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Abstract—Minerals prospects mapping plays a pivotal role
in the sustainable development of mineral resources, offering
critical insights into subsurface geology and mineral potential.
Traditional geological methods are often labor-intensive and time-
consuming. In contrast, machine learning (ML) techniques have
emerged as a powerful tool for accelerating and improving the
accuracy of mineral prospect mapping. This article explores an
innovative approach to enhance the performance of supervised
ML models, specifically logistic regression and multilayer per-
ceptron. One of the primary challenges in mineral mapping
is dealing with imbalanced geophysical datasets, where positive
samples (indicating mineral occurrences) are vastly outnumbered
by negative samples (non-mineral areas). This imbalance can lead
to biased model predictions, favoring the majority class while
neglecting the minority class. To address this issue, we propose
a novel oversampling technique that generates synthetic samples
for the minority class, effectively rebalancing the dataset. By
introducing diversity to the training data, our approach mitigates
the bias and enhances the models’ ability to identify mineral
prospects accurately. The proposed approach empowers ML
models to discriminate between mineral-rich and non-mineral
areas with unprecedented precision, facilitating more informed
decision-making for resource exploration and extraction. Ulti-
mately, the integration of imbalanced dataset handling and data
visualization techniques offers a robust framework for harnessing
the potential of machine learning in mineral prospect mapping.

I. INTRODUCTION

Mineral prospectivity mapping is crucial in providing a

fundamental framework for understanding the complex nature

of the Earth’s underlying geology and the potential treasures

it may contain [1] [2] [3] [4]. Fundamentally, this technology

identifies areas likely to have significant economic value from

mineral reserves. Consequently, it offers exploration teams

important information on prospective target places to allocate

their efforts. In addition to their inherent appeal in terms of

financial prosperity, natural resources possess a profound im-

portance that transcends just economic considerations. These

resources are pivotal in driving technological advancements,

reinforcing critical infrastructure, and serving as a fundamental

foundation for several indispensable aspects of modern life [5].

Minerals, serving as essential primary resources, play a cru-

cial role in driving diverse sectors and facilitating the progress

and prosperity of nations [6]. The fundamental significance

of their existence resonates profoundly inside every aspect of

contemporary society, including both commonplace techno-

logical devices and grand-scale infrastructural developments.

The growing global need for resources, driven by popula-

tion growth and technological advancements, highlights the

importance of accurately identifying and efficiently exploiting

mineral-rich areas. Despite the widespread distribution of min-

eral resources in several countries, their exact locations often

need to be clarified [7]. In this particular scenario, a tool that

demonstrates the ability to assess the probability of mineral

existence transcends its ordinary value and becomes a critical

role. Therefore, improving mineral prospect mapping is both

a technological challenge and a socioeconomic requirement.

Although drilling approaches have the potential to provide

precise outcomes, their implementation requires substantial

time and expense commitments, resulting in a restricted

availability of data [8]. On the other hand, airborne geo-

physical techniques, including magnetic, gravitational, and

electromagnetic field measurements, provide extensive spatial

coverage [9]. However, these methods frequently compromise

resolution and precision. The previously mentioned contradic-

tions highlight the need to use visualization and classification

methodologies. Visualization methods illustrate complex pat-

terns and relationships within data that may otherwise stay

obscured [10]. Simultaneously, classification aims to develop

prediction algorithms to identify potential mineral locations

using existing knowledge about deposit characteristics [11].

The concept of prospectivity is of great significance in

identifying and exploring mineral deposits in diverse geolog-

ical landscapes. This methodology assesses the capacity to

extract commercially viable minerals from specified regions.

Prospectivity comprises two basic categories [12]:

• Knowledge-driven: It is based on the theoretical back-

ground of how mineral deposits form.

• Data-driven: In this approach, various data-analysis

methods are used to explore spatial data and identify

patterns associated with mineral deposits.
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The use of modern computational techniques in min-

eral prospectivity mapping represents a significant change

in approach, considering the inherent trade-offs associated

with geological methodologies [13]. The deployment of ma-

chine learning and powerful data visualization techniques has

sparked a fresh drive to automate and enhance interpreting

information [14]. Machine learning, characterized by its di-

verse range of algorithms, acquires knowledge from existing

data, providing valuable insights into previously unexplored

domains [13] [15].

Despite the ability of machine learning in this domain, there

are fundamental obstacles. Mineral-rich zones are minimal,

resulting in datasets exhibiting a disproportionate abundance

of negative samples (areas without mineral occurrences) com-

pared to positive examples [16]. Such biases may lead to the

distortion of machine learning models, resulting in a tendency

to inaccurately forecast regions as deficient in minerals in-

accurately, even when this is not the actual scenario [17].

Conventional two-dimensional mapping visualizations must

be more comprehensive in capturing the complexities and

interdependencies of geophysical attributes [18].

