
A Review of Approaches to Detecting Software
Design Patterns

Jameleh Asaad, Elena Avksentieva
ITMO University

St. Petersburg, Russia

jamelehasaad@gmail.com, eavksenteva@itmo.ru

Abstract—Design patterns play a crucial role in modern
software engineering, providing reusable solutions to common
design challenges. Among the most influential collections of
design patterns is the Gang of Four (GoF) patterns, which
offer a timeless framework for addressing recurring design
problems. This article investigates the enduring impact of GoF
design patterns on software development practices, examining
their utilization in contemporary software projects and frame-
works. Additionally, this study conducts a thorough analysis of
various design pattern detection approaches, evaluating their
effectiveness and implications in real-world software development
contexts. By combining theoretical frameworks with empirical
studies, we aim to provide valuable insights into the role of design
patterns in software engineering and offer guidance on selecting
appropriate detection methods for software project.

I. INTRODUCTION

In the vast landscape of software engineering, the integra-

tion of design patterns stands as a foundational pillar, guiding

developers towards the creation of robust, maintainable, and

scalable software solutions. Originating from architectural

principles and later adapted to the realm of software develop-

ment, design patterns have evolved into indispensable tools,

catalyzing significant advancements in the field. Since their

inception, these patterns, epitomized by the seminal work

of the Gang of Four (GoF), have permeated the fabric of

software design, offering standardized solutions to recurring

design challenges.

The enduring legacy of design patterns is perhaps best

exemplified by the seminal work ”Design Patterns: Elements

of Reusable Object-Oriented Software,” authored by Erich

Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

This monumental text, commonly referred to as the GoF book,

serves as a compendium of time-tested solutions to common

software design problems, providing developers with a shared

vocabulary and framework for effective collaboration.

Amidst the proliferation of design patterns across various

domains of software development, a critical question emerges:

What tangible impact do these patterns have on software

quality? This question serves as the crux of our inquiry, as

we embark on a comprehensive exploration of the influence of

GoF design patterns on software quality metrics and outcomes.

Furthermore, the field of design pattern detection (DPD) has

emerged as a pivotal area of research, essential for supporting

software maintenance and reverse engineering efforts. By

providing valuable insights into the structure and organization

of complex software systems, DPD facilitates comprehension

and subsequent reengineering steps. However, achieving op-

timal design pattern detection remains a challenge due to

factors such as differing pattern definitions and subjective

interpretation.

Integral to our exploration is the examination of popular

frameworks that extensively employ GoF design patterns,

along with their associated detection methods. By dissecting

how these frameworks leverage design patterns to achieve

modularity, extensibility, and maintainability, and exploring

the methodologies used to detect them, we aim to provide a

nuanced understanding of the practical implications of design

pattern utilization on software quality.

Through empirical studies, case analyses, and industry best

practices, we endeavor to unravel the intricate relationship

between the judicious application of GoF design patterns,

their detection, and various dimensions of software quality.

Ultimately, this research aspires to offer actionable insights

for software practitioners and decision-makers, guiding them

in making informed choices regarding the incorporation of

design patterns into their software projects.

In the subsequent sections, we will traverse the landscape of

software quality assessment, elucidating key dimensions and

metrics, before embarking on a systematic examination of the

impact of GoF design patterns and their detection methods on

each facet of software quality. By synthesizing insights from

theory, practice, and empirical research, we aim to contribute

to the ongoing dialogue surrounding the role of design patterns

in engineering software systems of enduring excellence.

II. BACKGROUND AND RELATED WORKS

A. Introduction to software design patterns

Software design patterns, derived from architectural prin-

ciples, have evolved as fundamental solutions to recurring

problems in software engineering. Initially conceptualized by

Alexander et al. within the realm of architecture, these patterns

were later adapted to software development in 1987, catalyzing

a significant advancement in the field [1], [2]. Since then,

software design patterns have become indispensable tools for

improving software quality and fostering collaboration among

developers [3].

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 142 ----------------------------------------------------------------------------



Today, a multitude of design patterns exists, spanning

various levels of abstraction within software systems. These

patterns encompass architectural, design, and implementation

aspects, addressing a wide array of domain-specific challenges

[4], [5], [6], [7]. Notably, seminal works such as ”Design

Patterns: Elements of Reusable Object-Oriented Software”

by the Gang of Four have revolutionized software design,

providing a standardized framework for addressing common

design problems [8], [9].

