT are the actions of developing negotiation

tactics and strategies by reflective agents in accordance with
their models of other agents.

The set 2
ag

refACT of actions of first-rank reflection agent is

supplemented by actions ag
rctrmACT of reflective control of

agents based on their models, as well as actions ag
rridACT of

identifying other agents’ reflection rank

,

ag sp ag ag ag ag
msg fnc mig ref

ag ag ag
rec neg com

ACT ACT ACT ACT ACT

ACT ACT ACT

    

  
 (1)

0
ag

refACT   . (2)

1 { , }ag ag ag
ref rmdl rctrACT ACT ACT , (3)

2 { , , , }ag ag ag ag ag
ref rmdl rctr rctrm rridACT ACT ACT ACT ACT . (4)

Fig. 1. Typical functional structure of reflective-active system of artificial
heterogeneous intelligent agents

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 879 --

Thus, based on (1) and (2), the architecture of a zero rank
reflection specialist agent can be represented by Fig. 2.

The perception subsystem monitors the state of artifacts in
the agent’s external environment, which are divided into
RASAHIA artifacts (the basic ontology) and artifacts of its
environment. In terms of the JaCaMo platform [16], on which
RASAHIA is implemented, and its component, the CArtAgO
subsystem, an artifact is a functionally oriented computational
abstraction providing services to agents [17] through a set of
publicly available functions and observable properties [18]. If
artefact’s property, to which the agent is subscribed, changes, a
corresponding notification is sent to it. Notifications are
processed by the agent’s perception subsystem, which, upon
receiving one, forms a list of percepts and modifies the agent’s
belief base. If an agent needs to interpret a concept from other
agents’ messages, it can do so using the public functions of the
artifact implementing the RASAHIA basic ontology.

The agent’s belief base is a repository of the agent's ideas
about its environment, i.e. about RASAHIA and its
environment. The belief base is modified either as a result of
observing changes in the environment using the perception
subsystem, or as a result of the agent’s reasoning and the
execution of intentions by the appropriate method. Each time
the belief base is adjusted, an event is generated, which can be
external, caused by a change in the belief base by the
perception subsystem, or internal, generated by the method of
selecting and executing an intention (in this case, the intention
that caused the event is also recorded). The belief base is
implemented using standard tools of the JaCaMo platform and
its component, the Jason subsystem [19].

The message receiving/sending subsystem ensures
communication with other agents via the RASAHIA message
router. The latter is a subsystem of the JaCaMo software
platform, ensuring correct delivery of messages to their

addressees. Upon receiving a message from another agent, the
message receiving/sending subsystem places it in a queue. In
each reasoning cycle, the agent selects the first message from
the queue and processes it. Sending messages to other agents
via the RASAHIA message router is performed upon request of
the method of choosing and fulfilling an intention, while the
basic ontology interpreter is used to form a semantically correct
message. The message receiving/sending subsystem is
implemented with standard tools of the Jason subsystem of the
JaCaMo platform, which supports prioritization and filtering.

The basic ontology interpreter, receiving the message body
from the message receiving/sending subsystem, performs its
semantic analysis using the basic ontology, forms events
containing the program objects generated as a result of the
analysis, and places them in the queue. Upon receipt of a
request from the message receiving/sending subsystem, the
interpreter of the basic ontology generates a semantically
correct message body in accordance with the intention that
initiated the request.

The event queue is a buffer containing an ordered set of
change-intention pairs. A change can be a change in beliefs as a
result of the perception of the environment (in this case, the
second part of the pair, the intention, remains empty) by the
agent itself or through other agents, or as a result of the
execution of the corresponding intentions. The order of events
can be configured by the agent developer.

The method of forming reaction to an event selects the first
pending event from the queue, generates an intention relevant
to it using the plan library, and places the latter in the queue of
intentions. According to this method, all plans that have a
triggering event that can be merged with the selected event in
accordance with the merging mechanism adopted by the Jason
subsystem of the JaCaMo platform are selected from the plan
library. Of the found plans, those are selected whose contextual

Fig. 2. Architecture of a zero-rank reflection specialist agent

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 880 --

part corresponds to the current beliefs of the agent [19]. If such
plans are not found, the selected event is moved to the end of
the queue for subsequent reprocessing. If more than one plan
remains, the first one is selected for further processing in
accordance with the order in which the plans are written in the
source code of the agent, otherwise the only plan is selected.
The selected plan becomes an intention and is placed in the
queue of intentions.

