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Abstract—The availability of high-calorie foods with con-
tentious nutritional content has led to a worldwide increase
in chronic disease. Therefore, monitoring of eating habits and
practising healthy eating habits is recommended. Clinical diet
assessment methods and mobile calorie tracking apps can be
used to record daily food consumption but are often not user-
friendly. Convenient image-based assessment models are cur-
rently available to recognise and estimate the nutritional value
of foods directly from food images, but they do not consider how
nutritional value changes after cooking. Consequently, VegeNet,
a multi-output InceptionV3-based convolutional neural network
model has been developed, which estimates the nutritional values
of cooked and uncooked vegetables. The explicit use of the
cooking state is the main contribution of this work. This deep
learning model successfully classifies the food images at 97%
accuracy and estimates the nutritional values at 15.30% mean
relative error, making it suitable as a visual-based added food
assessment solution. This can help users save time and avoid
under-reporting problems.

I. INTRODUCTION

Food is a cornerstone of a healthy lifestyle. It is the

energy source of living things that is needed to sustain and

perform various activities. Today, humans are exposed to

heavily processed foods that are more flavorful and convenient

but less healthy [1]. Overconsumption of these foods leads to

chronic diseases such as obesity, diabetes, and cardiovascular

disease that have become more common and are now prevalent

among young people [2, p. 81]. According to the World Health

Organisation (WHO), worldwide obesity has increased by a

factor of three each year since 1975: more than 650 million

adults were diagnosed as obese in 2016, while 38 million

children under the age of 5 were overweight or obese in 2019

[3]. Therefore, the WHO recommends practising healthy diets

to overcome the mentioned problems and prevent diseases [4].

In order to improve physical health, dietitians need a better

understanding of a person’s dietary behaviour. For this, they

use dietary assessment methods such as real-time recording,

24-hour nutritional recall, dietary history, and food frequency

questionnaires [5]. Recently, calorie-tracking apps [6] have

been developed for smartphone users to record foods eaten in

meal-by-meal form. This allows them to calculate and track

their food consumption patterns and provides personalised

feedback in real-time and suggests diet goals to help users

achieve their dieting goals better.

Some advantages of calorie-tracking apps are their sys-

tematic and data-centred structure. However, they are often

counterintuitive to use, specifically for compulsive eaters, and

are subject to under-reporting problems, as they mostly require

the users to enter the foods eaten manually by the correct

names and volumes. Users must find the closest items and

weigh each ingredient to obtain the most accurate calorie

and nutritional values. They may also tend to select sug-

gestions with lower calories, leading to under-reporting and

under-estimation of nutrient intake [7], [8]. To alleviate the

problems mentioned above, this article introduces an image-

based dietary assessment model that estimates the nutritional

values of cooked versus uncooked vegetables, directly from the

input image. It does this through deep learning techniques to

perform food type and cooking method classification, as well

as food weight estimation, by which the predicted outputs are

taken to estimate nutritional values based on official food data.

The explicit distinction of the cooking state of food was, to

our knowledge, not previously done.

This work focuses on image analysis to differentiate be-

tween raw vegetables and vegetables cooked in different ways,

because the weights, water content, and other nutritional values

of the natural products change when cooked [9]. We focus

on vegetables in this work since there is a wide range of

cooking techniques for them, including uncooked consump-

tion. Therefore, the main research question of this paper is

if and to what degree consideration of the cooking state

of vegetables can improve nutritional value estimation. The

developed model adds value to existing visual-based food

assessment technology, considering the nature of vegetables

in both raw and cooked conditions, and can be deployed

in mobile applications for more efficient and accurate diet

monitoring. As a more convenient dietary assessment method,

this can encourage people to track the nutrients consumed
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consistently, helping them better understand their own diet

habits and choose healthier foods or cooking methods to

maintain body health.

The remainder of this article is organised as follows:

• Section II reviews related works on image-based food

recognition and calorie estimation;

• Section III explains the methods and datasets used;

• Section IV discusses the implementation steps and eval-

uation results;

• Section V discusses project limitation and suggestions for

future work;

• Section VI concludes the article.

