
Comparing Autoencoder and Isolation Forest in
Network Anomaly Detection

Timotej Smolen, Lenka Benova
Slovak University of Technology in Bratislava

Bratislava, Slovakia

xsmolen, lenka.benova@stuba.sk

Abstract—Anomaly detection is essential to spot cyber-attacks
within networks. Unsupervised anomaly detection methods are
becoming more popular due to difficult and expensive process
of labeling network data as well as their superior ability to
detect unknown attacks when compared with supervised or
signature-based solutions. In this paper, we use an LSTM-
based Autoencoder (RAE) anomaly detection model trained
in a fully unsupervised environment, with optimizations for
minimal memory usage. Secondly, we compare RAE with an
Isolation Forest model by analysing their results. RAE attempts
to capture the profile of the data by dimensionality reduction
and the use of LSTM layers enables it to leverage the data
from previous requests. Reconstruction error is calculated to
decide about the abnormality. We train models on a dataset
of requests towards a webserver in an unsupervised fashion.
Before training, significant feature engineering is done to process
multiple categorical attributes. The training process of RAE is
optimized for minimum memory usage. We evaluated the results
based on our analysis of the data as well as their statistical
features. A manual analysis revealed differing focuses between
numerical and categorical attributes. Isolation Forest disregards
most categorical attributes and emphasizes numerical values.
RAE on the other hand detects missing features more effectively
but largely disregards numerical attributes. As such, RAE might
have a higher probability of detecting a zero-day attack when
compared to Isolation Forest.

I. INTRODUCTION

Network security had been a concern long before the Inter-

net became as widespread as it is today. Attackers with mali-

cious intent have always been here but their activity has risen

together with the rise of Internet around the world [1]. Security

measures had to be implemented to counter these activities.

One of such measures is an Intrusion Detection System (IDS).

Intrusion detection is a continuous action of observing traffic

within a computer or a network and evaluating it in an attempt

to detect intrusions, defined as ”attempts to compromise the

confidentiality, integrity, availability, or to bypass the security

mechanisms of a computer or network”. The system that

automates this process is an IDS [2]. Signature-based IDSs use

known attack patterns to detect intrusions. Their disadvantage

however lies in their nature. As they use known patterns to

detect attacks, they are usually unable to detect new attacks

which intruders might have devised. This is one of the reasons

that the use of anomaly-based network intrusion detection

systems (ANIDS) has become more common [3].

To support the idea of detecting unknown attacks, unsu-

pervised machine learning method are often preferred. These

methods use unlabelled datasets and are therefore not biased

towards only learning to detect the attacks they are trained

on. Thus they are more suitable for detection of zero-day

attacks. The use of unsupervised machine learning methods

solves one more significant problem present in this domain.

Although obtaining a substantial dataset of network traffic is

not arduous nowadays, such data typically lacks labels. The

annotation of such data can be a lengthy as well as expensive

process that requires considerable expertise in the domain [4].

Experts who analyse or even label such data can also benefit

from the use of an unsupervised ANIDS. It can be a tool

at their disposal to highlight likely anomalous data, detect a

previously unknown anomaly, get a second unbiased opinion

or simply to double check their work.

The article aims at using unsupervised machine learning

methods to primarily detect point anomalies, which is also

the most researched type of anomaly. They are single pieces

of data differing from others [5]. We opt for them as we

probably do not have enough contextual attributes to detect

contextual anomalies. Collective anomalies may also be partly

detectable by RAE, however different groupings and division

of our data (such as division per user) would be more suitable

for detection of this type. We train the models using unlabelled

dataset consisting of web server logs. By using unlabeled

data, the model can be trained on a wide range of data

types and formats and can adapt to new or rare kinds of

anomalies. Unlabeled datasets offer a lot of information that

can be used to train efficient anomaly detection models as they

can come from real live traffic. The model may learn what

normal behavior entails without being influenced by any prior

beliefs or labels. It can also learn to recognize uncommon and

previously undiscovered anomalies that might not have been

present in the labeled dataset.

II. RELATED WORKS

Most of the current work in anomaly detection in un-

supervised environment uses algorithms such as clustering,

OCSVM, Isolation Forest or various types of neural networks.

Aditya Vikram et al. [6] uses Isolation Forest with 100

estimators to detect anomalies in the form of cyber-attacks.

It was trained and evaluated on public NSL-KDD dataset [7].

