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Abstract—Since the COVID-19 pandemic, chest computed
tomography has become a common practice, with the liver
and spleen being studied in addition to the lungs and heart.
Unfortunately, radiologists often do not have the time to
assess the density of the liver’s structure, as their attention
is primarily on the chest organs such as the lungs, heart, and
blood vessels in the thorax. To address this issue, a solution
could be the development of a tool that uses machine learning
technologies and statistical methods to identify organs and
their relationships to diagnose diffuse hepatic steatosis on chest
computed tomography scans. Based on an open dataset, various
methods of statistical and regression analysis were used, and
diagnostic tests were obtained with more than 95% accuracy.

I. INTRODUCTION

Hepatic steatosis is a frequent observation during imag-
ing studies that may be indicative of chronic liver ailments,
with non-alcoholic fatty liver disease being the most
prevalent. It refers to an atypical buildup (up to 5%)
of triglycerides in the hepatocytes [1]. This constitutes a
major public health issue, with estimates suggesting that
the prevalence of hepatic steatosis among the population
in Western countries could be as high as 30% [2].

the established method for
diagnosing non-alcoholic fatty liver disease, as it
provides histolog-ical evaluation that can reveal
features not detectable on imaging, such as specific
patterns of inflammation and hepatocyte damage [3].
However, the procedure is associated with high costs,

Liver Dbiopsy is

sampling error, and potentially life-threatening
complications. In  contrast, non-invasive imaging
techniques, including  ultrasonography, computed

tomography (CT), magnetic resonance spectroscopy, and
magnetic resonance imaging (MRI), are increasingly being
used to assess important disease markers such as hepatic
steatosis and advanced liver fibrosis.

Ultrasound is a safe, affordable study, but has several
disadvantages for detecting and assessing steatosis, for
example, in patients with a large body mass index, the
steatosis estimate may be overestimated due to beam
attenuation when passing through abdominal and visceral
fat, and not liver fat, liver echogenicity may be distorted
by fibrosis, inflammation and other signs of chronic liver
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disease, fibrosis and fat may superficially resemble each
other [4]. In addition, conventional ultrasound is operator
dependent, resulting in varying results and reproducibility.
MRI is considered the most sensitive and specific method
for assessing steatosis. Unlike ultrasound and computed
tomography, which measure steatosis indirectly, MRI
measures the signal intensity (brightness) of protons at
different resonant frequencies [5]. MRI uses the differ-
ence in proton resonance frequencies between water and
triglycerides. However, the MRI method has a number of
limitations in use, is relatively expensive, and also cannot
easily distinguish between a fat fraction of more than 50%
and a fat fraction of less than 50%.

Therefore, computed tomography without contrast en-
hancement was proposed as an alternative to liver biopsy.
The main advantages of computed tomography for assess-
ing steatosis are relatively fast data acquisition, ease of
execution, simple analysis and quantitative results. Since
the COVID-19 pandemic, computed tomography scans
of the chest have become a standard study that also
includes a focus on the liver and spleen. A normal liver
parenchyma on unenhanced computed tomography
scans appears brighter than the spleen, with a density of

around 60 HU [6].

Fig. 1. Computed tomography scan of the liver without
steato-sis

However, in cases of steatosis, the liver tissue becomes
hypodense compared to the surrounding spleen.
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Fig. 2. computed tomography scan of the liver with steatosis

Despite this, radiologists may not have enough time to
evaluate liver structure due to the emphasis on chest
organs such as the lungs, heart, and thoracic blood vessels.
To address this issue, a solution could be the develop-
ment of a tool that uses machine learning technologies
and statistical methods to recognize organs and identify
correlations between available data and the presence of
diffuse hepatic steatosis on chest computed tomography
scans. This tool is intended to be purely advisory. If it
reports the possible presence of hepatic steatosis, then
the patient is advised to undergo some specialized test
for diseases. For example, such non-invasive methods as
SteatoTest [7] or FibroScan [8].