II. RELATED WORK

Data scientists and researchers have developed image-based

dietary assessment models using machine learning and deep

learning approaches, of which the model functions can be

categorised into two types, food recognition and estimation

of food nutritional values.

A. Food recognition

Prior to the popular adoption of deep learning algorithms for

image classification tasks, in particular, convolutional neural

networks (CNNs), Support Vector Machines (SVMs) had been

a promising machine learning approach used in the field

of image data analysis to perform image classification and

predictions. A group of researchers [10] used SVM as a

classifier to identify food and fruits for calories estimations

using the colour, size, and shape properties of the images,

while [11] improved the SVM model by adding a Gabor filter

to take texture segmentation as input features for more accurate

food recognition. However, the SVM performs well only when

the dataset is small [12], while the deep learning approach

outperforms the SVMs due to its ability to automatically select

features [13] and analyse a large image dataset as observed in

[14]. At the present time, CNNs have been widely used for

image classification tasks. CNNs, which started with AlexNet

[15], are currently the de-facto standard in computer vision

and image processing. ZFNet [16], VGGNet [17], GoogLeNet

[18], and ResNet [19] are some examples of successful CNN

architectures. InceptionV3 [20] is based on GoogLeNet. Mo-

bileNets [21] are optimized to give good results with low

complexity.

A new CNN model for image recognition requires very

large datasets for training, and this can take a long time to

accumulate. Furthermore, these models are highly affected by

overfitting issues [22], [23]. These problems can be solved

using pre-trained networks [24] as the feature learning layer,

with custom classification layers for specific image recognition

tasks or, similarly, fine-tuning the pre-trained model, for both

feature extraction and classification tasks. The researchers in

[25] showed that a fine-tuned pre-trained Deep CNN (DCNN)

model along with the SVM classifier performed better than

the conventional SVM model and the DCNN model without

fine-tuning. Similarly, [26] fine-tuned ResNet-50 for food

classification in the Food-475 dataset, while [22] fine-tuned

classification layers in the pre-trained InceptionV3 network

for the image datasets ETH Food-101, UEC-Food 100, and

UEC-Food 256. Moreover, [27] fine-tuned the MobileNet

architecture [21] by replacing the average pooling layer and

fully connected layer with global average pooling and batch

normalisation layers to resolve the overfitting problem in

MobileNet.

Initial models only recognised single food items in an

image. To overcome this limitation, the Selective Search

algorithm and Map Reduce were used by [28] to segment food

regions before being processed with CNN. The researchers

in [29] developed a CNN model that could create bounding

boxes around each food item in the image and estimate the

calories of the respective foods, by adding pseudo-bounding

boxes to the dataset of the annotated image with calories

while training the model. In particular, [30] developed a

model that performs pixel-level classification rather than image

classification with fully convolutional networks (FCN), to

identify multiple foods in an image, but this model was trained

with fake food image datasets, which is less representative

of real food images. Rather than inter-class food recognition,

[31] developed a CNN model that recognises intra-class dishes

through the ingredients and cooking methods classifications.

WISER [32] is a deep neural network with two branches that

can learn more features from vertical layers of food images to

recognise variances within food classes, while [33] integrated

a superpixel-based mid-level feature extraction approach and

a DCNN to extract image features, then adopted SVM as a

classifier for food recognition within a class.

B. Food nutritional values estimation

Estimation of food nutritional values is based on food

recognition, discussed in II-A, but goes beyond it and is crucial

to improve the practicality of visual-based dietary assessment

models. In [34], [35], CNN models were trained using food

image datasets obtained from a school lunch blog and online

recipes, in which calorie values are provided. This method

assumes that the serving sizes of each labelled photo are for

one person, which restricts its use and is subject to over- or

underestimation, as the portion of foods eaten differs among

individuals. As such, estimating food volume is critical for

accurate estimation of food nutritional value, but this can be

very challenging. Some researchers used reference objects for

calibration to estimate the volume of food. The work in [11]

took the user’s thumb for calibration to compute food volumes

based on area and depth information collected. Variously, in

[36] preregistered reference objects of known size are used,

while [37] used rice corns as a reference. [38] used a 5×5 PVC

chequerboard card as a size reference to estimate food volume.

