
Comparison of Unigram, HMM, CRF and Brill’s
Part-of-Speech Taggers Available in NLTK Library

Miroslav Potočár, Michal Kvet
University of Žilina, Žilina, Slovakia

Miroslav.Potocar, Michal.Kvet@fri.uniza.sk

Abstract—Part-of-speech tagging is for many NLP researchers
the first task they encounter in the field of natural language
processing. This task is undoubtedly related to part-of-speech
taggers. We focus on a detailed description of the functioning of
the unigram, hidden Markov model, conditional random fields
and Brill taggers, followed by a comparison of these models. We
use implementations available in the natural language toolkit
library, without addressing the selection of the best parameters.
We focus on finding out which tagger produces the best results
using default settings or in other words, which one works best
in ”take it as it is” mode. To determine this, we make an
experiment in which we track various metrics such as prediction
time, accuracy on unknown words, number of correctly labeled
sentences and others. From the results of the experiment, we
find out that the CRF tagger achieves the highest accuracy
among all participants in the experiment. It is also able to tag
previously unseen words with the highest accuracy among all
taggers compared.

I. INTRODUCTION

Upon the arrival of chatbots such as ChatGPT [1], [2]

or LaMDA [3], an increased interest in the area of natural

language processing (NLP) can be expected. Many researchers

dive into the uncharted waters of this field and encounter new

concepts, models, and algorithms. However, sooner or later,

everyone faces the task of part-of-speech tagging, which is

the foundation for many other tasks within NLP. The need

may arise to create one’s own tagset or annotate one’s own

text. At that point, many will look for available libraries and

come across the open-source natural language toolkit (NLTK)

library, available for Python. However, time is limited, and we

cannot waste it by selecting models and tuning parameters.

From the part-of-speech taggers available in NLTK, we want

to find the one that achieves the best results with the least

effort.

Since part-of-speech tagging is a fundamental task in NLP,

we decided to look at some of the taggers available in

the NLTK library. We chose the unigram, hidden Markov

model (HMM), conditional random fields (CRF) and Brill

taggers. We collected information about each of these models

across available sources, and based on that, we composed a

comprehensive description of their operation. We then exposed

each model to an experiment, compared the results with each

other and we also provided possible reasons why some models

had values that differed from the others.

Part-of-speech tagging, which is a fundamental task in NLP,

is a well-explored area. There are many articles and books

that deal with this issue. Some are focused on specific types

of taggers [4]–[14], while others are focused on developing or

comparing taggers in other languages different from English

[15]–[22]. Despite of many existing publications on this topic,

we felt the need to gather information about the unigram,

HMM, CRF, and Brill taggers and compare the performance

of these models in annotating English texts. We chose these

primarily because they represent the basis for many advanced

taggers. Our personal observation suggests that they provide an

easier understanding of part-of-speech tagging task and thus,

serve as a good stepping stone into the world of NLP.

In our research, we focused solely on selected implementa-

tions of part-of-speech taggers available in the NLTK library.

We used these with default settings, meaning we did not try

to find the most suitable parameter values for model training.

We wanted to find out how the individual models perform in

”take it as it is” mode. The experiments in this study ran only

on the Penn Treebank corpus and using the Penn Treebank

tagset. For more objective results, it would be appropriate in

the future to compare performance on different corpora and

using multiple tagsets. When evaluating individual taggers, we

used only a limited set of metrics, which could be expanded

in future research.

In section II, we briefly describe the task of part-of-speech

tagging. In the next section III, we describe what a part-of-

speech tagger is and what properties are required of it. Section

IV deals with a detailed description of the way how each of

tagger involved in the comparison works. In section VI, we

describe the methodology used in conducting the experiment

focused on comparing taggers. Section VII contains the actual

results of the experiment. The next section VIII includes an

evaluation of the experimental results, along with considera-

tions on the reasons for the significantly different observed

values. In the last section IX, we state that, in terms of

accuracy and given the conditions of our experiment, the CRF

tagger appears to be the best choice. In addition, we mention

the limitations of our study and make recommendations for

further research.

II. PART-OF-SPEECH TAGGING

Part-of-speech tagging represents one of the most important

steps in NLP. Information about part-of-speech tags allows for

high-level analysis, such as recognition of noun phrases and

other patterns in text. Therefore, it forms the basis for other

NLP tasks, such as named entity recognition, semantic analysis

etc.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 226 --

Part-of-speech tagging (POS tagging) is the process of

assigning a part-of-speech (POS) tag to each word in a text.

The input is a sequence of words x1, x2, ..., xn together with

a set of tags (tagset). The output of the process is a sequence

of labels y1, y2, ..., yn, where each output yi corresponds to

exactly one input xi. Thus, the aim is to find the correct tag

for each given situation. [23]

This is a disambiguation task. Words are often ambiguous

in their parts-of-speech. The English word ”store” can be

understood as a noun, a finite verb or an infinitive. In speech,

this ambiguity is typically resolved by the context in which

the word occurs. [24]

Jurafsky and Martin [23] examined the Brown and WSJ

corpora and found that the majority of words (85-86%) are

unambiguous. This means that around 14-15% of the vocabu-

lary in these corpora consists of ambiguous words. However,

these words are very common: 55-67% of the tokens in a

text are ambiguous. Common words such as ”that”, ”back”,

”down” and ”put” are among the ambiguous words that occur

very frequently in texts [23].