II. OVERVIEW
A. Overview of existing solutions

In 2020, the Scientific and Practical Clinical Center for
Diagnostics and Telemedicine Technologies of the Moscow
City Health Department published data on the detec-
tion of liver steatosis in 30,000 patients who underwent
computed tomography [9]. For verification, the program
of automatic liver densitometry CTLiverExam was used,
which allows assessing the density of the liver even in
conditions of its partial capture in the scanning area [10].
The result of batch processing of images was given in
the form of a table with data on the average density
in the segmented area, standard deviation, degree of
heterogeneity. Segmentation was considered incorrect in
cases where the selected area included the stomach, heart,
ribs, right-sided hydrothorax, and less than 90% of the
liver. Despite the results obtained, this method has not
been introduced into practical healthcare.

A group of authors from the USA and Germany in 2021
published a paper on the detection of liver steatosis
according to chest computed tomography. The study
included 15,000 patients. A deep learning program was cre-
ated, liver fat quantification was measured in Hounsfield
units by three independent methods: 1. Average attenua-
tion of the region of interest in three cross-sectional images
at different levels of the liver; 2. Average attenuation
on images manually selected by the doctor; 3. Average
attenuation of volumetric segmentation based on deep
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TABLE I. TECHNOLOGY COMPARSION

Name Free | Pretrained model for liver
Visiopharm -
Halo AT -
Aiforia
MONAI-Lable
H-AI-L
QuickAnnotator
livermask

Vot

++ 4+
+

learning. The disadvantage of the method is the inability
to interpret images with low image quality [11]. Tt should
be noted that every year you can find publications devoted
to the detection of liver steatosis according to native CT,
it should be noted that in general the detection algorithm
is approximately the same for everyone, and is based on
Hounsfield units, however, this method does not work
when analyzing enhanced CT and CT with contrast [12].

B. Technology overview

It was decided to use the Python programming language
for data collection and analysis, since this language was
also used in other works related to the analysis of CT
images and segmentation of organs on them [11], [13]-
[15]. To obtain data on the brightness of the liver, it is
necessary to segment it on CT. There are several popular
tools for this purpose:

1) Visiopharm [16];

2) Halo AI [17];

) Aiforia [18];

) MONAI-Lable [19];

) H-AI-L [20]

) QuickAnnotator [21];
7) Library livermask [22]

S O = W

Of all the tools presented above, livermask was chosen,
since livermask is a library for automatic segmentation of
the liver parenchyma on CT using deep learning, it has
the following advantages:

) Open source;

2) There is a pre-trained model for liver segmentation;
3) Regular updates;

4) Easy to use. To start segmentation, you need to call
one function.

Fig. 3. An example of how livermask works

The sklearn [23] library is used to obtain the score to
separate the data into a training sample and tests, for
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linear and polynomial regression, since the main purpose
library is classification and regression. In addition, this
library was also used in other works related to the analysis
of CT images and segmentation of organs on them [11],
[14].

The nibabel [24]library is used to obtain a three-
dimensional array of pixel brightness in a CT study. This
package provides read + /- write access to several common
medical and neuroimaging image file formats, including:
GIFTI, NIfTI1, NIfTI2, CIFTI-2, MINC1, MINC2, AFNI
BRIK/HEAD, MGH and ECAT, and Philips PAR/ REC.
To calculate the Spearman correlation coefficient, the scipy
[25] library is used. SciPy is an open source library for
performing scientific and engineering calculations.

For operations with matrices, the numpy library [26] is
used. NumPy is an open source library for working with
multidimensional arrays, including matrices.

For finding various averages, working with csv files, getting
the current time, creating folders, getting a list of files in
a folder, mathematical calculations, getting combinations,
standard Python libraries such as statistics, datetime, os,
glob, math and itertools are used.

C. Review of mathematical methods

Correlation analysis is used to search for the most
significant features.
Statistical criteria and regression analysis are used to build
diagnostic tests. This paper uses two criteria:

1) the most powerful criterion to find the point relative
to which the steatosis result will be given;

2) fuzzy criterion is a function 6(X) that takes values
in the interval [0, 1] depending on the sample values.
It is used to calculate the probability of having
steatosis based on statistical data on the presence
of steatosis in patients with a higher and lower liver
brightness value.