Even though the model was trained in an unsupervised way,

the labels for the dataset are available. In the final results,

AUC ROC score of 98.3% was achieved.

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 276 ----------------------------------------------------------------------------



Xiao Chun-Hui et al. [8] use Isolation Forest to detect

anomalies in network management system data in an unsuper-

vised way. As no similar labelled are available, they simulated

normal traffic data and added superficial anomalous data. They

use different feature extractors for their time-series data and

achieved AUC score of more than 90% regardless of the

feature extractor.

Guo Pu et al. [9] use the same NSL-KDD dataset to detect

cyber-attacks. First, they use sub-space clustering (SSC) to

divide data into N subspaces. Afterwards they apply one-

class support vector machine (OCSVM) on each subspace

to evaluate. They achieve the best results in regards to ROC

metric when compared with other clustering algorithms such

as DBSCAN or K-means clustering. However, the computation

time of the algorithm was significantly higher than others as

well, with times of 238.88s, 8.15s, and 0.69s respectively for

SSC-OCSVM, DBSCAN and K-means.

A. Tuor et al. [10] introduce a solution for insider threat

detection using Recurrent Neural Network (RNN). They use

a neural network consisting of LSTM layers on CERT Insider

Threat Dataset v6.2 [11]. The main thing differing it from

other solutions is the fact that instead of working with all

data instances together, they make a separate model for each

user. Their best LSTM model achieved result of 35.6% using

Cumulative Recall at 1000 metric, compared to 34.8% with

Isolation Forest.

Ming-Chang Lee et al. [12] introduce a lightweight RNN

LSTM model called ReRe for anomaly detection in univariate

time-series data. The datasets used were by Numenta anomaly

benchmark [13]. This approach uses 2 separate LSTM net-

works that are trained on previous data points in time. Each

network has only 1 hidden layer with 10 hidden units. Each

network calculates an average error, the difference being one of

the networks only uses normal data to calculate this error, the

other one includes data marked as anomalous as well. Only

when both of the networks mark the input data point as an

anomaly is it marked as one. They achieve a result of 0.5263

precision at 7, which is better by a margin of 0.0263 when

compared with a similar anomaly-based lightweight approach.

Wen Xu et al. [14] use an Autoencoder to detect anomalies

in the NSL-KDD dataset. They use Autoencoder consisting

of 5 layers with a set up of 122-32-5-32-122 units within the

layers. They compare different loss functions and achieve the

best result with accuracy of 90.61% using the mean absolute

error.

Zhaomin Chen et al. [15] introduce a Convolutional Au-

toencoder (CAE) in the area of network anomaly detection.

The difference between a conventional and convolutional Au-

toencoder is the use of convolution and deconvolution layers

to act as encoder and decoder respectively. The reason for

its use is, that a convolution layers have less parameters than

dense ones. Similar to other solution, they use the NSL-KDD

dataset. They compare the model with PCA and conventional

Autoencoder and achieve the best results with AUC score of

98.84% using CAE. Conventional Autoencoder was a close

second with AUC score of 98.57%.

Sepehr Maleki et al. [16] introduce an LSTM-based Au-

toencoder model for anomaly detection. It attempts to label

the dataset and uses probability criterion based on the central

limit theorem to mark the anomalous and normal data. It is

evaluated on The Numenta Anomaly Benchmark as well as

temperature measurements on an Industrial Gas Turbine (IGT)

burner-tip thermocouple. It achieves F1 score of 0.95 and 0.97

in the datasets respectively.

III. SYSTEM DESCRIPTIONS

We aim to detect various types of anomalies that are po-

tentially present in our unlabelled dataset. We chose Isolation

Forest as one of our models, as it is fast and easily trainable

model with low memory requirements as opposed to some of

the other algorithms such as OCSVM or various clustering

methods. Isolation Forest shows great results in [6], [8]. We

also apply an LSTM-based Autoencoder model on our prob-

lem. This model combines different approaches from network

anomaly detection domain, which showed promising results.

The structure of Autoencoder for dimensionality reduction as

leveraged in [14], [15] is combined with a use of LSTM

as proposed in [10], [12] to incorporate use of previous

samples to the solution, which we believe can be beneficial.

Similar structure is used in [16], although on univariate time-

series data. Our whole system was developed using Python

programming languages and its libraries. For preprocessing we

used Numpy, Pandas and Scikit-learn libraries. We used Scikit-

learn’s implementation of Isolation Forest and Tensorflow

library to create RAE.