However, this method requires reference objects to be always

available whenever a food image needs to be captured and

analysed. Segmentation techniques were adopted to segment

food regions to help estimate nutritional values. K-means

segmentation technique and GrabCut algorithms were used

in [36] to segment “food”, “dish”, and “background”, while

[39] developed a CNN model for food region segmentation
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to produce border maps with pixel values ranging from 0 to

1, where values closer to 1 were recognised as pixels closer

to the border. [40] demonstrated image thresholding and K-

means++ clustering as segmentation techniques to extract food

regions from the images. In contrast, [41] directly estimates

the weights of the food and the nutritional values, with the

help of a divided food tray provided by hospitals. The divided

food tray allows the algorithm to easily identify the food area

and hence estimate food weights.

CNNs have been widely adopted to perform food classi-

fication and calorie estimations on a variety of food image

datasets and have been achieving promising results. However,

it is observed that most articles do not consider the cooking

status of the identified foods, whereas this concept is addressed

in this article, which distinguishes between raw and cooked

vegetables, a fundamental concept in calorie and nutrition

estimation.

III. MATERIALS AND METHODS

To identify raw and cooked vegetables and estimate their

nutritional value, this paper proposes a multi-output CNN

model, VegeNet which classifies the nutrition information data

from the food type, the cooking methods, and estimates the

weights of the foods in the images. Subsequently, the predicted

values are taken to calculate the estimated nutritional values

based on the US Department of Agriculture (USDA).

A. The VegeNet network

Transfer learning approaches are the key to solving many

drawbacks in deep learning applications [42], [43], and are

currently being studied and developed continuously [44]. Since

we have a dataset with 7754 images, we also adopt transfer

learning to avoid overfitting issues. It should be noted that

in other work, e.g. [26] hundreds of thousands of images

are common. VegeNet utilises pretrained InceptionV3 as the

feature learning layer, whereby the InceptionV3 output is taken

as input for the three branches to predict the type of food,

the cooking method, and the weight of the food images (see

Figure 1). The network consisting of the InceptionV3 network

and the three branches can be described as a InceptionV3
multi-output CNN and is called VegeNet hereinafter. Gener-

ally, each of the three branches is made up of a flattening

layer, a dense layer (128 neurons, RELU activation), a batch

normalisation layer, and a dense layer as the final output

layer. However, dropout layers are included in the food type

and weight branch before the output dense layer, but not in

the cooking method branch, because we found this to work

best. This approach is taken to regularise the model whilst

maintaining high prediction accuracy. In the output dense

layers, ‘Softmax’ activation is used for food type and cooking

method classification whereas ‘linear’ activation is used for

weight estimation. The training parameters are summarised in

Table I.

The network was designed by combining InceptionV3, a

state-of-the-art pretrained network with a reasonable footprint,

with individual branches for the three desired outputs. Those

TABLE I V N
Parameter Value

Adam optimiser
learning rate: 0.0001

decay: 0.000001
Training epochs 100

Batch size 64 (training) or 32 (validation)
Image data generator batch size 32 or 16

Training loss
Food type: categorical crossentropy

Cooking method: categorical crossentropy
Weight: Mean Square Error (MSE)

Loss weights
Food type: 1

Cooking method: 1.5
Weight: 4

Metrics
Food type: Accuracy

Cooking method: Accuracy
Weight: Mean Absolute Error

branches use standard elements of dense layers in CNN design.

The CNN is not specific to food classification but is a proven

architecture for similar tasks. The suitability of the overall

approach is shown by the results which we will report later.

These predicted food types, cooking methods, and weight

values produced by the CNN model are concatenated and

linked to the nutrition information dataset to estimate the

calories and macro-nutrients of vegetables. As the nutrition

information data presented in the USDA dataset are per 100g

of food weight, the nutritional values are calculated using 100g
as the base weight and are multiplied by the estimated food

weight, as illustrated in Equation 1.

Ni =
Wi−estimated ·NUSDA

100
(1)

where Ni is the estimated nutritional value of the captured

vegetable (calories and the macro-nutrients); Wi−estimated is the

estimated weight of the vegetables in the analysed image; and

NUSDA indicates the nutritional value of the vegetable in the

base weight 100g found in the USDA dataset.