Mapping mineral prospectivity is crucial for exploring re-

sources. Nevertheless, the current study has highlighted some

issues that need addressing. The conventional approaches used

in mineral mapping, even though reliable, require considerable

time and effort, highlighting the need for improved and

efficient methodologies. There is a notable disparity in the

distribution of data, with a substantial number of locations

without minerals compared to those high in minerals. This

imbalance can result in biased outcomes, an issue that needs

to be better addressed in several research investigations. While

some research emphasizes using visualization tools like Prin-

cipal Component Analysis (PCA) and Self-Organizing Maps

(SOM) with machine learning, a comprehensive exploration

of their combined efficiency is lacking. There are further

concerns about the efficacy of machine learning when dealing

with imbalances in data. Furthermore, most research endeav-

ors concentrate on either data visualization or classification

individually, with little effort to combine both methodologies.

This work aims to develop a comprehensive methodology

for mineral prospectivity mapping by integrating powerful

machine learning algorithms with state-of-the-art data visu-

alization methods. The central goal is to enhance the accuracy

of mineral location predictions, improve the interpretation

of geophysical data, and update traditional methodologies.

The basic theory suggests that integrating this technology

will significantly improve the accuracy and effectiveness of

mineral analysis, thereby promoting more sustainable resource

exploitation.

II. RELATED WORK

Integrating data science and mineral prospectivity mapping

(MPM) has established a multidisciplinary linkage, enhancing

the geoscience field’s capabilities and accuracy [19] [20] [21].

As the field of geoscience undergoes this significant shift, it is

crucial to thoroughly examine the progress made so far and the

obstacles that remain to have a comprehensive understanding.

This literature review aims to understand the dynamics stated

above thoroughly.

Usually, the field of MPM has been predominantly influ-

enced by two fundamental paradigms: the knowledge-driven

paradigm and the data-driven paradigm [12]. The knowledge-

centric methodology, derived from extensive geological exper-

tise over many decades, provides a profound and invaluable

viewpoint that has played a pivotal role in mineral exploration

through several generations [22]. The successful interpretation

of geological processes and their consequential mineral de-

posits is based upon a thorough understanding of the subject

matter.

The data-driven approach stands in significant contrast to

traditional methods, a characteristic of the contemporary pe-

riod, driven by notable progress in computer capabilities and

data analytics [23]. The approach advocated by researchers

prioritizes the meticulous examination of extensive geophysi-

cal data. The growing availability of geophysical data in terms

of quantity and level of detail has created a need for reliable

analytical approaches. As a result, the data-driven approach

has become more relevant.

The complicated and multi-dimensional nature of geosci-

entific data poses a distinct problem involving translating

this complex information into understandable and significant

forms. Data visualization approaches such as Self-Organizing

Maps (SOM), Parallel Coordinate Plots (PCP), and Principal

Component Analysis (PCA) are now exhibiting a significant

impact on several domains, facilitating revolutionary outcomes

[24] [25] [26].

Self-organizing maps (SOM), a kind of unsupervised learn-

ing, effectively decrease data’s dimensionality while improv-

ing visual representation. The significance of SOM in the

contemporary machine learning domain becomes apparent

when integrated with algorithms such as Support Vector Ma-

chines [27]. On the other hand, Principal Component Analysis

(PCA) facilitates the comprehension of information with many

dimensions by representing them in more straightforward

and lower-dimensional perspectives [26]. Furthermore, parallel

coordinate plots enable the analysis of datasets with many

dimensions by arranging them along parallel axes. This con-

figuration reveals patterns and interconnections among distinct

variables [25].

The use of machine learning in MPM is rapidly expanding.

The current development is distinguished not only by the rising

use of algorithms such as logistic regression and multilayer

perceptrons but also by the innovative approaches employed to

modify and enhance these methods to address issues particular

to MPM.

Machine learning techniques, such as logistic regression and

the multilayer perceptron (MLP), are often used in mineral

prospectivity mapping [28] [29]. These methodologies have

shown efficacy in identifying regions with high gold min-

eral potential via geological and geochemical data analysis.

Logistic regression uses the synthetic minority oversampling

method (SMOTE) to achieve a balanced distribution of classes
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within a dataset. The level of balance achieved contributes

to the improvement of classification accuracy. On the other

hand, MLP has shown efficacy in identifying areas exhibiting

mineral potential by using a comprehensive amalgamation of

geological, geochemical, and geophysical data.

The literature on mineral prospectivity mapping using ma-

chine learning techniques has indicated several areas for im-

provement. Firstly, it is essential to note that regions abundant

in minerals are not often found, leading to datasets that exhibit

an imbalanced distribution of negative instances (areas lacking

mineral occurrences) compared to positive cases. This phe-

nomenon might result in the development of biased machine-

learning models, leading to incorrect predictions of mineral

deficiencies in some places. Secondly, conventional two-

dimensional mapping visualizations cannot comprehensively

depict the intricacies and interconnections of geophysical

features, which can limit the interpretability and accuracy of

mineral prospectivity maps. Thirdly, the majority of existing

research on the use of machine learning in mineral prospectiv-

ity mapping mainly concentrates on either data visualization or

classification as separate entities. There is a need to develop

more comprehensive procedures that integrate both methods

to improve the accuracy and comprehensibility of mineral

prospectivity maps.