A. Data

The web server logs used to develop our system were

provided by an antivirus company and they represent one day

worth of requests to download client modules towards their

web servers. The total number of requests is 90910622. Data

contains 11 attributes as seen in table I. 8 of these attributes

are categorical, the other 3 are numerical (feature status is in

numerical format but has categorical values so we consider

it categorical). Fig. 1 shows the format of the data. We used

a custom parser to convert the data from log format into a

more suitable csv format. This parser divided each row into

corresponding features with a use of a regular expression.

B. Feature selection and engineering

Attributes user hash and time local were not used in our

system as we do not isolate each user and the order of

the requests is preserved throughout the training. We have

also decided not to use uri attribute, as interpretation of

Fig. 1. Format of data

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 277 ----------------------------------------------------------------------------



TABLE I. ATTRIBUTES OF WEB 
SERVER LOGS

user hash identifiers of a user
time local local time in the Common Log Format
http host HTTP server host
request method HTTP request method
uri path to the update being requested
server protocol server protocol version
status response status
body bytes sent request body length
request length request length including line, header, and body
request time request processing time in seconds
scheme HTTP scheme

this attribute requires expert knowledge. The structure of this

attribute is also changing constantly, so our processing of the

attribute could quickly become outdated. As attribute http host
contains 92 distinct values we have handpicked certain features

of this attribute. We have created 7 boolean columns. 3

of them describe the format of the http host, whether it

is in IPv4, IPv6 format and the presence of port. 3 other

created columns are filtered one-hot encodings, where only

the columns encoding values with frequency more than 1%

are preserved. The last created attribute is a one-hot encoding

of a less populated but important ’-’ value, describing missing

value in http host. During Exploratory Data Analysis we have

discovered that the dataset contains duplicates. Due to the fact,

that the granularity of the time local is in seconds, we assume

this shows repetition of the same request within the second.

Therefore we have created a repeated attribute, containing the

number of such rows in the dataset and deleted the duplicated

rows. As the number of distinct categories was significantly

lower in other attributes, we used ordinal encoder for scheme
(as it only contains 2 distinct values) and one-hot encoding for

status, server protocol and request method resulting in a total

number of 35 attributes in the dataset as represented in Fig. 2.

Lastly, we have scaled our 4 (including repeated) numerical

attributes onto a range from 0 to 1.

C. Isolation Forest

As our first tested model we chose Isolation Forest. Whereas

most of the other machine learning algorithms aimed at

anomaly detection design a characterization of normal data and

identify the instances differing from this profile as anomalies,

Isolation Forest isolates anomalies directly without such profil-

Fig. 2. Attributes of preprocessed data

ing. Isolation Forest method creates a forest made of Isolation

Trees, where each tree corresponds to a test that separates

instances recursively. As Isolation Forest makes an assumption

about the data, that anomalies are far fewer than instances of

normal data, anomalies should be isolated earlier and have

shorter paths in the trees. Anomaly score is calculated based

on the lengths of these paths [17].

After training Isolation Forest model with default param-

eters on our data and calculating anomaly scores for all of

the data, we observed that more than 22% were marked as

an anomaly. Therefore, we had to tune the contamination

parameter of Isolation Forest, which decides, what percentage

of data instances are to be considered anomalous. As we

do not have the information about percentage of anomalous

samples in our dataset, we were forced to tune the parameter

manually. We arrived at the value of 0.05 (resulting in 5% of

anomalies), which still seemed high but provided a bit more

diverse results overall than lower values such as 0.01, in terms

of which attributes were out of the ordinary in samples marked

as anomalies. Furthermore, we tuned the number of estimators

(Isolation Trees) and chose a value of 200, which seemed to

show best overall results based numbers in tables II and III.

Isolation Forest with 200 estimators showed some of the best

results with lowest (most anomalous) average anomaly score

for OPTIONS request methods and missing server protocol

and second highest averages in numerical attributes.

D. Autoencoder

A specific type of a neural network which is trained to

reconstruct its input is called an Autoencoder. The purpose of

Autoencoder is to reconstruct the input data. In settings of an

anomaly detection problem, it is assumed that an Autoencoder

would learn a profile of the normal data. Therefore, when later

comparing the reconstructed data (output), the loss between

original and reconstructed data would be small in normal

instances, but large in case of anomalies [18]. Autoencoder

is a dimensionality reduction system in its nature, as it tries

to learn the profile of the data in a reduced subspace [19].