B. Dataset

In this work, a food image dataset and a nutrition informa-

tion dataset are required. The food image dataset is made up of

8 vegetable categories and 1 non-vegetable category. Vegetable

images are collected primarily by preparing 8 types of veg-

etables (broccoli, red and green cabbages, carrots, cauliflower,

corn, cucumber, lettuce), which are cut into multiple shapes

and cooked using 5 methods (uncooked, cooked - no fat,

roasted - no fat, roasted - with fat, cooked - with fat). The

number of images for the cooking types varies for the different

vegetables. This due to cooking habits and availability of

images (e.g. roasting cabbage is not common, hence is not

included). There are more images of uncooked vegetables

since the main objective of the model is to distinguish between

raw and cooked. The vegetables are prepared in different

appearances, weighed, and captured from multiple angles and

heights, which are then preprocessed through a 3-fold Canny

edge detection and image cropping technique [45]. This newly

created gallery of images is one of the contributions of this

investigation and is made available in [46]. Furthermore, to

help the model recognise non-vegetable foods, a non-vegetable
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Fig. 1 Network architecture of VegeNet

category is added to the image dataset by sample images

from hospital food images used in [41]. Overall, there are

5558 vegetable images and 1112 non-vegetable images. After

preprocessing, there were 6754 images overall.

The weights of all foods are recorded as an attribute for

model training. In addition, data augmentation is done to

randomly generate 1000 images. The commands used from

the Python Augmentor library are displayed in Figure 2.

Together with the 6754 original images, we have a dataset

comprising 7754 images. Meanwhile, a duplicated set of food

images is prepared by adding low-res mask filtering to all

7754 in order to study the effectiveness of added image

filtering on the model classification accuracy. The nutritional

information is obtained from [47], of which the nutrition

information of the vegetables used is extracted. Data pre-

processing, such as removing unwanted attributes and adding

cooking method classes through average ratio calculations, is

performed to match the food classes to the image dataset.

The final USDA nutrition information dataset consists of 5

attributes (food type, cook method, energy (kcal), protein (g),

carbohydrate (g), and fat (g)) and 32 actual categories out of

9 food types and 5 cooking methods (Table II).

For the sake of reproducibility, we not only made all images

used in this study available in the repository [46], but we

also deposited the source code necessary to reproduce the

results produced by this piece of research. Note that of the

7754 images in the dataset, 6754 are randomly selected to

train the model, and 1000 images are used for testing. Both

sets will contain some of the 1000 images generated by data

augmentation.

C. Implementation steps

Images are resized to 299×299 and fed into the InceptionV3

multi-output CNN model for model training and prediction.

In addition to the original images, the duplicated dataset with

added low-res mask filtering is also used for model training

and testing. The model training and validation processes are

performed in the Keras environment. The parameter settings

for model training are provided in Table I, and the Keras

EarlyStopping function is called to stop the model training

process when the models do not improve for 10 epochs.

D. Graphical user interface (GUI)

To demonstrate the practicality of the model, a user interface

is developed that allows users to select the images to be

predicted and print the estimated nutritional values by loading

the CNN model as a predictor and the nutrition information

database for the retrieval of nutritional values. Figure 3 shows

the process flow of the nutritional value estimation application,

and Figure 4 shows the functions of this GUI. The GUI is

intended to deliver a good user experience. Partly this is due

to the fast execution of the model for prediction purposes,

which our model shares with AI models in general, which

normally execute quickly once trained.

IV. RESULTS

The proposed model involves three predictions, food type

classification, cooking method classification, and weight es-

timation, which are used to estimate the nutritional value of

the food. Therefore, the validation and testing stage of the

model involves both evaluation metrics for classification and

estimation performances.

The results of the model evaluation are shown in Figures

5a to 5c and Tables III and IV.

The evaluation results show that VegeNet achieves 100%

and 97% accuracy for food type and cooking method classi-

fications, respectively (see Table III). Furthermore, the model

estimates the weights of the foods and the nutritional values of

the foods at around 16% mean relative errors. Specifically, Ta-

ble IV shows that VegeNet achieves 13.86g of mean absolute

error and 15.60% mean relative error in weight prediction.