These gaps are critical because they can lead to inaccu-

rate mineral prospectivity maps. Machine learning algorithms

that exhibit bias may lead to incorrect predictions about the

presence of minerals in some places, which can result in the

inefficient allocation of time and resources towards exploration

efforts in areas unlikely to result in mineral deposits. Better

visualization methods can enhance the interpretability and

accuracy of mineral prospectivity maps by facilitating users’

comprehension of the underlying geological mechanisms deal-

ing with mineralization. Integrating several methodologies can

boost the accuracy and comprehensibility of mineral prospec-

tivity maps by incorporating spatial patterns derived from

geophysical data and including known mineral deposit sites.

Addressing deficiencies in the existing research on mineral

mapping will enable the development of more efficient, ef-

fective, and interpretable methodologies for exploring mineral

resources more quickly and cheaply, which is essential for

meeting the growing demand.

III. DATASET

The represented research area, as seen in Figure 1, repre-

sents a specific region located in Finland. The data is collected

by the Geological Survey of Finland (GTK), as stated on

their official website (www.gtk.fi). The principal objective

within this domain is to get a comprehensive understanding

of the underlying geology. The amalgamation of geological

and geophysical data is used to accomplish this task. The

geographical area is represented using a raster grid, where

each cell has a spatial resolution of 50x50 square meters.

Geophysical data provides an in-depth description of the

fundamental characteristics of the Earth, including gravita-

tional forces, magnetic fields, and electrical resistivity. Iden-

Fig. 1. Area of study (GTK, Finland)

tifying regions characterized by substantial concentrations of

these attributes is of utmost importance since they may serve as

indicators of significant mineral deposits. The known mineral

types in this study include gold, iron, and copper. On the other

hand, geological data offers an improved understanding of

the underlying layers and structures, proving advantageous in

identifying areas with similar geological characteristics found

in well-documented mineral-rich regions. To provide a more

comprehensive understanding of the data, it is interesting to

note that the dataset has 17 known mineral deposit sites.

Remarkably, there remains a substantial number of 1,843,564

locations that have yet to be classified as either abundant or

lacking in the minerals above.

IV. METHODOLOGY

Mineral prospectivity mapping is an essential procedure

that helps to identify regions with significant economic value

from mineral reserves. Prospectivity maps are often generated

using geological and geophysical data, including structure

and topographical maps, airborne electromagnetic, gravity, and

radiometric imaging. Prospectivity mapping comprises two

principal methodologies: data-driven and knowledge-driven

strategies. The former employs diverse data analysis tech-

niques to investigate geographical data and identify patterns

associated with mineral deposits. At the same time, the latter

is based on the theoretical framework of the formation of

mineral deposits. The ultimate objective of this study is to

combine sophisticated machine learning algorithms with state-

of-the-art visualization methods to provide a comprehensive

methodology for mineral prospectivity mapping.

This study used a mixed-method approach, which incorpo-

rates visualization and classification techniques. Visualization

techniques, such as PCA, SOM, and PCP, depict intricate

patterns and interconnections within data that could otherwise

remain obscured. Classification techniques, such as Logistic

Regression and MLP, are implemented to develop prediction
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algorithms to identify potential mineral locations using knowl-

edge about mineral deposit characteristics.

The mixed methods approach was selected due to its capac-

ity to provide a thorough knowledge of the intricate issue of

mineral prospectivity mapping through statistical analysis and

visualization approaches. Moreover, using a mixed-method

approach has exhibited greater efficiency than traditional pro-

cedures, which require substantial time and effort.

The following research tools and procedures were used in

this study:

A. VISUALIZATION

1) SELF-ORGANIZING MAPS (SOM): The Self-

Organizing Map (SOM) is an unsupervised machine-learning

technique that learns how to create a low-dimensional grid

structure from a high-dimensional dataset [24]. The input

is connected with each unit of the lattice(map). The SOM

is competitive-based learning, where each neuron competes

against each other to represent various regions of the given

input data space. In other words, the units called neurons in

a SOM are very competitive in responding to a given input

pattern. In this competition, the neuron that wins the race is

the nearest to the input pattern in terms of Euclidean distance.

As this algorithm is trained, the weights of the units are

adjusted so that they become very similar to the inputs, and

this operation of weight adjustment is iterated till the SOM

has learned to represent the dataset in a low-dimensional

space. In cases when there are nonlinear interactions between

the features, SOM is a good alternative for dimensionality

reduction.