B. Categorization of design patterns

Design patterns are typically categorized into three main

classes:

1) Structural Design Patterns: These patterns focus on

organizing objects and classes to form larger, functional

structures. Examples include Adapter, Decorator, and

Composite patterns [10]

2) Creational Design Patterns: Primarily concerned with

object creation mechanisms, these patterns encapsulate

the instantiation process, promoting flexibility and scal-

ability. Examples include Factory Method and Singleton

patterns [11].

3) Behavioral Design Patterns: These patterns define com-

munication patterns among objects, emphasizing the

distribution of responsibilities to enhance flexibility and

maintainability. Examples include Observer, Strategy,

and Command patterns [11], [12].

C. Challenges in implementing design patterns

Despite their benefits, developers often encounter challenges

when implementing design patterns [13]:

1) Pattern Selection: Choosing the appropriate design pat-

tern amidst similarities and complexities can be daunt-

ing.

2) Understanding Pattern Characteristics: Grasping the nu-

ances of unfamiliar patterns poses a significant learning

curve for developers.

3) Refactoring: Incorporating design patterns into existing

architectures requires careful consideration and execu-

tion.

4) Trade-offs of Quality Attributes: Balancing various qual-

ity attributes, such as maintainability and scalability, can

be complex when implementing specific design patterns.

5) Technological Problems: Implementing design patterns

may introduce technological challenges that require in-

novative solutions.

D. Significance of detecting design patterns

Detecting design patterns within codebases is crucial for

effective software development, especially during maintenance

and refactoring tasks. It serves as a fundamental step towards

addressing many identified issues, including pattern selection,

understanding pattern characteristics, and optimizing quality

attribute trade-offs. By emphasizing the significance of de-

tection, developers gain insights into the complexities and

nuances involved in this process. Automated tools and al-

gorithms complement manual inspection, enabling developers

to leverage existing solutions and build maintainable software

systems. As elucidated in the scholarly article, detecting design

pattern instances from source codes in software re-engineering

offers several benefits:

1) Understanding Complex Systems: By identifying design

patterns in source code, developers can gain insights

into the underlying structure and organization of com-

plex software systems. This understanding is crucial for

effective re-engineering efforts.

2) Improving Software Quality: Detecting design patterns

allows developers to assess the quality of the software ar-

chitecture. By recognizing well-known design patterns,

they can ensure that the system follows established best

practices and principles.

3) Facilitating Refactoring: Design patterns provide proven

solutions to common design problems. Detecting these

patterns can guide developers in refactoring the codebase

to improve maintainability, extensibility, and overall

quality.

4) Enhancing Program Understanding: Recognizing design

patterns in source code enhances program comprehen-

sion. Developers can quickly grasp the intent and struc-

ture of the software by identifying familiar patterns.

5) Software Documentation: Design patterns serve as a

form of documentation for software systems. Detecting

these patterns helps in documenting the design decisions

and architectural choices made during the development

process.

6) Software Maintenance: Design pattern detection aids in

software maintenance by enabling developers to identify

areas of the codebase that adhere to specific design pat-

terns. This knowledge simplifies the process of making

changes and updates to the software.

In summary, understanding and detecting design patterns are

critical components of software engineering, enabling devel-

opers to build robust, maintainable, and scalable software

systems.

III. THE RESEARCH QUESTIONS AND

METHODOLOGY

A. Research Questions

In this study, we aim to delve into the impact of design

patterns on the software development process, scrutinizing

both their advantages and limitations, with a particular focus

on the Gang of Four (GoF) design patterns in contemporary

software development. To steer our investigation, we have

articulated three primary research questions:

RQ1: Do Gang of Four (GoF) design patterns continue to

hold significance in contemporary software development?

RQ2: What effect does the utilization of GoF design patterns

have on software quality?

RQ3: What methodologies are employed in the detection of

design patterns?

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 143 ----------------------------------------------------------------------------



B. Methodology

To conduct a comprehensive examination of the current

state of knowledge regarding software design patterns, we

formulated meticulous research questions and undertook a

systematic literature review. The primary objective was to

gather empirical evidence meeting predefined inclusion criteria

to effectively address our research inquiries and hypotheses.

To ensure methodological rigor and minimize potential biases,

we adopted explicit and structured methodologies throughout

the review process, resembling a qualitative systematic review

[14].