The library of plans contains the agent’s action algorithms
for reacting to events occurring in a certain situation. The plan
consists of a body and a header, which in turn contains the
initiating event and context that determine the conditions for
executing the plan. The initiating event of the plan describes a
set of real events for which the plan should be used. If the
initiating event of the plan corresponds to the real one, the plan
is considered as a relevant one and, if the context is true,
according to the agent’s current beliefs, it becomes a candidate
for execution. The plan body is a sequence of instructions
(formulas) for processing of the event. The instructions in the
plan body can be a call to Java functions, direct actions for
changing objects of the environment or sending messages, as
well as actions for generating beliefs or plans.

The block "Methods for moving an agent to and from the
pool" contains functions in the Java language that can be called
from the plan body when initializing an agent during its
inclusion in the problem solving subsystem from the pool in the
RASAHIA’s environment or when excluding it from the
system and moving it to the pool. When an agent is included in
the problem solving subsystem, an empty agent is created that
executes the agent initialization plan calling the corresponding
method of the current block and passes the identifier of the
agent being attracted to it. The initialization method requests
the agent configuration from the agent pool in accordance with
this identifier via the perception subsystem, after which it
modifies all other agent blocks using it (the arrows displaying
these interactions are omitted in Fig. 2 for clarity). Upon
completion of initialization, the agent sends a message to the
intermediary agent, registering its name, address, and
capabilities. The agent is excluded from the problem-solving
subsystem and moved to the pool by command from the
composition management agent. Having received a message
from it, the agent processes it in priority order, executing the
plan for saving the configuration and shutting down the work,
which calls the method for moving the agent to the pool. This
method saves the state of all agent blocks at the current
moment and, using the action subsystem, sends this
information to the pool for saving the configuration and
possible subsequent use. After that, actions are performed to
shut down the agent: sending a message to the intermediary
agent about the agent’s termination, releasing possible
connections and occupied resources, and destroying the agent.

The “Problem solving methods” block is a set of functions
that provide modeling of the specialist solving the problem.
These functions can use various methods of formal
representation of systems [20], for example, analytical,
stochastic, fuzzy, and are intended to solve a specific problem
or part of it, so they are not considered in detail here.

The fuzzy goal, i.e. a fuzzy set specified on the set of states
of the control object, is used as an optimality criterion when
implementing problem solving methods [20].

The domain model (ontology) is a list of concepts,
properties, and characteristics for describing this domain, as
well as the laws of the processes occurring in it, implemented
using the OWL ontology [21].

Problem solving protocols define schemes (distributed
algorithms) for exchanging information and knowledge, as well
as coordinating agents, the formal model of which is presented
in [22].

The “Negotiation methods” block represents functions that
implement models of coordination between agents of their
domain models, goals and protocols to achieve their
consistency when new agents from the pool are included in the
system, since in the general case the domain models, goals and
problem solving protocols of specialist agents created by
different teams of developers do not coincide.

The block “Methods for generating agent recommendations
based on experience” is a set of functions that provide
modeling of referral recruitment in RASAHIA [23] case-based
reasoning. The function of generating experience of joint work
with agents is performed throughout the agent’s activity when
it requests help in solving parts of a problem from other agents.
This function records as a precedent the concept of the problem
for which the agent requests help, its characteristics, the
identifier of the agent from whom this help is requested, the
result obtained, the duration of obtaining the result, and other
parameters defined by the agent developers. The recorded
precedents are placed in the “Collaboration precedents
database”. Provision of information from this base is performed
by a separate function at the request of the composition
management agent.

The queue of intentions is an ordered list of plans accepted
for execution and which have become intentions, or their parts.
In the general case, the agent’s queue of intentions contains
more than one intention, each of which competes for the
agent’s “attention”. In each reasoning cycle, the agent executes
one instruction (formula) of the intention, after which it is
moved to the end of the queue. As a result, pseudo-parallel
execution of all plans accepted for execution is organized. The
queue of intentions is implemented by standard means of the
Jason subsystem of the JaCaMo platform.