Three metrics are used to evaluate diagnostic tests:

1) coefficient of determination (R? score). R? score is
needed to evaluate the accuracy of tests with the
same number of factors;

2) logarithmic loss (log loss). log loss is a metric for
evaluating a binary classification model, in which
the further the prediction probability is from its true
value, the higher the penalty;

3) F-metric (F'1 score) only for constructing the most
powerful criterion, since F'1 score is well suited for
a binary result.

III. BACKGROUND

This work was inspired by the Kaggle [27] to recognize
diffuse hepatic steatosis on chest CT. This competition
also provided a dataset consisting of 152 patients with
chest CT and 112 patients with abdominal or abdominal
and chest CT. The training set contains 226 patients, of
which 114 were patients with chest CT.

I would also like to note that Ekaterina Zaslavskaya also
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made a great contribution to this work. She was our
medical consultant, and she also manually marked the
liver on computed tomography scans to compare them
with the results that the computed produces.

IV. IMPLEMENTATION DESCRIPTION

A. Data preparation

Since some patients have more than one study, it is
necessary to convert the available data on the presence
of steatosis into a format in which the minimum unit
of division is not the patient, but a single study. This
increases the training and test data from 226 to 301 and
resolves the issue of which study should be considered
correlated with steatosis data.

Then this data is divided into a training sample and tests
using the sklearn library. It stratifies the data into two
samples in the desired proportions. In my chosen case, the
training sample consists of 70% of the available data, the
test sample consists of 30% [28], [29]. There are 30 training
splits and 30 test splits in total. Then the liver masks of
each study are obtained using the livermask library.
Masks are saved in NifTi format.

After that, the collection of data on the brightness of the
liver and the entire NifTi file begins. The brightness of a
single point is the element value of the 3D pixel array of
a single study.

About the liver, the following brightness data is collected:

1) Brightness value at a random point in the liver;

2) Arithmetic mean of brightness, median brightness,
brightness mode, brightness quantiles of 100 random
points in the liver;

3) Arithmetic mean of brightness, median brightness,
brightness mode, brightness quantiles of the points
of one, two and three random area of the liver;

4) Arithmetic mean of brightness, median brightness,
brightness mode, brightness quantiles of the points
of the entire liver.

B:1.2.826.0.1.3...8946416014672

Fig. 4. An example of selecting a random area of the liver
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TABLE II. PART OF THE DATA ON PATIENT NUMBER 3
WITH STEATOSIS AND PATIENT NUMBER 1 WITHOUT

STEATOSIS

Value Steatosis | No steatosis
Random point brightness 9.0 58.0
Random points mean 14.44 50.58
Random points median 12.0 51.0
Random points mode 21.0 60.0
Random points 1st quan. -2.75 39.0
Random points 3rd quan. 36.0 60.0
One area mean 17.88 53.28
One area median 17.0 54.0
One area mode 15.0 56.0
One area 1st quan. 1.0 44.0
One area 3rd quan. 34.0 63.0
Whole liver mean 20.14 51.59
Whole liver median 20.0 52.0
‘Whole liver mode 18.0 54.0
Whole liver 1st quan. 3.0 43.0
Whole liver 3rd quan. 37.0 61.0

The following data is collected about the entire study:

1) The arithmetic mean of the brightness of the points
of the whole study;

2) Median brightness of the points of the whole study;

3) Brightness mode of points of the whole study;

4) Brightness quantiles of the points of the whole study.

Sets of values are converted to numbers using the
statistics library, which is equipped with a large number
of functions to obtain statistically significant data. After
that, the resulting lists of dictionaries are saved in the
corresponding csv files.