2) PARALLEL COORDINATES PLOT: Parallel coordinates

plot is a technique to display and analyze high-dimensional

data that contains many variables or features [25]. It represents

each observation in the data as a multiline that connects the

values of its variables along a set of parallel lines. Parallel

coordinate plots incorporate data preparation, scaling, plotting,

interaction, and interpretation. Furthermore, histograms for

each variable in the dataset are calculated for a specific bin

size and plotted along the vertical axes of the parallel lines.

These histograms aid the additional information about the

distribution of variables along the axes and their potential

impact on the overall patterns.

3) PRINCIPAL COMPONENT ANALYSIS (PCA): Principal

Component Analysis is a widely used technique that reduces

a dataset’s dimensionality while retaining the data’s variability

[26]. The method involves determining the principal compo-

nents, which are linear combinations of the original variables

and account for the majority of the variance in the data, and

then mapping the data onto these components. PCA involves

standardizing the data, computing the covariance matrix of

the features, performing eigendecomposition of the covariance

matrix, ordering the eigenvectors in decreasing order based on

the magnitude of their corresponding eigenvalues, selecting the

principal components, and projecting the data onto the selected

components. Additionally, PCA can be used to identify the

essential features in the dataset, i.e., the features that account

for most of the variation in the data correspond to the principal

components with the most significant eigenvalues. When the

correlations between the features are linear, PCA is a practical

choice for dimensionality reduction for visualization.

B. CLASSIFICATION

1) LOGISTIC REGRESSION: Logistic regression is a de-

scriptive statistical model used in supervised machine learning

classification problems [28]. It is mainly used when the depen-

dent (target) variable is categorical. It explains the relationship

between one dependent binary variable and one or more

independent variables.

We know that a simple equation for linear regression is

given by

Y = b0 + b1x (1)

where b0 and b1 are the intercept and slope coefficients,

respectively, x is the independent variable, and Y is the

dependent variable.

Here, our goal is to model the probability of an event; we

replace Y with p. As we know, the probability range varies

between 0 and 1, but in this case, the range may exceed. We

take the ”odds” of p, the ratio of the probability of success

and the probability of failure, to overcome this problem.

p

1− p
= b0 + b1x (2)

Here, the range of odds varies from 0 to ∞. We can see

that this range is restricted, which will limit the data points

and ultimately decrease our correlation. To overcome this

shortcoming, we will deploy the log of odds

log(
p

1− p
) = b0 + b1x (3)

Now, after some mathematical calculations, we will get

p =
1

1 + e−(b0 + b1x)
(4)

The above equation is a logistic function, also called a

sigmoidal function.

2) MULTILAYER PERCEPTRON: A multilayer perceptron

is an artificial deep neural network with more than one

perception [29]. It is comprised of an input layer to receive

the signal, an Output layer to make a prediction, and in

between these two layers, an arbitrary number of layers called

hidden layers that are used for the actual computation of this

multilayer perceptron.

The general block diagram of multilayer perceptron can be

shown in Figure 2. In forward propagation, the signal flows

from the input to the output layer through the hidden layers,

and the prediction of the output layer is measured against

the actual true value called error. During backpropagation,

the calculated error is backpropagated to the layers of the

multilayer perceptron. Using the chain rule, the gradient of

the cost function is calculated concerning weights and biases.
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Fig. 2. Representation of Multilayer Perceptron

C. CLASS IMBALANCE HANDLING

To mitigate the problem of class imbalance, several tech-

niques such as L2 regularisation, class weight balancing,

random undersampling using Multilayer Perceptron (MLP),

and Synthetic Minority Over-sampling Technique (SMOTE)

with Logistic Regression have been used.

L2 regularisation is a method that can improve data balance

by discouraging the model from giving excessive weight to

features present in a limited subset of the data [30]. The

reason for this is that L2 regularization imposes a penalty on

the model on the model for assigning large weights to any

given feature. This method promotes the model to allocate

equal importance to each feature, improving the model’s

performance while dealing with unbalanced data.

Class weight balancing is a machine learning technique

applied to address the problem of class imbalance. During

the training phase, the model assigns individual weights to

each class to contribute equally to each category [31]. The

allocation of weights to individual classes is often determined

in an inverse relationship to their relative frequencies within

the dataset.

The Synthetic Minority Over-sampling Technique (SMOTE)

is an oversampling technique used to address class imbalance

in datasets. It does this by generating synthetic instances of

the minority class by interpolation between actual minority

class samples. This method of balancing the dataset is shown

to have a positive impact on enhancing the performance of

machine learning models when dealing with imbalanced data

sets. The combination of SMOTE and Logistic Regression

enhances the efficacy of Logistic Regression models while

dealing with unbalanced datasets [32] [33].

Random undersampling is a practical approach to address

the issue of unbalanced datasets. This technique randomly

eliminates instances from the majority class to get a more

equal distribution of class labels [33]. This means that samples

from the majority class are selected randomly, ensuring that

the number of desired cases matches that of the minority

class. This approach can potentially enhance the efficacy

of machine learning models when dealing with unbalanced

datasets, particularly in the context of MLP models.