1) Formulating research questions: In the initial stage,

we precisely defined the research problem and crafted

structured research inquiries to effectively address the

identified problem.

2) Literature search and selection: We conducted a meticu-

lous examination of a corpus comprising over 40 scien-

tific articles using reputable databases such as Scopus,

Web of Science, PubMed, IEEE Xplore, ScienceDirect,

and the Directory of Open Access Journals (DOAJ).

Publications were systematically categorized based on

thematic relevance.

3) Quality assessment: Both conference proceedings and

journal articles underwent rigorous evaluation based

on substantive content, impact factors, citation counts,

and H-index values. Preference was given to articles

with high citation counts, significant impact factors, and

informative content.

4) Data analysis and interpretation: Upon acquiring nec-

essary information, we conducted a comprehensive sta-

tistical analysis to derive meaningful interpretations and

conclusions, synthesizing insights from each publication.

We established specific criteria for selecting articles for in-

clusion in our research, focusing on those explicitly addressing

design patterns, particularly GoF design patterns, or involving

the identification or classification of design patterns. After

initial screening, shortlisted publications underwent further

evaluation based on relevance to our research objectives,

citation counts, and publication year.

The findings of this systematic approach are presented in

the Results and Analysis section.

IV. RESULTS AND ANALYSIS

A. GoF design patterns use cases in today perspectives

We present examples of how GoF design patterns are

integrated into modern software projects and frameworks to

enhance code quality, maintainability, and scalability:

1) Creational Patterns

• Singleton Pattern: Many modern frameworks and

libraries use the singleton pattern to ensure that only

one instance of a class is created and provide a

global point of access to that instance. For example,

in Java, the Spring Framework uses singleton beans

for managing application components [15], [16],

[17].

• Factory Method Pattern: Frameworks like Django

(Python web framework) use factory methods to

create instances of model objects, providing a cen-

tralized way to create different types of objects

without exposing their instantiation logic [18], [19].

2) Structural Patterns

• Adapter Pattern: Libraries like Retrofit (for An-

droid) use the adapter pattern to convert the interface

of a class into another interface that a client expects.

This allows seamless integration with existing sys-

tems [20].

• Decorator Pattern: GUI toolkits such as Swing

(Java) use the decorator pattern to add behavior or

responsibilities to objects dynamically. For instance,

adding borders or scrollbars to components [21].

3) Behavioral Patterns

• Observer Pattern: Modern UI frameworks like React

(JavaScript) use the observer pattern extensively

for managing state and updating UI components

reactively based on changes in data [22].

• Strategy Pattern: Frameworks such as TensorFlow

(for machine learning) utilize the strategy pattern to

encapsulate algorithms and make them interchange-

able. This allows users to switch between different

training or optimization strategies easily [23].

Additionally, the use of design patterns is not limited

to frameworks or libraries, they can be applied in various

domains.For instance, the Abstract Factory pattern aids in

managing the creation of GUI components and structures by

abstracting specific implementations from the client code. This

abstraction layer provided by the Abstract Factory pattern

simplifies the integration process of different GUI technologies

and enables a more modular and flexible design approach [24].

B. GoF design patterns impact on software quality

One of the primary concerns for developers employing

design patterns in application development is the impact on

quality attributes. Determining how design patterns influence

software quality poses a significant challenge. Previous re-

search has utilized surveys, experiments, case studies, and

analytical techniques to assess the use of design patterns.

However, analyzing pattern interactions or coupling compli-

cates the assessment of their impact on quality attributes [13].

Referring to the ISO/IEC 9126 standard as a framework,

six primary quality attributes are identified: portability, us-

ability, efficiency, maintainability, functionality, and reliability

[25]. These attributes are further delineated into various sub-

characteristics, as illustrated at Fig. 1.

Among the 23 Gang of Four (GoF) design patterns, ob-

server, state, factory method, composite, singleton, decorator,

and strategy are extensively evaluated for their impact on

software quality [13]. Design patterns, regarded as best prac-

tice solutions, encapsulate collective design experience and

embody fundamental principles of object-oriented design [26].