This subspace is usually one of the middle layers within the

TABLE II. AVERAGE VALUES OF NUMERICAL ATTRIBUTES FOR 
ANOMALOUS INSTANCES

Estimators Request length Body bytes sent Request time
50 618.9 98665.2 0.306
100 589.7 109376.3 0.340
200 594.4 108757.5 0.338
300 597.4 108526.9 0.336

TABLE III. AVERAGE ANOMALY SCORES FOR VALUES OF CATEGORICAL 
ATTRIBUTES

Estimators Missing server protocol Request method OPTIONS
50 -0.164 -0.090

100 -0.156 -0.098
200 -0.164 -0.102
300 -0.165 -0.100

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 278 ----------------------------------------------------------------------------



Autoencoder, such as layer L2 in Fig. 3. The data is first

encoded into this subspace from the original format, and then

decoded back into the original shape.

Recurrent neural network one (RNN) is type of Neural

Network that contains loops within the network structure. This

means that it can feed the output back into itself enabling it

to consider context in the form of previous inputs [21]. This

makes RNN a good choice when dealing with sequential data

which can profit from being able to process neighboring data

points [22]. When dealing with time-series data, as is our data,

it means that the neural network model is able to process a

certain amount of historical data points. Most often this means

that the model either evaluates single input sequence as a

whole, or uses the first X − 1 data points to help evaluate

the Xth point.

We chose this Autoencoder structure with recurrent neural

network layers, to create RAE, our second model. Specifically,

we have used Long short-term memory layers as introduced in

[23] to tackle the vanishing and exploding gradients problem.

Our model consists of 4 LSTM layers using hyperbolic tangent

activation function with 32, 16, 16 and 32 units in the

respective order. The whole layout can be seen in Fig. 4.

This model structure with firstly reducing and then increasing

number of units within layers enables RAE to reduce number

of dimensions and to learn representation of the data within

this reduced space. The added value of the LSTM layers

is that multiple samples can be processed at once, and so

instead of a single instance we can give it a sequence with

previous instances. This means that previous instances within

the sequence can be used to help predicting the next one. To

process the network traffic data, we therefore have to modify

the generalized Autoencoder structure shown in Fig. 3. To

Fig. 3. Autoencoder structure [20]

Fig. 4. Layers of our Autoencoder

fit our data into a model, we need to create sequences of

T imestep samples. This sequence is then fed to the model as a

singular piece of data and processed accordingly, to leverage

the previous inputs in the sequence to predict the next one.

We compared optimizers such as Adam, Adagrad, Adamax

and RMSProp, and while all of them produced very similar

results in terms of loss, we chose to use Adam optimizer [24],

as it is used in most of the state of the art solutions. We used

a learning rate of 1e − 03 and mean squared error, shown in

equation 1, as our loss function, which is a common function

used to calculate reconstruction error.

MSE =
1

n

n∑
i=1

(yi − ŷi) (1)

Early stopping halted training of our final model after 9

epochs as there was no improvement in value of loss. We use

batch size of 256 because it strikes a good balance between the

amount of data being processed at once and the computational

efficiency of the training process. We have made a decision to

use timestep of 10, thus resulting in every sequence acting

as an input training consisting of 10 consecutive requests.

This enabled the model to evaluate the whole sequence and

take neighboring (time wise) requests into consideration. If

the model were to be deployed into production, the sequence

would be evaluated as a whole, or alternatively, a sequence

would be flagged as an anomaly even if only a single request

was flagged as one. However, for the ease of evaluation, and

mainly for the ability to compare the results with Isolation

Forest, we aggregated our losses for each data point and took

only the maximum calculated loss per instance into account.

Due to the size of our data as well as hardware limitations,

we made several optimizations to improve effectiveness of

both training and evaluation of RAE. Our main limitation

was the size of random access memory. We use a timestep

of 10, which means that our data needs to be organized into

sequences of 10 samples each. However, because our original

dataset was already quite large, multiplying its size by 10 to

fit our input layer resulted in a significant increase in memory

usage. In fact, the resulting dataset was too big to fit into

memory as a whole. To address this issue we have created a

data generator. Instead of reading the data from RAM, this

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 279 ----------------------------------------------------------------------------



generator reads a single batch directly from the file on the

disk every time it feeds it to RAE. This resulted in much

smaller memory usage, as the batches were only kept in the

memory one at a time. Similar steps were used for prediction,

as per the nature of Autoencoder, input and output are of the

same size. We compared the training times of both approaches

(reading from file or from memory) on a sample of 1000000

rows. Surprisingly, the memory optimization did not result in

higher training times. The training time of RAE model when

reading batches from file on a disk was 245.6 seconds. When

reading data directly from memory the training time was 245.4

seconds. To store our data we used an hdf5 format, which

enabled us to easily read only a specified part (batch) of a file

from the disk.