As nutritional values are calculated using USDA nutrition

information at 100g base weight, a low error in weight

prediction leads to a low error in nutritional value estimation. It

is also concluded that the outstanding performance of VegeNet

is mainly due to the adoption of the InceptionV3 pretrained

network as the base convolutional neural network, which

substantially enhances the feature learning ability of the model,

performing better than the VGG16 and ResNet-50 model used

by [34], [41]. VegeNet trained and tested with (USM) low-

res mask-filtered images does not show significantly different

results. Considering the quality of the results, this is not

necessarily a sign that such filtering is generally not helpful,
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augment.rotate(probability=0.3,max_left_rotation=10,max_right_rotation=10)
augment.shear(probability=0.3,max_shear_left=10,max_shear_right=10)
augment.flip_left_right(probability=0.3)
augment.random_brightness(probability=0.3,min_factor=0.4,max_factor=0.9)
augment.skew(probability=0.3)

Fig. 2 Command used for the data augmentation process with the Python Augmentor library

[ht]

TABLE II S T

Food Type Cooking Method Calories (Kcal) Protein (g) Carbs (g) Fat (g)

Lettuce

uncooked 15 1.36 2.87 0.15
cooked - no fat 15.47 1.4 2.96 0.15

cooked - with fat 43 1.3 3.33 3.15
roasted - no fat 21.43 1.94 4.1 0.21

roasted - with fat 36.82 1.89 3.98 2.91
Broccoli uncooked 34 2.82 6.64 0.37

Cauliflower uncooked 25 1.92 4.97 0.28
Green cabbage cooked - no fat 26 1.33 6.02 0.1
Red cabbage uncooked 31 1.43 7.37 0.16

Corn uncooked 86 3.27 1.87 1.35
Carrot uncooked 41 0.93 9.58 0.24

Cucumber uncooked 15 0.65 3.63 0.11
Non-vegetable other 0 0 0 0

TABLE III M

VegeNet VegeNet
USM filtered

Food type
Accuracy 1.0 1.0
Precision 1.0 1.0

Recall 1.0 1.0

Cooking method
Accuracy 0.97 0.97
Precision 0.97 0.97

Recall 0.97 0.97

TABLE IV W

VegeNet VegeNet
USM filtered

Weight MAE (g) 13.86 15.80
MRE (%) 15.60 18.11

Nutrional values MAE

Cal 4.73 5.61
Carb (g) 0.80 0.95
Prot (g) 0.19 0.22
Fot (g) 0.21 0.25

MRE (%) 15.30 17.76

but an indication that the results do not leave room for

improvements.

V. DISCUSSION

A. Contribution

To the best of our knowledge, this is the first visual-based

dietary assessment model that distinguishes the nutritional

content of cooked and uncooked vegetables. This work is

essential, as vegetables are one of the main sources of nutrients

for a healthy diet, but nutritional values differ when the

vegetable is cooked in different ways. In addition to calorie

values, the model also estimates the values of the macro-

nutrients in vegetables - carbohydrate, protein, and fat. This

is because calorie value is just the total energy consumed yet

the macro-nutrients are more important to maintain a balanced

diet. To estimate food nutritional values, this proposed model

estimates the food portion by weight predictions, hence an

image dataset that consists of 32 food categories and 7754

vegetable and non-vegetable images, with known weights, was

prepared for model training and testing.

It should be noted that the various cooking techniques

are not present for all vegetables in equal proportions, and

some combinations are not existing at all. Furthermore, non-

vegetables are not differentiated at all. This is in line with

practical situations, where not all food and cooking types will

be represented equally. Since there is still a wide variety of

foods and we have an independent validation and test set, the

results should still be reliable.
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Weight

DictionariesFoodtype
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Fig. 3 Process flow of developed GUI

Fig. 4 GUI demonstration. The estimated nutritional values of the identified raw/cooked vegetable from the input image (displayed by clicking on

the ‘Print Image’ button) are calculated and displayed by clicking on ‘Estimate’

When comparing our results with related works, Table V

shows that VegeNet outperforms them in both classification

and nutritional value estimation tasks. VegeNet’s classification

performance is the highest at 97% and its nutritional value

estimation is the second most accurate at only 15.30% mean

relative error. Nevertheless, all models are trained and tested

with different datasets: these values are only the general

guidelines to assess the model performance in this domain.