V. IMPLEMENTATION

Fig. 3. The Overall proposed system architecture of mineral prospectivity
mapping

The overall system for mineral prospectivity mapping is

illustrated in Figure 3. The geographical data, which consisted

of Airborne Electromagnetic (AEM), Magnetic, and Radio-

metric data, were converted into a point format and passed

through the preprocessing pipeline. AEM provides information

about the conductivity of the ground, which gives valuable

information about the potential mineral deposits. On the other

hand, Magnetic data reveal information regarding magnetic

minerals. Similarly, Radiometric or gamma-ray spectrometry

captures the radiation emanating from Earth’s crust, which

is vital in identifying a specific type of mineral deposit

like potassium. These geographic data sets, when combined,

provide a complete perspective of the subsurface, making it

easier to map the area and potentially find mineral deposits.

A. DATA PREPROCESSING

The data processing for mineral prospectivity mapping using

ArcGIS was carried out in many steps. Initially, the AEM,

magnetic, and radiometric data in .tif format were imported

into ArcGIS. Then, the data was cleaned to eliminate mistakes

and inconsistencies, using various data analysis and cleaning

techniques that were readily available. Subsequently, the data

was transformed into the .csv format, a standard file format

for machine learning and statistical software.

The following actions were executed to complete the final

preprocessing for mineral prospectivity mapping. First of all,

the identification of mineral-containing locations was con-

ducted by manually digitizing known mineral deposits. In the

meantime, class 1 was assigned to those points that contained

minerals, whereas class 0 was allocated to all remaining points.

Once the data had been preprocessed, it was exported into a

format easily stored and accessed.

B. VISUALIZATION

Data visualization is a technique used to effectively convey

information, enhance comprehension, identify patterns and

trends, and support decision-making. Principal Component

Analysis (PCA), Parallel Coordinate Plot (PCP), and Self-

Organizing Maps (SOM) were three data visualization ap-

proaches used to extract meaningful insights from the data.

1) SELF-ORGANIZING MAP (SOM): The raster data was

preprocessed using winsorization, a method for reducing the

impact of extreme data values with specific percentiles to

reduce their influence, and normalization to scale the data
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to a standard range. The preprocessed data was then given

into a SOM with a grid configuration 20x20 for training.

K-means clustering facilitated partitioning the SOM into 12

distinct clusters. During this period, Best Matching Units

(BMUs) were employed to allocate established mineral deposit

locations to the SOM grid based on the degree of similarity

with the input data points. The SOM grid is a topographical

map that retains the spatial relationships in the input data. The

BMU for each input data point was determined by identifying

the neuron in the SOM grid with the weight vector closest to

the input data point inside the feature space.

2) PARALLEL COORDINATES PLOT: In a parallel coor-

dinates plot, each feature has its axis, which are all parallel

to one another. Since each variable uses a separate unit of

measurement, each axis may have a different scale. Thus, all

the axes can be normalized to maintain consistency of scale.

Values are plotted on a graph as a sequence of lines linking

all axes. The color of the line is determined by the label of the

data point, which is red for known deposit points and black for

unknown mineral deposit points. The integration of histograms

with bin sizes of 30 on each axis enables the user to quickly

review the distribution of data points at the beginning of the

process.

3) PRINCIPAL COMPONENT ANALYSIS: Principal com-

ponent analysis (PCA) was used to calculate the principal

components responsible for capturing the fundamental patterns

in the given datasets. In this implementation, the first three

principal components were computed on the provided dataset.

The principal component values were rescaled and converted

into the RGB format to visually depict the principal compo-

nents inside the image to ensure the proper representation of

color intensity. The RGB value for each pixel was calculated

by computing the principal components and visualizing them.

Nevertheless, the primary components’ actual values were not

altered or normalized throughout this procedure. This method-

ology facilitated the identification of intricate structures and

essential patterns within the data via the visual representation

of the principal components as images.

C. MACHINE LEARNING MODELS

To classify mineral deposit points, two machine learning

models, namely logistic regression and multilayer percep-

tron, were trained using a dataset that exhibited a significant

disparity between the number of known (17) and unknown

(1,843,564) deposit points. To mitigate the class imbalance

problem, the Synthetic Minority Over-sampling Technique

(SMOTE) was used to produce synthetic data points for the

logistic regression model. Furthermore, the multilayer percep-

tion model implemented the random undersampling method to

balance the data from both classes. Moreover, to address the

issue of class imbalance, both models used L2 regularization

and balanced class weight to reduce the bias towards the

majority class and improve the performance of the minority

class.