Further, to obtain information about the significance of
different brightness values, it is necessary to obtain the
dependence of the available data on the value of the
presence of steatosis. This can be done by finding the
modulus of the Spearman rank correlation coefficient using
the scipy libraries, which have functions for calculating
the Spearman correlation coefficient, and numpy, which
is necessary to write your own functions for calculating
the multiple correlation coefficient. It is necessary to
consider rank correlation, since the relationship between
binary and continuous data is being sought. It is the
modules that need to be looked for, since in order to find
out the relationship between the set of brightness values
and the presence of steatosis, it is necessary to calculate
the coefficient of multiple correlations, whose sign is not
possible to find out due to the properties of the square
root [30].

The resulting correlation coefficients are stored in a list of
dictionaries, and the list is converted to a csv file.

B. Experimental study

1) Experimental conditions: Spearman’s multiple cor-
relation coefficient is considered to determine the sig-
nificance of each set of different brightness values for
different parts of the liver. It is necessary to consider
rank correlation, since the relationship between binary and
continuous data is being sought.
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2) Research questions: The following hypotheses were
formulated:

1) the larger the selected part of the liver, the greater
the correlation coefficient;

2) the greater the number of different brightness values,
the greater the correlation coefficient.

3) Results of correlation analysis: During the collection
of correlation coefficients between the brightness values
and the presence of steatosis, it was found that the
larger the liver area is taken, the more the studied values
correlate. For the same reason, the smallest correlation
coefficient was obtained for combinations with the value
of the brightness of a random point.

whole_liver one_area two_areas three_areas random_points  random_point

Fig. 5. The average value of the correlation coe icient for
different parts of the liver

Excluding the case with a random point from the analysis,
since it has only one kind of brightness value, it can be seen
that the correlation coefficient increases with the increase
in the number of different brightness values of different
parts of the liver and the entire study.
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Fig. 6. The average value of the correlation coe icient over the
number of different brightness values

From the data obtained, we can conclude that to obtain
the best result, you should take as many liver points as
possible and calculate as many different brightness values
from them.
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C. Predictive Models

Based on the results of the correlation analysis and the
data obtained, the following models for the diagnosis of
steatosis were implemented.

1) Construction of the most powerful criterion: From
the data on the brightness of the parts of the liver
from the training sample, we obtain the maximum and
minimum values. Then the average value between them is
taken. This point is necessary to determine the presence
of steatosis. If the input is given a value greater than
it, then there is no steatosis, otherwise there is. But
there is no evidence that this particular point will give
the minimum logarithmic loss. Therefore, relative to this
point, the leftmost boundary is searched first, minimizing
score. Then the right one. As a result, the point with the
minimum score is selected from the two of them. And
already relative to this point in the tests, a verdict will
be issued about the presence or absence of steatosis. The
test results are entered into the list of dictionaries. After
that the list is saved as a csv file.

There is also a similar model that maximizes the f1 score.

2) Construction of a fuzzy criterion: Data on the
brightness of different parts of the liver from the training
sample are divided into 2 lists based on the presence of
steatosis. Then the minimum is taken from the list of
those without steatosis and the maximum from the list of
those with steatosis. This is the minimum and maximum
of the intersection of the lists. Then we assign the following
scheme to the incoming value:

1) If the incoming brightness value is greater than
the maximum of the intersection, then there is no
steatosis;

2) If the incoming brightness value is less than the
minimum of the intersection, then there is steatosis;

3) If the input value from the test fell into the inter-
section, then the ratio of the number of those with
steatosis with a brightness value greater than the
input to the size of the entire intersection will be
returned.

The test results are entered into the list of dictionaries.
The list is then saved as a csv file.

3) Linear regression: Linear regression [31] is performed
on all combinations of brightness values of various parts
of the liver and the entire study. Then they are tested.
The test results are entered into the list of dictionaries.
The list is then saved as a csv file.
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4) Polynomial regression: Polynomial regression [32]
of the second and third degree is carried out on all
combinations of brightness values of various parts of the
liver and the entire study. Further testing and recording
the results obtained is similar to linear regression. At the
end of data collection, the results are written to a csv file.