The method of choosing and fulfilling an intention uses the
standard function of selecting an intention of the Jason
subsystem, which provides prioritization. The method selects
the first intention in the queue, removes it from the queue, and
executes one of its instructions. The executed instruction is
removed from the intention. If there are no instructions left, the
intention is considered executed and removed from the queue,
otherwise the adjusted intention is inserted at its end.

The action subsystem is designed to change the state of
artifacts in the agent’s environment using their publicly
available functions.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 881 --

In accordance with (1) and (3), the architecture of the first-
rank reflection specialist agent can be represented by the Fig. 3.
The main difference from the Fig. 2 is the presence of the
blocks “Methods of reflective agent modeling”, “Agents’
reflective models database” and “Methods for developing
negotiation strategy and tactics”.

Methods of reflective agent modeling are intended to form
relevant models of other agents and save them in the “Agents’
reflective models database”. These methods are intended to
solve the identification problem, i.e. finding the optimal model
of the agent under study as a result of observing its behavior
and response to external disturbances, for example, incoming
messages, changes in the environment or in RASAHIA itself
[24]. The implementation of methods of reflective agent
modeling varies depending on the artificial intelligence
technology used and is determined by the developers of a
specific agent. In the most general form, the methods can be
described as follows: for each simulated agent, a blank model
is formed using its own model as a basis; upon receiving
information about the simulated agent during negotiations,
adjust it; if as a result of the adjustment the model has become
irrelevant to the simulated agent, adjust other parts of the model
to compensate for the decrease in the quality of the model;
upon receiving the next message, it is necessary to re-evaluate
the relevance of the model to the agent, and, if necessary,
adjust the model; if a model is assessed as irrelevant to the
agent, and the modeling agent does not have enough
information to build a relevant model, it is necessary to exclude

such a model from further considerations during negotiations,
but continue to adjust it as new information about the agent
arrives.

The block “Methods for developing negotiation strategy
and tactics” is designed to plan behavior when negotiating with
other agents. Negotiation strategy is a predetermined approach
or general agent’s plan of action to achieve own goal as a result
of negotiations [25]. Negotiation tactics are a detailed method
used by an agent to gain an advantage, including the use of
manipulative techniques and reflective control. To form a
negotiation strategy for a reflective agent, a method based on
Mamdani's fuzzy inference is proposed, implementing D.
Pruitt’s “double concern” model [26]. As part of the
implementation of the negotiation strategy, the agent can use
one or more tactics implemented by it in accordance with the
chosen strategy, the current situation and the model of the
agent-opponent. To select negotiation tactics, a case-based
reasoning [27] approach can be used. The method of
developing behavioral tactics by reflective agents includes two
functions (actions): choosing tactics and their settings, and
saving the results of applying the tactics.

In accordance with expressions (1) and (4), the architecture
of the second-rank reflection specialist agent can be
represented by the Fig. 4. The main difference from the Fig. 3
is the presence of the blocks “Reflective control methods” and
“Method for identifying the rank of agent reflection”. In
addition, the agent’s reflective models database contains two

Fig. 3. Architecture of a first-rank reflection specialist agent

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 882 --

models of zero and first rank for each agent. The method for
identifying the rank of agent reflection is designed to select a
relevant model of an agent of the corresponding rank for
subsequent reasoning based on its behavior during negotiations.
The block “Reflective control methods” is designed to select
negotiation tactics that mislead the opposing agent, which is
beneficial to the second-rank reflection specialist agent for
achieving its goals. In this case, the second-rank specialist
agent of reflection assumes that the opposing agent models its
behavior and selects its negotiation strategies and tactics in
accordance with this model, i.e. is an agent of the first rank of
reflection. In general, reflective control methods are considered
in [28].