1) LOGISTIC REGRESSION: The given dataset had a

significant disparity in class distribution, as the minority class

(known deposits) consisted of just 17 data points, while

the majority class (unknown deposits) included a substantial

1,843,564 data points. To address this issue, the SMOTE

technique was used to generate synthetic instances for the mi-

nority class. The Synthetic Minority oversampling technique

(SMOTE) is used for oversampling in machine learning. It

involves the creation of synthetic data by interpolating existing

samples from the minority class. This was used to balance the

dataset and make it more representative of the real world. The

dataset was then divided into training and testing sets at a ratio

of 0.8 to 0.2. The model performed training with 80% of the

available data, while the remaining 20% were used for testing.

The logistic regression method used the balanced class

weight parameter to address the class imbalance problem

during training. This parameter was utilized to assign a

weight to each class, facilitating the algorithm’s assigning

more significance to the minority class throughout the training

process. Furthermore, L2 regularization was used to mitigate

the overfitting of the model to the training data and enhance

its ability to generalize to unseen data.

During the training process, the model iteratively updated its

coefficients to minimize the logistic loss function, measuring

how well the model could predict the appropriate class for a

given data point. After the completion of the training process,

the model was used to predict the test dataset. The model’s

accuracy was evaluated by comparing the predicted and actual

values in the test set.

2) MULTILAYER PERCEPTRON: To use a multilayer per-

ceptron (MLP) model for binary classification, the initial step

involved dividing unknown mineral data points into 108,445

distinct clusters. Each cluster was comprised of 17 mineral

points that were randomly chosen. During each training itera-

tion, a set of 17 points was selected from the class of known

mineral deposits. One cluster of 17 randomly chosen points

was also selected from the 108,445 unknown mineral deposit

groups. This process created a balanced training set for each

iteration to address the class imbalance issue.

To address the issue of class imbalance, the MLP model

included balanced class weights. This meant more weight was

given to the minority class (known mineral deposits) during

training. This helped to ensure that the model did not overfit

to the majority class (unidentified mineral deposits). Further-

more, the implementation employed L2 regularisation, which

imposes a penalty on the model for using large weights. This

approach helped in mitigating the issue of model complexity

and overfitting to the training data.

The MLP model’s performance was evaluated using leave-

one-out cross-validation (LOOCV). In the Leave-One-Out

Cross-Validation (LOOCV) technique, each data point was

used once as the test set, while the remaining data points

were utilized for training purposes. The process was repeated

for each data point, and the mean performance accuracy was

computed across all iterations. The hyperparameter tuning

process was performed to identify the optimal values for the

hyperparameters of the MLP model. Three essential hyper-

parameters were identified: the number of neurons, the L2
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regularisation value, and the learning rate. The hyperparameter

space was established, and afterward, the model was trained

and assessed for every possible combination of hyperparame-

ters. The hyperparameter combination that resulted in the best

performance on the leave-one-out cross-validation (LOOCV)

set was identified as the most optimum.

VI. RESULTS AND DISCUSSION

The main objective of this study was to explore the im-

plementation of visualization and classification techniques

in the context of mineral prospectivity mapping. Identifying

the complex patterns and relationships within geological and

geophysical data can result in more effective identification of

areas with a high probability of mineral potential.

The results obtained from this study not only effectively

answered our original research questions but also had notable

implications for geophysics. The research found that visual-

ization techniques can be used to identify trends in data that

were previously unnoticed, while classification methods may

be used to estimate the possibility of minerals in particular

locations. The findings of this study can significantly trans-

form the methodology used in mineral prospectivity mapping,

perhaps resulting in the identification of previously unnoticed

mineral deposits.

A. VISUALIZATION

The significance of visualization in the study of geophysical

data is pivotal. The function of this entity is to serve as

a conduit, facilitating the transformation of complex data

into valuable information. The findings of this investigation

clearly demonstrated that the visualization approaches used

effectively revealed major trends and relationships. These

methods enabled an in-depth comprehension of the data and

helped the reduction of its dimensionality, retaining the most

relevant features. Furthermore, these techniques helped us

to visualize multiple data points across various dimensions,

which unraveled their complex relationships.

1) SELF-ORGANIZING MAP (SOM): The geophysical

data shown in Figure 4 was subjected to the combined SOM

and K-means clustering technique. The data were presented in

a two-dimensional grid, whereby each point corresponded to a

specific data point. The circles on the map denote the known

occurrences of minerals.

The SOM method first transformed the data, resulting in

a two-dimensional representation. This was done by building

a map of neurons, where each neuron was associated with a

specific data region. The neurons were then structured in a

two-dimensional grid, whereby neurons showing similarities

were positioned close to one another. The K-means algorithm

then further clustered the data into clearly defined categories.

To do this, the data points were randomly assigned to one

of the K clusters. The clusters were further modified via

an iterative process to maximize the similarity between data

points inside each group.

The reference figure illustrates the potential of using the

combined SOM and K-means clustering technique to conduct

mineral prospectivity mapping effectively. The methodology

effectively identified clusters of data points associated with

known mineral occurrences, indicating its potential applica-

bility in identifying regions with a high mineralization proba-

bility.