IV. RESULTS

Our test set consists of 1000000 samples from the dataset,

not used during training of the models. As we are working

in a fully unsupervised settings, meaning that the labels for

our dataset are not at our disposal, we are unable to evaluate

our models using metrics typically used such as accuracy,

precision or AUC score. This makes the analysis of our results

more difficult and the the angle at which we look at our results

a bit uncommon, when compared with other works, where

the labeled dataset is available for the evaluation part of the

experiments. To evaluate our results we leverage statistical

features of our data as well as our expertise. These results

should be able to therefore be generalized for datasets from

different domains, that exhibit similar distributions, features or

characteristics. Besides predicted values, we have also looked

at the speed at which models are able to evaluate data. RAE

outperformed Isolation Forest in this aspect with time of

0.099s compared to 0.468s on predicting abnormality values

on 1000 samples. Thus RAE seems to be quicker in evaluating,

most likely due to the ability to leverage GPU.

In terms predicted values, we firstly look at the distributions

of anomaly scores of the models. To make the comparison we

scale the results of each model individually onto 0-1 scale.

Fig. 5 shows, that the distributions differ significantly. Based

on the plot we can observe that while RAE tends to reconstruct

the data seemingly normal to him with minimal loss, Isolation

Forest uses wider range of values for its anomaly score. Both

of the plots converge with the anomaly score rising.

The mean absolute error between the Isolation Forest and

RAE anomaly scores is 0.17, which only confirms what we

observed in the plot. However, when looking at the maximum

and minimum difference, we observe that 2725 instances have

a difference higher than 0.8, meaning that an instance of data

marked as anomalous by Isolation Forest was assumed normal

by RAE. For threshold of 0.5, this would result in 53886
instances which is more than 5% of the test set. The minimum

difference is −0.35, which shows that what is deemed as an

anomaly by RAE, is usually not viewed as totally normal by

Isolation Forest either. These numbers imply one of 2 things:

1) Some anomalies have been undetected by RAE.

2) Isolation Forest has high False Positive rate.

As the next step, we look at the average anomaly score

of instances with positive values in some of the categorical

attributes, which we identified as likely anomalous. These

include certain uncommon HTTP status codes, presence of

port in the http host or the absence of a certain feature

(displayed as ’-’ within the data). They can be seen in table

IV, where we can observe that RAE seems to capture some

of the anomalous attributes better than Isolation Forest. It has

higher average anomaly score in missing request data as well

as HTTP status 408. While it has a lower average anomaly

score for request method OPTIONS or missing HTTP host, it

is important to note that while there are 3104 instances with

Isolation Forest score higher than 0.8 in our test set, there are

only 14 with higher RAE score than 0.64. We can observe that

Isolation Forest does better in capturing anomalous state of

attributes connected to the HTTP host. However, it also seems

to judge instances with specific HTTP host, whose frequency

was more than 1% in the whole dataset as anomalous, even

though it is unlikely that this attribute should contribute to

higher anomaly score because of its frequency.

Fig. 5. Distributions of anomaly scores

TABLE IV
AVERAGE ANOMALY SCORES WHERE VALUE OF ATTRIBUTE IS 1

iForest score AE score
request method - 0.747378 0.990619
no http host 0.807269 0.648626
request method OPTIONS 0.536303 0.464310
status 408 0.815695 0.987441
is ip 0.467981 0.024964
has port 0.623714 0.289845
http host X.X.X.X 0.457052 0.006375

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 280 ----------------------------------------------------------------------------



Our 4 numerical attributes have distribution similar to

geometric, with high density in lower values of attributes

and smaller in high values. Therefore we assumed correlation

of these attributes with the scores calculated by our models.

The correlations in table V, show that while Isolation Forest

gives some weight to the body bytes sent, request length and

repeated, RAE does not consider any of these attributes except

request length significant and rather gives importance to some

other categorical attributes. Interestingly, the one attribute both

of the scores correlate with (request length), has a negative

Pearson correlation with them.