IV. CONCLUSION

The paper presents the functional structure of the reflective-
active system of artificial heterogeneous intelligent agents and
the architectures of its agents of the zero, first and second ranks
of reflection, implementing the basic principles of constructing
such systems in accordance with the methodology [12]. In
particular, due to the dynamic composition and diversity of the
agents of the problem solving subsystem, the heterogeneity and
variability of the problem is taken into account. The proposed
architectures of the agents implements such properties as
autonomy, activity, reactivity, communicativeness, reflection,

the ability to model the domain and goal setting. The reflective
control mechanisms used by the agents ensure homeostasis of
the system due to the coordination of their own goals,
ontologies and protocols. Due to the open nature of the system
and the reflective control mechanisms, self-organization of
agents in the strong sense arises in the system [11], without
centralized control of this process by one of them.

ACKNOWLEDGMENT

The study was supported by the Russian Science
Foundation grant No. 23-21-00218, https://rscf.ru/project/23-
21-00218/

REFERENCES
[1] D. Dubrovsky, V. Lepskiy, and A. Raikov, “General Artificial

Intelligence in Self-developing Reflective-Active Environments,” in
World Organization of Systems and Cybernetics 18. Congress-
WOSC2021. WOSC 2021. Lecture Notes in Networks and Systems, vol
495, 2022, pp. 3–13.

[2] S.V. Listopad, “Modelirovanie refleksivnyh processov v kollektivah
specialistov, reshajushhih problemy za kruglym stolom” [“Modeling
reflective processes in teams of specialists solving problems at a round
table”], in Modelirovanie neravnovesnyh, adaptivnyh i upravljaemyh
sistem: Materialy XXVI Vserossijskogo seminara [Modeling
nonequilibrium, adaptive and controlled systems: Proceedings of the
XXVI All-Russian seminar], 2023, pp. 57–66. (in Russian)

Fig. 4. Architecture of a second-rank reflection specialist agent

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 883 --

[3] V.B. Tarasov, Ot mnogoagentnykh sistem k intellektual'nym
organizatsiyam: filosofiya, psikhologiya, informatika [From multi-agent
systems to intelligent organizations: philosophy, psychology, computer
science]. Moscow: Editorial URSS, 2002. (in Russian)

[4] V.I. Gorodetskiy, O.V. Karsaev, V.V. Samoylov, and S.V. Serebryakov,
“Instrumental'nye sredstva dlya otkrytykh setey agentov” [“Tools for
open agent networks”], Izvestiya RAN. Teoriya i sistemy upravleniya
[News of the Russian Academy of Sciences. Theory and control systems],
vol. 3, 2008, pp. 106–124. (in Russian)

[5] M. Wooldridge, An Introduction to Multiagent Systems. New York:
Wiley, 2009.

[6] V.A. Lefebvre, Conflicting Structures. New York: Leaf & Oaks
Publishers, 2015.

[7] D.A. Novikov, and A.G. Chkhartishvili, Reflexion and Control:
Mathematical Models. London: CRC Press, 2014.

[8] B. Kobrinskii, “Expert reflection in the process of diagnosis of diseases
at the extraction of knowledge”, in IV International Research
Conference "Information Technologies in Science, Management, Social
Sphere and Medicine" (ITSMSSM 2017), December 5-8, 2017,
Proceedings. Advances in Computer Science Research, vol.72, 2017, pp.
321–323.

[9] I.V. Smirnov, A.I. Panov, A.A. Skrynnik, and E.V. Chistova,
“Personal'nyj kognitivnyj assistent: koncepcija i principy raboty”
[“Personal cognitive assistant: concept and operating principles”],
Informatika i ee primenenija [Informatics and Applications], vol. 13(3),
2019, pp. 105–113. (in Russian)

[10] V.B.Melehin, V.M. Hachumov, and M.V. Hachumov, “Samoobuchenie
avtonomnyh intellektual'nyh robotov v processe poiskovo-
issledovatel'skoj dejatel'nosti” [“Self-learning of autonomous intelligent
robots in the process of search and research activities”], Informatika i ee
primenenija [Informatics and Applications], vol. 17(2), 2023, pp. 78–83.
(in Russian)

[11] G.D.M. Serugendo, M.-P. Gleizes, and A. Karageorgos “Self-
organization in multiagent systems”, The Knowledge engineering review,
vol. 20(2), 2005, pp. 165–189.