Novices benefit from design patterns as shortcuts to producing

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 144 ----------------------------------------------------------------------------



Fig. 1. Quality Attributes of ISO 9126 [25]

high-quality solutions, significantly accelerating their learning

curve [8]. Moreover, incorporating design patterns into quality

evaluation models underscores their significance in ensuring

software quality [27]. This designation as best practices stems

from their adherence to core design principles, such as encap-

sulation and the open-closed principle, which mitigate bugs

introduced through code changes [28]. Furthermore, principles

like ”program to an interface not an implementation” and

”favor object composition over class inheritance” reduce class

dependencies and promote a focused hierarchy of classes.

However, while different design patterns implement diverse

sets of design principles to address various challenges, their

effectiveness in enhancing different quality aspects varies [29].

Among these aspects, maintainability emerges as the most

crucial, according to respondents [30]. Nevertheless, studies

present conflicting views on the impact of design patterns

on maintainability. Some suggest that while design patterns

are generally advisable, they may not always be optimal, and

exercising common sense in their application is recommended,

especially in cases of uncertainty [31]. Additionally, different

patterns have varied impacts on maintainability; for instance,

while patterns like Observer and Decorator are easily un-

derstood, Composite poses challenges due to recursion [32].

Conflicting results from studies highlight the complexity of

this issue, with some finding non-pattern-based versions more

maintainable, while others report no discernible impact of

design patterns on maintainability and understandability [33],

[34], [35].

Certain studies focus on specific design patterns’ impact;

for example, one study found that using patterns like State,

Composite, and Chain of Responsibility made diagrams harder

to understand and modify [36]. Conversely, another study

concluded that while the Visitor pattern requires more time for

comprehension and modification, its canonical form reduces

the effort for modification tasks [37]. Furthermore, a study

reported an improvement in maintainability with increased

use of design patterns, particularly evident in the JHotDraw

software system [38].

C. Design pattern detection methods

1) Similarity scoring approach: Some papers have em-

ployed the Similarity Scoring Approach (SSA) for detecting

design patterns using matching algorithms. For this purpose,

researchers developed a Java-based tool geared towards im-

plementing a similarity algorithm, likely intended for data

analysis or comparison tasks. To evaluate the algorithm’s

performance, metrics such as False Positive (FP), False True

(FT), and recall were considered, commonly used in machine

learning and data analysis. Furthermore, the tool’s impact on

CPU and memory utilization was assessed, providing insights

into its performance. System representation relied on a UML

Class diagram, a standard notation for visualizing system

design, with the diagram converted into a binary matrix to

encode relationships computationally. Distinguishing between

different relationships in UML diagrams typically involves

utilizing various symbols and annotations [39].

Regarding threats to validity and limitations, reliance on

manual code inspection for identifying pattern instances poses

a risk of introducing false negatives. Additionally, the ap-

proach may struggle to detect patterns based on specific action

sequences since it does not incorporate dynamic information,

although it could be complemented by approaches using

dynamic data. Scalability of the methodology is hindered by

the time required for the similarity algorithm to converge,

especially with larger and denser subsystem matrices, leading

to increased memory requirements. Inserting novel design

patterns into the tool is relatively straightforward if their

characteristics align with existing attribute matrices, but intro-

ducing new characteristics requires additional implementation

effort. As the number of supported patterns increases, existing

attribute matrices are expected to become more adept at

describing various structural characteristics.

2) MARPLE-DPD [40]: Metrics and Architecture Recon-

struction Plugin for Eclipse, is a tool implementing DPD

(Design Pattern Detection) from Java source code alongside

additional functionalities. The architecture of MARPLE, as

illustrated at Fig. 2, involves three main modules as: the

Information Detector Engine, the Joiner, and the Classifier.

The Information Detector Engine builds the system model

Fig. 2. The architecture of MARPLE [40]

and collects micro-structures and metrics from the abstract

syntax trees (ASTs) of the analyzed system. The Joiner

extracts potential design pattern candidates based on micro-

structures, while the Classifier evaluates whether the groups

of classes detected by the Joiner represent realizations of

design patterns. The Micro-structures detector extracts micro-

structures using visitors parsing an AST representation of

the source code. Experimental investigations focused on the

accuracy achieved by different machine learning models, with

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 145 ----------------------------------------------------------------------------



a dataset comprising ten projects. The evaluation of design

pattern instances involved considering various criteria to avoid

conflicting evaluations. The Joiner analyzes information from

the MSD to extract groups of classes as pattern candidates,

while the Classifier assesses the similarity of pattern instances

to previously classified design patterns. The detection process

of MARPLE-DPD comprises phases supported by different

modules, including the extraction of design pattern candidates,

matching and merging steps, and pattern instance representa-

tion. Experiments on MARPLE-DPD were conducted using

datasets representing commonly used design patterns, with

results obtained through various machine learning models.