To make a final evaluation, we manually analysed 100

of rows of data with the highest anomaly score for each

model. The cut off anomaly scores were 0.635761 for RAE

and 0.947780 for Isolation Forest. Interestingly, there was no

intersection between the 2 subsets.

Based on the top results Isolation Forest seems to disregard

most of the categorical attributes. All of the samples used GET

request method and received a HTTP status code 200. 46 of

them were also addressed to one of the most frequent HTTP

hosts. The focus is more on the attributes describing specific

features of the host. Out of the top 100 samples, 59 had HTTP

host in IPv4 format and 54 had port number appended at the

end of it. Isolation Forest also gave significant importance to

numerical values, such as body bytes sent, where the average

value of the top 100 corresponded to approximately 99.98th

percentile of the whole test set. Most of the samples are thus

combinations of high numerical values and HTTP host in IPv4

format or with port present. Ergo it seems that lot of different

types of anomalies slipped by undetected and that if a zero-day

attack were to occur, our Isolation Forest might not be able

to detect it. In fact, 35 of the 100 samples, such as sample 2

in table VI were only anomalous in body bytes sent attribute

and 6, similar to samples 1 and 3 from table VI do not seem

anomalous in any.

Whereas Isolation Forest puts the highest significance on

the numerical attributes, RAE pretty much disregards them,

with body bytes sent value of 0.0 in all of the 100 samples

with RAE’s highest anomaly score. RAE managed to detect

all 7 samples with missing request method and gives high

importance to missing HTTP host, with 98 our of 100 samples

having 1 in this attribute. We can also see bigger diversity

within some of other attributes, such as HEAD or OPTION

request methods being included in the top 100 as well as

some of the 4xx status codes. Some of different samples with

high RAE anomaly score can be seen in table VII. As a

lot of the samples seemed to be of similar kind with HTTP

TABLE V. PEARSON CORRELATION BETWEEN SCORES AND NUMERICAL 
ATTRIBUTES

iForest score AE score
body bytes sent 0.136186 0.019042
request length -0.151371 -0.162446
request time 0.028970 0.014049
repeated 0.123264 0.013464

TABLE VI. SAMPLES WITH HIGH ISOLATION FOREST ANOMALY 
SCORE -CATEGORICAL FEATURES WITH 0S IN ALL SAMPLES 

OMITTED

Sample 1 Sample 2 Sample 3
body bytes sent 0.0596 0.6101 0.0596
request length 0.1028 0.0889 0.0883
request time 0.0003 0.0004 0.0395
http host ...eset.com 1.0 0.0 0.0
http host ...eset.com 0.0 1.0 1.0
server protocol HTTP/1.0 1.0 0.0 0.0
server protocol HTTP/1.1 0.0 1.0 1.0
request method GET 1.0 1.0 1.0
status 200 1.0 1.0 1.0
IF anomaly score 0.9596 0.9575 0.9662

TABLE VII. SAMPLES WITH HIGH RAE ANOMALY SCORE - CATEGORICAL 
FEATURES WITH 0S IN ALL SAMPLES OMITTED

Sample 1 Sample 2 Sample 3
body bytes sent 0.0 0.0 0.0
request length 0.0 0.0099 0.0064
request time 0.0 0.0 0.0
no http host 1.0 0.0 1.0
server protocol - 1.0 0.0 0.0
server protocol HTTP/1.0 0.0 0.0 1.0
server protocol HTTP/1.1 0.0 1.0 0.0
request method - 1.0 0.0 0.0
request method GET 0.0 0.0 1.0
request method OPTIONS 0.0 1.0 0.0
status 400 1.0 0.0 0.0
status 403 0.0 1.0 1.0
AE anomaly score 1.0 0.8742 0.916

host missing, we briefly looked at the next 400 samples. The

samples followed similar trend with more focus now on status

codes or request methods (as it has already detected all of

the samples with missing features). When doing this with

Isolation Forest, we again received similar results, with more

than 99% of the samples having status code 200 and GET

request method, and detecting minimum of the samples with

missing features as anomalous.

V. CONCLUSION

In this paper we apply LSTM-based Autoencoder (RAE)

on a network anomaly detection problem. Its encoder reduces

the dimensions of data and decoder reconstruct the same data

into input format. Error is calculated between the original

and reconstructed data, which acts as anomaly score. The

use of LSTM layers enable use of sequential characteristics

of the data. RAE is compared with Isolation Forest model.