[12] S.V. Listopad, “Zhiznennyy tsikl metodologii postroeniya refleksivno-
aktivnykh sistem iskusstvennykh geterogennykh intellektual'nykh
agentov” [“Life cycle of the methodology for constructing reflective-
active systems of artificial heterogeneous intelligent agents”],
Informatika i ee primeneniya [Informatics and Applications], vol. 18(1),
2024, pp. 84–91. (in Russian)

[13] S.B. Rumovskaya, and I.A. Kirikov, “Metod vizual'nogo predstavleniya
konfliktov v gibridnykh intellektual'nykh mnogoagentnykh sistemakh”
[“Method of visual representation of conflicts in hybrid intelligent multi-
agent systems”], Informatika i ee primeneniya [Informatics and
Applications], vol. 14(4), 2020, pp. 77–82. (in Russian)

[14] S.V. Listopad, and I.A. Kirikov, “Metod na osnove nechetkikh pravil
dlya upravleniya konfliktami agentov v gibridnykh intellektual'nykh
mnogoagentnykh sistemakh” [“A method based on fuzzy rules for
managing agent conflicts in hybrid intelligent multi-agent systems”],

Informatika i ee primeneniya [Informatics and Applications], vol. 17(1),
2023, pp. 66–72. (in Russian)

[15] S.B. Rumovskaya, “Podkhody k podboru spetsialistov pri organizatsii
kollektivnogo resheniya problem” [“Approaches to the selection of
specialists in organizing collective problem solving”], Informatika i ee
primeneniya [Informatics and Applications], vol. 17(2), 2023, pp. 96–
103. (in Russian)

[16] O. Boissier, R.H. Bordini, J. Hubnerand, and A. Ricci, Multi-Agent
Oriented Programming: Programming Multi-Agent Systems Using
JaCaMo. Cambridge: The MIT Press, 2020.

[17] A. Freitas, A.R. Panisson, L.W. Hilgert, F. Meneguzzi, R. Vieira, and
R.H. Bordini, “Integrating Ontologies with Multi-Agent Systems
through CArtAgO Artifacts,” in 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2015, pp. 143–150.

[18] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: An artifact-based perspective,” Autonomous Agents and
Multi-Agent Systems, vol. 23(2), 2011, pp. 158–192.

[19] R.H. Bordini, J.F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. Chichester: Wiley-
Interscience, 2007.

[20] A.V. Kolesnikov, I.A. Kirikov, and S.V. Listopad. Gibridnye
intellektual'nye sistemy s samoorganizatsiey: koordinatsiya,
soglasovannost', spor [Hybrid intelligent systems with self-organization:
coordination, consistency, dispute]. Moscow: IPI RAN, 2014. (in
Russian)

[21] Web Ontology Language (OWL), Web: https://www.w3.org/OWL/

[22] I.A. Kirikov, and S.V. Listopad, “Cohesive Interaction Protocol
Development in Hybrid Intelligent Multi-agent Systems,” in
Proceedings - 2021 3rd International Conference on Control Systems,
Mathematical Modeling, Automation and Energy Efficiency (SUMMA-
2021), 2021, pp. 553-558.

[23] A. Mishra, Referral recruitment – the most effective way of recruitment
and how you can improve it, Web:
https://www.hackerearth.com/blog/talent-assessment/referral-
recruitment-effective-way-recruitment-can-improve/

[24] V.E. Pjateckij, V.S. Litvjak, and I.Z. Litvin, Metody prinjatija
optimal'nyh upravlencheskih reshenij: modelirovanie prinjatija reshenij
[Methods of making optimal management decisions: decision-making
modeling]. Moscow: MISiS, 2014. (in Russian)

[25] Negotiation Strategy, Web: https://www.negotiations.com/definition/
negotiation-strategy/

[26] P. Carnevale, and D. Pruitt, “Negotiation and Mediation”, Annual
Review of Psychology, vol. 43, 2003, pp. 531–582.

[27] R.L. de Mantaras, “Case-Based Reasoning”, in: Machine Learning and
Its Applications. ACAI 1999. Lecture Notes in Computer Science, vol
2049, 2001, pp. 127–145.

[28] V. Lefebvre, Lectures on the Reflexive Games Theory. New York: Leaf
& Oaks Publishers, 2010.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 884 --