V. DIAGNOSTIC TEST RESULTS

During the diagnostic tests, the following results were
obtained:

1) The most powerful criterion was tested with a best
f1 score of 0.98 and a log loss of 1.14 when trained
on the median brightness values of the whole liver.
From the obtained data on the most powerful
criterion, it can be concluded that in order to obtain
the best result, it is worth using the median value of
the brightness of the entire liver to find the boundary
point, relative to which a verdict of the presence or
absence of steatosis is issued;

2) The fuzzy criterion received the best R? score equal
to 0.8 during testing, while the logarithmic loss is
0.5 when learning on the modes of the brightness
values of the entire liver.

3) The linear regression model received the best R?
score in testing equal to 0.61, while the logarithmic
loss is 0.27 when trained on the arithmetic means,
modes, first and third quantiles of the brightness
values of the entire study and the arithmetic means,
medians, first and third quantiles brightness values
of three random areas of the liver.

4) The second-degree polynomial regression model ob-
tained a best R2? score of 0.76 on testing, with a
log loss of 0.17 when trained on the modes of the
luminance values of the entire study and the mean,
median, and modes of the luminance values of three
random liver regions.

5) The third-degree polynomial regression model ob-
tained a best R? score of 0.81 when tested, with a
log loss of 0.13 when trained on the third quantile of
the whole study luminance value and all the whole
liver luminance values.

TABLE III. CONFUSION MATRIX OBTAINED WHEN
PASSING THE 20TH TEST USING THE MOST POWER-FUL
CRITERION OF THE MEDIAN BRIGHTNESS OF THE
WHOLE LIVER TRAINED ON THE 30TH TRAINING SET

Predicted Positive | Predicted Negative
Positive 55 9
Negative 1 26
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place type min_log_loss max_f1_score
0 whole_liver  mean
1 whole_liver median
2 whole_liver  mode
3 whole_liver 1
4 whole_liver 3
5 one_area  mean
6 one_area median
7 one_area mode
8 one_area 1
9 one_area 3
10 two_areas  mean
11 two_areas median
12 two_areas  mode
13 two_areas 1
14 two_areas 3
15 three_areas  mean
16 three_areas median
i7 three_areas made
18 three_areas 1
19 three_areas 3
20 random_points  mean
21 random_points median
22 random_points  mode
23 random_points 1
24 random_points 3

Fig. 7. A table where each pair, liver part and brightness value,
corresponds to the minimum logarithmic loss and the highest
f1 score obtained when testing the most powerful criterion

TABLE IV. CONFUSION MATRIX OBTAINED WHEN

PASSING THE 29TH TEST USING THE MOST POWER-FUL

CRITERION OF THE MEAN BRIGHTNESS OF THE WHOLE
LIVER TRAINED ON THE 11TH TRAINING SET

Predicted Positive | Predicted Negative
Positive 55 10
Negative 1 25

A. Discussion of results

It can be noted that the results of diagnostic tests of
polynomial regression do not agree with the conclusions
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of the correlation analysis. Increasing the number
of variables does not improve the score. This may be
due to the inadequacy of the sample size, since it is
believed that the number of observations, according to
various estimates, should be at least 10 times greater
than the number of factors. If the number of
observations exceeds the number of factors by dozens
of times, the law of large numbers comes into play,
which ensures the mutual cancellation of random
fluctuations [33]. There are only 301 observations in the
existing sample, so perhaps the number of observations
should exceed the number of factors by more than 30
times. To test this assumption, it is necessary to
increase the sample.

In addition, I would like to note that all the models listed
in the work were trained and tested on standard computed
tomography scans. The behavior of each model remains
unknown if enhanced CT or contrast-enhanced CT is
input. To solve this problem, new models for diagnosing
steatosis trained on various types of CT are required.

CONCLUSION

In the course of the work, the following tasks were
completed:

o the signs that give the greatest correlation with the
presence or absence of steatosis were identified;

o a mathematical model was built that predicts the
presence of liver steatosis according to computed
tomography data;

o implemented a program code that allows you to
identify sufficient data to determine liver steatosis
according to computed tomography;

o implemented diagnostic tests built on the basis of a
mathematical model.

o code tested with data received from Kaggle.