The analysis of one million samples from an unsupervised

dataset revealed that RAE and Isolation Forest models differ

significantly in their anomaly detection approaches. The mean

absolute error between their anomaly scores is 0.17, with

2725 instances having a difference higher than 0.8. This

discrepancy suggests that either the RAE has missed some

anomalies or the Isolation Forest has a high false-positive

rate. Further examination revealed that RAE tends to capture

some anomalous attributes better than the Isolation Forest,

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 281 ----------------------------------------------------------------------------



especially in cases of missing request or HTTP host data

and HTTP status 408. However, Isolation Forest performs

better in capturing anomalies related to HTTP host attributes.

Both models demonstrate a negative Pearson correlation with

the request length attribute. A manual analysis of the top

100 anomalous rows for each model revealed no intersection

between the two subsets and varying focuses on numerical

and categorical attributes. Isolation Forest disregards most

categorical attributes and emphasizes numerical values, while

the RAE detects missing features more effectively but largely

disregards numerical attributes. Therefore, RAE should be

more suitable for zero-day attack detection.

ACKNOWLEDGMENT

This work was supported by the Slovak Research and

Development Agency under the Contract no. SK-SRB-21-

0059.

REFERENCES

[1] G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi,
and M. L. Proença, “A comprehensive survey on network anomaly
detection,” Telecommunication Systems, vol. 70, no. 3, pp. 447–489, Mar
2019. [Online]. Available: https://doi.org/10.1007/s11235-018-0475-8

[2] R. Bace and P. Mell, “Intrusion detection systems,” Nov 2001.
[3] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey

of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, p. 20, Jul 2019. [Online]. Available:
https://doi.org/10.1186/s42400-019-0038-7

[4] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network traffic
anomaly detection and prevention: Concepts, techniques, and Tools,
1st ed. Springer Cham, 2017.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, Jul 2009. [Online].
Available: https://doi.org/10.1145/1541880.1541882

[6] A. Vikram and Mohana, “Anomaly detection in network traffic using
unsupervised machine learning approach,” in 2020 5th International
Conference on Communication and Electronics Systems (ICCES), 2020,
pp. 476–479.

[7] “Nsl-kdd dataset.” [Online]. Available: https://www.unb.ca/cic/datasets/
nsl.html

[8] X. Chun-Hui, S. Chen, B. Cong-Xiao, and L. Xing, “Anomaly detection
in network management system based on isolation forest,” in 2018 4th
Annual International Conference on Network and Information Systems
for Computers (ICNISC), 2018, pp. 56–60.

[9] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised
clustering-based anomaly detection method,” Tsinghua Science and
Technology, vol. 26, no. 2, pp. 146–153, 2021.

[10] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” CoRR, vol. abs/1710.00811, 2017. [Online].
Available: http://arxiv.org/abs/1710.00811

[11] “Insider threat test dataset,” Nov 2016. [Online]. Available: https:
//resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099

[12] M.-C. Lee, J.-C. Lin, and E. G. Gan, “ReRe: A lightweight real-
time ready-to-go anomaly detection approach for time series,” in 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, Jul 2020.

[13] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, Nov. 2017.

[14] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Improving
performance of autoencoder-based network anomaly detection on nsl-
kdd dataset,” IEEE Access, vol. 9, pp. 140136–140146, 2021.

[15] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based
network anomaly detection,” in 2018 Wireless Telecommunications Sym-
posium (WTS), 2018, pp. 1–5.

[16] S. Maleki, S. Maleki, and N. R. Jennings, “Unsupervised anomaly
detection with lstm autoencoders using statistical data-filtering,”
Applied Soft Computing, vol. 108, p. 107443, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494621003665

[17] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008, pp. 413–422.

[18] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” 2020.
[Online]. Available: https://arxiv.org/abs/2003.05991

[19] U. Michelucci, “An introduction to autoencoders,” arXiv preprint
arXiv:2201.03898, 2022.

[20] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19, 2011.

[21] R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction
and overview,” CoRR, vol. abs/1912.05911, 2019. [Online]. Available:
http://arxiv.org/abs/1912.05911

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, Dec 2014.

ISSN 2305-7254________________________________________PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 282 ----------------------------------------------------------------------------