Fig. 4. Self-Organizing Map (SOM), and K-means Clustering, Highlighting
the Role of Best Matching Units (BMUs) in Mapping Known Mineral
Deposits

2) PRINCIPAL COMPONENT ANALYSIS (PCA): Principal

component analysis (PCA) was conducted on a set of ten dis-

tinct raster layers, whereby each layer comprised information

on the radioactivity, electrical characteristics, and magnetic

within the specified region. The resulting raster is depicted in

Figure 5. The first principal component (PC1) was assigned

to the red band, the second principal component (PC2) to the

green band, and the third component (PC3) to the blue band.

Since the principal components lack correlation, the resulting

raster is very colorful. This indicated that each principal

component uniquely captures a particular aspect of the data.

Using color to represent the data makes previously hidden

relationships and patterns easier to spot. The known mineral

reserves, for instance, are shown with white circles. These

rings are situated in an area of the raster where PC1 and PC2

have high values. This implies that the underlying geology

of these ore deposits exhibits specific patterns of variability.

The PCA outcomes were used to identify regions with a high

mineralization probability. Regions exhibiting high values of

both PC1 and PC2 indicated potential areas for the occurrence

of ore resources. Nevertheless, it is crucial to acknowledge

that PCA is a statistical methodology that does not guarantee

the existence of mineralization. Additional investigation and

examination are needed to validate the existence of mineral

resources.

3) PARALLEL COORDINATES PLOT (PCP): The data

in Figure 6 was visualized using a parallel coordinates plot

(PCP). A PCP is a graphical representation that visually

displays data points in a multidimensional space, with each

dimension corresponding to a distinct axis. The data points are

assigned distinct colors, namely black to represent deposits of

unknown deposits and red to represent known deposits.

ISSN 2305-7254________________________________________PROCEEDING OF THE 34TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 131 ----------------------------------------------------------------------------



Fig. 5. PCA visualization with geophysical data

The PCP demonstrates a statistically significant correlation

between the two dimensions. The known deposits have been

located in the upper-right region of the map, whereas unknown

deposits are mostly grouped in the lower-right region. This

observation implies that the two categories of deposits exhibit

distinct features about their values along the two axes. The

histograms shown along the axes provide further insights into

the distribution patterns of the features along the vertical axes.

Overall, the PCP offers a technique for visualizing the data

and identifying relationships between the various dimensions.

To facilitate further analysis, the histograms along the vertical

axes provide extra information about the distribution of the

features.

Fig. 6. Histograms are placed on top of the parallel coordinates plot to display
the item distribution along each axis

B. CLASSIFICATION

1) LOGISTIC REGRESSION: A logistic regression algo-

rithm was used to classify the data points into two classes:

unknown mineral deposits (class 0) and known mineral de-

posits (class 1). The collection consisted of 17 known mineral

deposits and 1,843,564 unknown mineral deposits. The logistic

regression model was first trained on the unbalanced dataset.

The dataset was divided into training and testing sets, fol-

lowing a ratio of 80:20. A subset comprising 1,474,864 data

points, accounting for 80% of the original dataset, was used for

training. The remaining 20% of the total dataset, specifically

368,717 data points, were reserved for testing.

Fig. 7. Consusion matrix for logistic regression on imbalanced dataset

TABLE I PERFORMANCE EVALUATION METRICS OF LOGISTIC

REGRESSION ON IMBALANCED DATASET

Class Precision Recall F1 Score
0 (Unknown Deposits) 1 1 1

1 (Known Deposits) 0 0 0

Figure 7 shows the confusion matrix for the logistic re-

gression model on the unbalanced dataset. The confusion

matrix shows that the model has an accuracy of 99.7% but

misclassifies the minority class. Table 1 illustrates the metrics

used for evaluating the efficacy of logistic regression on an

imbalanced dataset. The table consists of two separate classes:

unknown deposits (class 0) and known deposits (class 1). The

precision, recall, and F1-score for class 0 in the table are all

1, although all the values for class 0 are 0. This is because the

logistic regression model is biased towards the majority class

(unknown mineral deposits).

To address this class imbalance issue, the Synthetic Mi-

nority Over-sampling approach (SMOTE), a data-balancing

approach, was used before the model’s training. SMOTE

generates synthetic data points that resemble those from the

minority class. This approach proves useful in achieving a

more balanced distribution within the dataset. Implementing

the Synthetic Minority Over-sampling Technique (SMOTE)

demonstrated its efficacy, leading to a substantial increase in

the dataset size to 3,687,120 instances. Consequently, both

the known and unknown mineral deposit classes now possess

an equal distribution of 1,843,560 instances each. After using

SMOTE to balance the dataset, it was divided into training and

testing subsets with proportions of 80% and 20%, respectively.