The following is also planned for the future:

o collection of data on the brightness of the spleen;

o identification of signs that give the highest correlation
with the presence or absence of steatosis on new data;

o implementation of new diagnostic tests;

o development of an application using the most efficient
models;

o testing and implementation of the application.

Application prototype on GitHub that can report
the possibility of liver steatosis for the selected study
— https://github.com/st084331/Automatic_ Steatosis
Recognition

FUNDING

This work was supported by St. Petersburg State
University (project ID 94034084).




ISSN 2305-7254

2]

(3]

(4]

(5]

[6

[7]

8

9

(10]

(11]

(12]

(13]

References

M. Cohen, “The problem of liver steatosis and steatohepatitis
in modern world,” 2021.

M. Naeem, M. R. P. Markus, M. Mousa, S. Schipf, M. Dérr,
A. Steveling, A. Aghdassi, J.-P. Kiihn, M.-L. Kromrey,
M. Nauck, G. Targher, H. Volzke, and T. Ittermann,
“Associations of liver volume and other markers of hepatic
steatosis with all-cause mortality in the general population,”
Liver International, vol. 42, no. 3, pp. 575-584, 2022.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/1iv.15133

N. K. Desai, S. Harney, R. Raza, A. Al-Ibraheemi,
N. Shillingford, P. D. Mitchell, and M. M. Jonas, “Comparison
of controlled attenuation parameter and liver biopsy to
assess hepatic steatosis in pediatric patients,” The Journal
of Pediatrics, vol. 173, pp. 160-164.el, 2016. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S002234761600336X

A. M. Pirmoazen, A. Khurana, A. E. Kaffas, and A. Kamaya,
“Quantitative ultrasound approaches for diagnosis and mon-
itoring hepatic steatosis in nonalcoholic fatty liver disease,”
Theranostics, vol. 10, pp. 4277 — 4289, 2020.

J. Gu, S. Liu, S. Du, Q. Zhang, J. Xiao, Q. Dong, and Y. Xin,
“Diagnostic value of MRI-PDFF for hepatic steatosis in patients
with non-alcoholic fatty liver disease: a meta-analysis,” Eur.
Radiol., vol. 29, no. 7, pp. 3564-3573, Jul. 2019.

J. Starekova, D. Hernando, P. J. Pickhardt, and S. B. Reeder,
“Quantification of liver fat content with ct and mri: State of
the art,” Radiology, vol. 301, no. 2, pp. 250-262, 2021, pMID:
34546125.

T. Poynard, V. Ratziu, S. Naveau, D. Thabut, F. Charlotte,
D. Messous, D. Capron, A. Abella, J. Massard, Y. Ngo,
M. Munteanu, A. Mercadier, M. Manns, and J. Albrecht,
“The diagnostic value of biomarkers (SteatoTest) for the
prediction of liver steatosis,” Comparative Hepatology, vol. 4,
no. 1, Dec. 2005. [Online]. Available: https://doi.org/10.1186/
1476-5926-4-10

R. Shrestha, S. KC, P. Thapa, A. Pokharel, N. Karki, and
B. Jaishi, “Estimation of liver fat by FibroScan in patients with
nonalcoholic fatty liver disease,” Cureus, Jul. 2021. [Online].
Available: https://doi.org/10.7759/cureus.16414

A. P. Gonchar, V. A. Gombolevskij, A. B. Elizarov, N. S.
Kulberg, V. G. Klyashtorny, V. Y. Chernina, V. Y. Bosin, and
S. P. Morozov, “Liver density in routine and low-dose com-
puted tomography: the effect of image noise on measurement
accuracy,” Med. Vis., vol. 24, no. 1, pp. 39-47, May 2020.