3) Graph-based approach: The researchers addressed the

problem of identifying design patterns in software source code

and proposed a five-step method to solve it [41]. Initially,

the system’s structure was extracted from the source code

and represented as a class diagram. Then, directed semantic

graphs were constructed to represent the system and specified

patterns, focusing on relationships between classes. Pattern

graphs were built based on the main structure of each pattern,

and the graphs were enriched to include indirect relationships

between classes. A matching algorithm was used to find

pattern instances in subsystem graphs, and the behavioral

signature of patterns was analyzed to eliminate false pos-

itives. The method was evaluated using three open-source

projects, comparing results with existing tools. Precision and

recall metrics were used to evaluate the effectiveness of the

method, showing promising results. Threats to validity were

discussed, including potential inaccuracies in measurements

and generalization to other systems. The paper concluded

by highlighting the importance of design pattern detection in

software engineering and outlining future research directions,

including standardizing pattern signatures and extending se-

mantic analysis of design motifs.

Another proposed method focuses on design pattern detec-

tion using a greedy algorithm based on inexact graph matching

[42]. The algorithm decomposes the graph matching process

into phases, where the value of K ranges from 1 to the

minimum of the numbers of nodes in the two graphs to be

matched. By using small values of K, the algorithm signifi-

cantly reduces the search space while still producing very good

matchings between graphs. This approach aims to provide

an automatic and reliable way to discover design patterns in

system designs, which can enhance program understanding

and software maintenance. The algorithm compares the nodes

and edges of two graphs to find the matching that leads to the

minimum matching error, defined as the dissimilarity between

matched nodes and corresponding edges. This error represents

the distance between the two graphs, allowing for effective

pattern detection even in the presence of noise and distortion.

4) Probabilistic Approach: The method proposed for prob-

abilistic detection of Gang of Four (GoF) design patterns in

source code consists of two main phases: the Learning phase

(Phase I) and the Detection phase (Phase II) [43].

In the Learning phase, a trained Multilayer Perceptron

(MLP) model is created by identifying relevant features ex-

tracted from the source code. These features are determined

based on the concept of design pattern signatures, representing

patterns as a set of features. The source code is then used

to train the MLP model, which will subsequently be utilized

in the Detection phase for probabilistic detection of design

patterns.

During the Detection phase, the trained model is applied to

the source code to detect design patterns probabilistically. The

source code is first converted into a class diagram, which is

then transformed into an enriched graph. Candidate instances

of design patterns are extracted from this graph based on

connected nodes. The method employs regression analysis to

differentiate between design patterns and considers the set of

features representing patterns.

Overall, this proposed method utilizes a probabilistic ap-

proach to detect design patterns in source code, with the

aim of enhancing coverage and distinguishing between design

pattern variants. By leveraging machine learning techniques

and feature representation, the method strives to improve

the accuracy and effectiveness of design pattern detection in

software systems.

5) features-based approach: In this scholarly approach,

design patterns are scrutinized as aggregations of features, de-

lineating aspects such as intent, structure, behavior, and sample

code. A novel pattern specification technique is introduced

with the precise aim of facilitating automated application

while ensuring comprehensibility and adaptability for human

users. This method identifies recurrent sub-structures, termed

features, among diverse pattern variations, encompassing ele-

ments such as classes, relationships, and method return types.

In detailing their research methodology, the scholars present

a meticulously structured two-stage pattern recognition process

[44]. In the initial stage, they meticulously formulate semi-

formal pattern definitions based on prevalent extensible feature

types, derived from exhaustive analyses of GoF patterns and

their myriad variations. Subsequently, the second stage entails

pattern identification through the discernment of their defining

features using an array of sophisticated search technologies.

Stage 1 involves defining patterns using a catalog of feature

types and hierarchical pattern definitions, including pattern

catalogs, pattern definitions, variant definitions, and features.

Feature types are reusable elements representing elementary

and recurring features across patterns, while pattern definitions

consist of features organized into variants.