The objective of this technique was to boost the performance

of the logistic regression model by exploiting a balanced

dataset.
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Fig. 8. Confusion matrix for logistic regression on balanced (SMOTE) dataset

TABLE II PERFORMANCE EVALUATION METRICS OF LOGISTIC

REGRESSION ON BALANCED (SMOTE) DATASET

Class Precision Recall F1 Score
0 (Unknown Deposits) 0.95 0.91 0.93

1 (Known Deposits) 0.91 0.95 0.93

The confusion matrix for the logistic regression model that

was trained using balanced data is shown in Figure 8 with

an accuracy of 92.8%. Table 2 provides the precision, recall,

and f1-score metrics for class 0 and class 1. In the context

of class 0, the accuracy, recall, and f1-score values are 0.95,

0.91, and 0.93, respectively. For class 1, the precision, recall,

and f1-score values are 0.91, 0.95, and 0.93, accordingly. The

results indicate that the logistic regression model improved

performance after using the SMOTE technique to balance the

dataset.

In mineral prospectivity mapping, we are mainly concerned

with the points that contain a high probability of minerals. It

is widely known that mineral deposits are found at recognized

deposit locations due to extensive exploration and drilling

activities conducted in certain areas. The mineral composition

of unknown deposit locations remains to be determined due to

the lack of exploration activities undertaken so far. Hence, this

study focuses on identifying false positive data points that in-

dicate a high probability of mineral occurrence. When trained

on the balanced dataset, the logistic regression model exhibits

a high precision, indicating a lower chance of predicting a

false positive. This characteristic makes it a good choice for

use in mineral prospectivity mapping.

2) MULTILAYER PERCEPTRON: MLP analysis was used

to understand its strengths and weaknesses and its potential

application in mineral prospectivity analysis. Initially, only the

original data was utilized, addressing the class imbalance issue

within the dataset using the random undersampling technique.

In the meantime, a multilayer perceptron (MLP) was used for

classification prediction in two different settings:

• Without balanced class weights and L2 regularization:

The model acts as a baseline model, which did not

account for the class imbalance problem within the

dataset as well as the potential danger of overfitting. This

model was used as a reference model to compare the

performance of other models.

• With balanced class weights and L2 regularization: The

proposed approach aims to mitigate the issue of class

imbalance by providing higher weights to the minority

classes. Additionally, L2 regularisation is used to mitigate

the problem of overfitting. It is anticipated that this

model would exhibit superior performance compared to

the baseline model, particularly in the minority classes.

Fig. 9. Confusion matrix for MLP without balanced class weights and L2
regularization

The performance of the MLP was evaluated using the leave-

one-out cross-validation technique. The mean accuracy of the

model without class weights and L2 regularization is 58.82%,

as shown in Figure 9.

Fig. 10. Confusion matrix for MLP with balanced class weights and L2
regularization

On the other hand, the average accuracy of the algorithm

with L2 regularization and balanced class weights was 94.12%,

as shown in Figure 10. The findings indicated that the MLP

model with the balanced class weights and L2 regularisation

showed superior performance compared to the method that did

not use balanced class weights and L2 regularisation.

Hyperparameter tuning has been performed to identify the

optimum values of the number of neurons, the L2 regu-

larisation, and the learning rate. Figure 11 shows that the

maximum accuracy of 94.12% was achieved when the learning

rate was 0.01, the number of neurons was 16, and the L2

regularization value was 0.001. These outcomes indicate that

the use of class weights and L2 regularisation in the MLP

model has significant potential as an effective method for

mineral prospectivity mapping.
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Fig. 11. Accuracy of MLP model with varying number of neurons and L2
regularization for given learning rate

VII. CONCLUSION

In conclusion, this study included a multi-technique ap-

proach for geological data analysis, focusing on the visual-

ization and classification of geophysical data to identify the

likelihood of potential mineral deposits.

The outcomes illustrated the significance of visualization

methods in many respects. At first, the visualization helped to

understand trends and patterns in the data to identify potential

mineral trends and geological structure. Next, by reducing

the dimensionality of the data, the visualization approach

presented a clear interpretation of the complex geological

attributes. Finally, visualizing data along the multiple dimen-

sions depicted a clear understanding of complex relationships

between geological parameters.

One vital aspect of geological data analysis is the handling

of data imbalance, which is common in mineral prospectivity

mapping. SMOTE and random undersampling strategies were

implemented effectively to address this issue. The logistic

regression model’s performance on highly imbalanced data

improved significantly by implementing these techniques, bal-

ance class weights, and stratified cross-validation. Moreover,

the study further addressed the data imbalance problem by

deploying the multilayer perceptron (MLP) method with L2

regularization and class weights.

Overall, the findings highlight the importance of an inte-

grated approach for practical geological data interpretation

and exploration of mineral deposits, integrating specialized

methodologies and data handling strategies. By utilizing these

approaches, one may enhance the efficacy and efficiency of

their exploration efforts, eventually leading to more successful

mineral prospecting mapping.
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