N. S. Kulberg, A. B. Elizarov, and V. S. Kovbas,
“Program for liver image segmentation and liver x-ray density
determination ctliverexam. certificate of state registration
of the computer program no. 2019660983 2019. [On-
line]. Available: https://wwwl.fips.ru/registers-doc-view /fips__
servlet’DB=EVM&DocNumber=2019660983& TypeFile=html
Z. Zhang, J. Weiss, J. Taron, R. Zeleznik, M. T. Lu,
and H. J. W. L. Aerts, “Deep learning-based assessment
of hepatic steatosis on chest ct,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.02377

P. M. Graffy, V. Sandfort, R. M. Summers, and P. J. Pickhardt,
“Automated liver fat quantification at nonenhanced abdominal
ct for population-based steatosis assessment,” Radiology, vol.
293, no. 2, pp. 334-342, 2019, pMID: 31526254. [Online].
Available: https://doi.org/10.1148 /radiol.2019190512

H. S. Pettersen, I. Belevich, E. S. Rgyset, E. Smistad,
E. Jokitalo, I. Reinertsen, I. Bakke, and A. Pedersen,
“Code-free development and deployment of deep segmentation
models for digital pathology,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.08430

324

(14]

[16]
(17]
(18]
(19]
20]

21]

22]
23]
(24]
25]

[26]

27)

28]

29]

(30]

(31]

(32]

(33]

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

W. Li, F. Jia, and Q. Hu, “Automatic segmentation
of liver tumor in CT images with deep convolutional
neural networks,” Journal of Computer and Communications,
vol. 03, mno. 11, pp. 146-151, 2015. [Online]. Available:
https://doi.org/10.4236/jcc.2015.311023

X. Chen, X. Wei, M. Tang, A. Liu, C. Lai, Y. Zhu, and
W. He, “Liver segmentation in ct imaging with enhanced

mask region-based convolutional neural networks,” Annals of
Translational Medicine, vol. 9, no. 24, 2021. [Online]. Available:
https://atm.amegroups.com/article/view/85894

“Visiopharm,” https://visiopharm.com.

“Halo ai,” https://indicalab.com/halo-ai/.
“Aiforia,” https://www.aiforia.com.
“Monai-lable,” https://monai.io.

“H-ai-1,” https://github.com/SarderLab/H-AI-L.

“Quickannotator,” https://github.com/choosehappy/

QuickAnnotator.

“livermask,” https://github.com/andreped/livermask.
“scikit-learn,” https://scikit-learn.org/stable/.
“nibable,” https://nipy.org/nibabel/.

“scipy,” http://www.scipy.org.

“numpy,” https://numpy.org.

“Unifesp chest ct fatty liver competition,” https://www.kaggle.
com/competitions/unifesp-fatty-liver/overview.

Q. H. Nguyen, H.-B. Ly, L. S. Ho, N. Al-Ansari, H. V.
Le, V. Q. Tran, I. Prakash, and B. T. Pham, “Influence of
data splitting on performance of machine learning models in
prediction of shear strength of soil,” Mathematical Problems in
Engineering, vol. 2021, pp. 1-15, Feb. 2021. [Online]. Available:
https://doi.org/10.1155/2021/4832864

V. R. Joseph, “Optimal ratio for data splitting,” Statistical
Analysis and Data Mining: The ASA Data Science Journal,
vol. 15, no. 4, pp. 531-538, Apr. 2022. [Online]. Available:
https://doi.org/10.1002/sam.11583

H. Abdi, “Multiple correlation coefficient,” 2006.

A. Schneider, G. Hommel, and M. Blettner, “Linear regression
analysis,” Deutsches Arzteblatt international, Nov. 2010.
[Online]. Available: https://doi.org/10.3238 /arztebl.2010.0776

Y. Kim and H. Oh, “Comparison between multiple regression
analysis, polynomial regression analysis, and an artificial neural
network for tensile strength prediction of BFRP and GFRP,”
Materials, vol. 14, no. 17, p. 4861, Aug. 2021. [Online].
Available: https://doi.org/10.3390/mal4174861

Y. M. M. Eliseeva I. I., General Theory of Statistics: Textbook.
Moscow: Finance and Statistics, 2002, vol. 4.