Stage 2 entails recognizing defined patterns by iterating

through each feature of each variant definition, selecting

appropriate search technologies, and executing queries. Tech-

niques include repository queries, specific parser modules, and

regular expressions. The process iteratively prunes or extends

candidate patterns based on search results.

An illustrative example demonstrates the recognition proce-

dure, where a Factory Method pattern is detected within source

code based on the defined features. The process involves

sequentially searching for features and evaluating candidate

patterns based on search results, resulting in the identification

of valid pattern instances.

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 146 ----------------------------------------------------------------------------



Another approach combines feature extraction, machine

learning classification, and thorough evaluation to automate

the identification of design patterns in Java source code [45].

The methodology involves the creation of a new corpus

(DPDF-Corpus) sourced from GitHub, focusing exclusively on

design patterns. Feature extraction encompasses 15 selected

features based on syntactic and semantic constructs of Java,

capturing both class-level and method-level information. The

design pattern detection process involves preprocessing, where

structural, syntactic, and linguistic representation (SSLR) is

generated using call graphs and code parsing. Model building

employs the Word2Vec algorithm to create a Java Embedded

Model (JEM) from SSLR. Supervised classifiers, based on

randomized decision trees, are trained on the labelled corpus

to predict design pattern instances. The corpus is labelled by

annotators with expertise in Java programming and design

patterns. Machine classification utilizes ensemble learning

with randomized decision trees, and evaluation is conducted

using standard metrics such as Precision, Recall, and F1-Score,

demonstrating the effectiveness of the approach in automated

detection of software design patterns in Java source code.

6) A grammar-based evolutionary machine learning ap-
proach: [46] The GEML approach is a two-phased model

for detecting design patterns (DPs) in source code.In the first

phase, the system learns structural, behavioral, and metric-

based properties of DPs by analyzing a repository containing

labeled DP implementations. It employs the G3P4DPD algo-

rithm to generate class association rules (CARs) compliant

with a Context-Free Grammar (CFG) formalizing the syntax

of DPs. These rules are then pruned and arranged to form

the detection model. The second phase involves applying

the G3P4DPD algorithm iteratively to refine the rules and

construct an external archive of the most accurate rules.The

overall structure of GEML is depicted in Fig. 3.

Fig. 3. The GEML approach [46]

This algorithm employs genetic operators such as crossover

and mutation to evolve the rules based on their support in the

code repository. Each individual rule’s genotype is represented

as a valid derivation tree according to the CFG, while its phe-

notype denotes the corresponding class association rule. This

process ensures that the detection model adapts to the specific

development culture over time, enhancing its effectiveness in

identifying DPs in source code.

V. CONCLUSION

In conclusion, this study sheds light on the enduring impact

of Gang of Four (GoF) design patterns on the software

development landscape. Through an exploration of their uti-

lization in modern software projects and frameworks, we have

demonstrated the significant role that design patterns play

in enhancing code quality, maintainability, and scalability.

Despite the challenges and conflicting findings regarding their

impact on software quality, design patterns remain invaluable

tools for software practitioners seeking to engineer high-

quality software systems.

As we navigate the complexities of contemporary software

development, understanding the implications of design pattern

selection on software quality is paramount. By leveraging the

insights gleaned from our comprehensive analysis, software

practitioners can make informed decisions and adopt best

practices to ensure the successful integration of GoF design

patterns into their software projects, thereby advancing the

state of software engineering excellence.

The exploration of popular frameworks that extensively

employ GoF design patterns has provided valuable insights

into how these patterns contribute to modularity, extensibility,

and maintainability in real-world software development. By

dissecting the practical implications of design pattern utiliza-

tion on software quality, we have highlighted the importance

of strategic pattern selection in software projects.

In essence, the legacy of the Gang of Four design patterns

endures as a foundational pillar in software engineering,

offering a timeless framework for addressing recurring design

challenges. As software practitioners continue to innovate and

evolve, the judicious application of design patterns, partic-

ularly those advocated by the GoF, remains a cornerstone

for achieving software quality and sustainability in a rapidly

changing technological landscape. In addition to exploring

the utilization of GoF design patterns in modern software

projects and frameworks, this study also conducted a thorough

analysis of various design pattern detection approaches. Lever-

aging insights from both theoretical frameworks and empirical

studies, we systematically evaluated the effectiveness and

implications of these detection methods in real-world software

development contexts. By examining the strengths, limitations,

and practical considerations associated with different detection

techniques, we aimed to provide software practitioners with

valuable guidance on selecting the most suitable approach for

their projects. Through this comprehensive analysis, we have

contributed to a deeper understanding of how design patterns

are identified, validated, and integrated into software systems,

thereby enhancing the quality, maintainability, and scalability

of modern software applications.