Looking at our initial question if the cooking state can be

used for nutritional value estimation, we can clearly give a

positive answer. Our results show the model trained with the

cooking state outperforms conventional models. Furthermore,

the architecture of VegeNet is suitable for this task. Specifi-

cally, the results show that the network is able to classify the

cooking state very accurately, showing that this task alone can

realistically be left to AI.

B. Limitation and future work suggestion

Despite the high model accuracy obtained in this project,

several limitations are observed:

1) The limitation of datasets. To estimate the nutritional

value through food weight prediction, an image dataset

with known food weights is required; yet, this type of

dataset is not easily obtained, especially the vegetable

images. Thus, the images collected are limited by veg-

etable type and cooking method, as well as container,

location, background, capturing device, and ambient
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(a) Accuracy of food type classification. (b) Cooking method accuracy. (c) Weight (MAE).

Fig. 5 Model training output over the number of epochs. The x-axis represents epochs and the y-axis accuracy respectively

MAE. The red curves represent validation and the gray curves represent training. The faint lines are original data, the solid

lines are smoothened.

TABLE V M 1M

Model Image dataset
Classification

Nutritional

Accuracy value

estimation1

VegeNet (this project)
Self-captured vegetable images

97.00 % 15.30 %+ Hospital food images
(32 categories, 7,754 images)

Faster R-CNN + ResNet50 [41]
Hospital food images

73.35 % 16.97 %
(40 categories, 20,084 images)

Multi-task CNN [35]
Recipe dataset

81,20 % 27.40 %
(36 categories, 7361 images)

Faster R-CNN [34]
School lunch dataset

90.7 % 21.40 %
(21 categories, 4,877 images)

SVM + Gabor filter [28]
Self-captured images

90.41 % 14.00 %
(15 categories, 3,000 images)

lighting, which make the prediction of the model less

general. In addition, the model is subject to overfitting

due to the small image dataset utilised. Furthermore, the

nutrition information extracted from the USDA dataset

is not always exact, for example “cooked with added oil”

does not clearly specify the amount of oil added, also

potentially leading to a deviation between the predicted

value and the actual value. To overcome this limitation,

a collection of large image datasets with known food

weights and the correct food nutritional values shall be

created for future work, so that the models developed

are more accurate.

2) It is known that in real life, the images inputted for pre-

dictions are captured under various environmental condi-

tions, like low or high lighting, for example, and would

affect the image quality; hence influencing the model

prediction accuracy. Other than low-res mask filtering,

there are many conventional image pre-processing tech-

niques like variational denoising methods and transform

techniques for image denoising. Moreover, deep CNN-

based image denoising models are found to advance the

image preprocessing performance. The addition of deep

learning models in the image pre-processing step shall

be done in future work.

3) This model only considers the energy and macro-nutrient

content of vegetables. A more accurate visual-based diet

assessment application should involve more types of

food and micronutrient information and should be built

in collaboration with professional nutritionists.

VI. CONCLUSION

In the last decade, conventional machine learning and deep

learning models, in particular CNNs, have been developed

to recognise food through image classification and estimate

its calories; yet these models mainly focus on prediction

for cooked foods and did not consider the nutritional value

difference between cooked and uncooked foods. This paper

proposes an InceptionV3-based multi-output CNN model,

which estimates the nutritional values of cooked and uncooked

vegetables, to address this issue. The explicit use of the

cooking state is a novel contribution of this paper. This model

can predict the type of food and the cooking method with

near 100% accuracy and, combined with its weight estimate,
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estimate the nutritional value at around 16% mean relative

error, clearly outperforming existing models. In particular,

the ability to predict the cooking state accurately is a novel

achievement. The separate output of cooking state, weight, and

food type also allows further processing of the results and is

a step towards explainable AI.
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