REFERENCES

[1] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Constructions. Center for Environmental Structure

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 147 ----------------------------------------------------------------------------



Berkeley, Calif: Center for Environmental Structure series. Oxford
University Press, 1977.

[2] P. Kuchana, Software Architecture Design Patterns in Java. CRC Press,
2004.

[3] M. Di Penta, L. Cerulo, Y. G. Guéhéneuc, and G. Antoniol, “An
empirical study of the relationships between design pattern roles and
class change proneness,” in 2008 IEEE International Conference on
Software Maintenance. IEEE, 2008, pp. 217–226.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
John Wiley & Sons, 1996.

[5] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley Professional, 1997.

[6] S. Bjork and J. Holopainen, Patterns in Game Design (Game Develop-
ment Series). Charles River Media, Inc., 2004.

[7] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Networked
Objects. John Wiley & Sons, 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1994.

[9] T. Taibi, Design Pattern Formalization Techniques. IGI Publishing,
2007.

[10] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem, “Object-oriented
design patterns recovery,” Journal of Systems and Software, vol. 59,
no. 2, p. 181–196, 2001.

[11] J. L. Hodges, “Design patterns,” in Software Engineering from Scratch.
Springer, 2019, p. 293–304.

[12] M. Saeki, “Behavioral specification of gof design patterns with lotos,”
in Proceedings Seventh Asia-Pacific Software Engineering Conference,
APSEC 2000. IEEE, 2000, p. 408–415.

[13] M. Rahman, M. S. H. Chy, and S. Saha, “A systematic review on
software design patterns in today’s perspective,” in 2023 IEEE 11th
International Conference on Serious Games and Applications for Health
(SeGAH). IEEE, 2023, pp. 1–8.

[14] M. Dixon-Woods, R. Fitzpatrick, and K. Roberts, “Including qualitative
research in systematic reviews: opportunities and problems,” Journal of
evaluation in clinical practice, vol. 7, no. 2, pp. 125–33, 2001.

[15] A. Lilleaas, “Setup, teardown, and dependency injection with spring
context,” in Pro Kotlin Web Apps from Scratch: Building Production-
Ready Web Apps Without a Framework. Berkeley, CA: Apress, 2023,
pp. 251–259.

[16] P. Späth and et al., “Introducing ioc and di in spring,” in Pro Spring
6 with Kotlin: An In-depth Guide to Using Kotlin APIs in Spring
Framework 6. Berkeley, CA: Apress, 2023, pp. 41–101.

[17] F. Fábry, “Java microservice migration to the spring framework,” [Details
about publication].

[18] D. Fr a szczak, “Nefbdaa—. net environment for building dynamic
angular applications,” SoftwareX, vol. 19, p. 101163, 2022.

[19] N. Denissov, “Creating an educational plugin to support online program-
ming learning: A case of intellij idea plugin for a+ learning management
system,” 2021.

[20] M. Wilkes and M. Wilkes, “Alternative interfaces,” in Advanced Python
Development: Using Powerful Language Features in Real-World Appli-
cations, 2020, pp. 183–245.

[21] Z. Azimullah, Y. S. An, and P. Denny, “Evaluating an interactive tool
for teaching design patterns,” in Proceedings of the Twenty-Second
Australasian Computing Education Conference, 2020, pp. 167–176.

[22] A. Osmani, Learning JavaScript Design Patterns. O’Reilly Media, Inc.,
2023.

[23] F. J. Király, M. Löning, A. Blaom, A. Guecioueur, and R. Sonabend,
“Designing machine learning toolboxes: Concepts, principles and pat-
terns,” arXiv preprint arXiv:2101.04938, 2021.

[24] A. Korunović and S. Vlajić, “An example of integration of java gui
desktop technologies using the abstract factory pattern for education
purposes,” ETF Journal of Electrical Engineering, vol. 29, no. 1, pp.
3–11, 2023.

[25] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on gof design patterns: A mapping study,” Journal of Systems
and Software, vol. 86, no. 7, pp. 1945–1964, 2013.

[26] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern mining
enhanced by machine learning,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance, 2005, p. 295–304.

[27] Z. Balanyi and R. Ferenc, “Mining design patterns from c++ source
code,” in Proceedings of the International Conference on Software
Maintenance, 2003, p. 305–314.

[28] E. Freeman, B. Bates, K. Sierra, and E. Robson, Head First Design
Patterns. O’Reilly Media, 2004.

[29] L. Prechelt, B. Unger, W. Tichy, P. Brossler, and L. Votta, “A controlled
experiment in maintenance: comparing design patterns to simpler solu-
tions,” IEEE Transactions on Software Engineering, vol. 27, no. 12, p.
1134–1144, 2001.

[30] B. Bontchev and E. Milanova, “On the usability of object-oriented design
patterns for a better software quality,” Cybernetics and Information
Technologies, vol. 20, no. 4, pp. 36–54, 2020.

[31] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, “A
controlled experiment in maintenance: comparing design patterns to
simpler solutions,” IEEE Transactions on Software Engineering, vol. 27,
no. 12, pp. 1134–1144, 2001.

[32] M. Vokáč, T. Walter, L. K. S. Dag, A. Erik, and A. Magne, “A controlled
experiment comparing the maintainability of programs designed with
and without design patterns—a replication in a real programming
environment,” Empirical Software Engineering, vol. 9, no. 3, pp. 149–
195, 2004.

[33] L. Prechelt and M. Liesenberg, “Design patterns in software mainte-
nance: An experiment replication at freie universität berlin,” in Second
International Workshop on Replication in Empirical Software Engineer-
ing Research (RESER), 2011, pp. 1–6.

[34] N. Juristo and S. Vegas, “Design patterns in software maintenance: An
experiment replication at upm - experiences with the reser’11 joint
replication project,” in Second International Workshop on Replication
in Empirical Software Engineering Research (RESER), 2011, pp. 7–14.

[35] A. Nanthaamornphong and J. C. Carver, “Design patterns in software
maintenance: An experiment replication at university of alabama,” in
Second International Workshop on Replication in Empirical Software
Engineering Research (RESER), 2011, pp. 15–24.

[36] J. Garzás, G. Félix, and M. P., “Do rules and patterns affect design
maintainability?” Journal of Computer Science and Technology, vol. 24,
no. 2, pp. 262–272, 2009.

[37] S. Jeanmart, Y. G. Gueheneuc, H. Sahraoui, and N. Habra, “Impact
of the visitor pattern on program comprehension and maintenance,”
3rd International Symposium on Empirical Software Engineering and
Measurement ESEM, pp. 69–78, 2009.

[38] P. Hegedűs, B. Dénes, F. Rudolf, and G. Tibor, “Myth or reality?
analyzing the effect of design patterns on software maintainability,” pp.
138–145, 2012.

[39] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE transactions
on software engineering, vol. 32, no. 11, pp. 896–909, 2006.

[40] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine learn-
ing techniques for design pattern detection,” Journal of Systems and
Software, vol. 103, pp. 102–117, 2015.

[41] B. B. Mayvan and A. Rasoolzadegan, “Design pattern detection based
on the graph theory,” Knowledge-Based Systems, vol. 120, pp. 211–225,
2017.

[42] R. Singh Rao and M. Gupta, “Design pattern detection by greedy
algorithm using inexact graph matching,” International Journal Of
Engineering And Computer Science, vol. 2, no. 10, pp. 3658–3664, 2013.

[43] N. Bozorgvar, A. Rasoolzadegan, and A. Harati, “Probabilistic detection
of gof design patterns,” The Journal of Supercomputing, vol. 79, no. 2,
pp. 1654–1682, 2023.

[44] G. Rasool and P. Mäder, “Flexible design pattern detection based on
feature types,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). IEEE, 2011, pp. 243–
252.

[45] N. Nazar, A. Aleti, and Y. Zheng, “Feature-based software design pattern
detection,” Journal of Systems and Software, vol. 185, p. 111179, 2022.

[46] R. Barbudo, A. Ramı́rez, F. Servant, and J. R. Romero, “Geml: A
grammar-based evolutionary machine learning approach for design-
pattern detection,” Journal of Systems and Software, vol. 175, p. 110919,
2021.

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 148 ----------------------------------------------------------------------------