Part-of-speech tagging for English is well-studied, and many

taggers that have been developed achieve accuracy exceeding

98% [15].

III. PART-OF-SPEECH TAGGER

Part-of-speech tagger is a system that uses context in order

to assign parts-of-speech to corresponding words. The tagger

assigns a (unique or ambiguous) part-of-speech tag to each

token input and returns this output for further processing [4].

According to [8], a tagger, in order to function as a practical

component in a language processing system, must meet the

following properties:

• Robustness - Corpora often contain words that the tagger

has not seen before. It is necessary for the tagger to be

able to handle such situations as best as possible.

• Efficiency - If the tagger is to be used for processing very

large corpora, it must be efficient. Performance should

be linear in time with respect to the number of words. If

training is required, it should also be fast, allowing for a

quick transition to a new corpus or text genre.

• Accuracy - The tagger should attempt to assign the

correct part-of-speech tag to every word it encounters.

• Tunability - The tagger should be able to benefit from

linguistic knowledge. It should be possible to correct

systematic errors by providing appropriate guidance. It

should also be possible to provide different hints for

different corpora.

According to [25], the architectures of taggers are quite

similar and consist of these parts:

• Tokenization - The input text is divided into tokens

suitable for further analysis.

• Searching for ambiguity - Includes the use of a lexicon

and a guesser, which is used on tokens that are not found

in the lexicon.

– The simplest case is when a lexicon is a list of

word forms and their possible parts-of-speech. More

efficient solutions are based on finite-state models.

– The guesser analyzes the remaining tokens, which

are the tokens that were not found in the lexicon

(e.g., unknown words that did not occur in the train-

ing corpus). The design of the guesser is often based

on what is known about the lexicon. For example,

we know that the lexicon contains all closed-class

words (pronouns, articles, etc.), so we can design the

guesser to only handle open-class analysis (nouns,

verbs).

– Using a compiler, lexicon and guesser, a lexical ana-

lyzer is formed, which provides meaningful analyses

and alternatives for each of the tokens.

• Distinguishing ambiguity and ambiguity resolution -

Disambiguation is performed based on two information

sources:

1) Information about the word itself - for example, that

the word ”tables” is more commonly used as a noun

than as a verb.

2) Contextual information about word/tag sequence.

For example, the model may prefer to perform noun

analysis before verb analysis if the previous word

was a preposition or article.

Researchers can choose from a wide range of available

part-of-speech taggers. The decision for a particular tool is

influenced primarily by tagging accuracy, but also by other

practical issues such as ease of use, applicability to the

target language or domain, availability for a certain hardware

platform or other factors that may affect the choice [21].

IV. CHARACTERISTICS OF COMPARISON STUDY

PARTICIPANTS

In this section, we present the models that will participate in

our experiment. For each of them, we provide a comprehensive

description of way they work.

A. Unigram tagger

The unigram tagger is a simple statistical tagging model. It

assigns each token the tag that is most likely for that token.

Before this tagger can be used to tag data, it must be trained

on a training corpus. This corpus is used to determine which

tags are most common for a given token. This tagger assigns

a default tag of ”None” to any token that it did not encounter

during training [20].

B. Hidden Markov model

Hidden Markov model is a modeling technique for linear

problems such as sequences or time series and is widely

used in applications for speech recognition. It is a generative

model, meaning that it focuses on how the entire sequence

was generated. It is based on the extension of a Markov chain

[9]–[11], [14], [23], [26].

Markov chain is a mathematical model used to describe

the probabilities of sequences, states, where each state can

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 227 --

take values from some set. These sets can be words, tags or

symbols representing anything. It is a type of Markov model

where the future state of the system depends only on the

current state and not on the entire sequence of preceding states.

The Markov model represents a broader concept that refers

to any probabilistic model which assumes that the future is

conditionally independent of the past given the present.

Markov chain makes a strong assumption, also called the

Markov assumption. This assumption states that the future

state of the system depends only on the current state and not on

the previous states. In other words, the future is conditionally

independent of the past given the present. This assumption

simplifies the modeling of complex systems by reducing the

number of variables that need to be taken into account when

predicting the future state. This allows for efficient calculation

of the transition probabilities and prediction of future outputs

based on previous states. The assumption is formulated as

follows [23]:

P (qi = a|q1...qi−1) = P (qi = a|qi−1) (1)

Where qi in equation 1 represents the state at time i and

q1...qi−1 represents the sequence of states preceding the state

qi.

Fig. 1. Markov chain for words. Adapted from [23].

The notation of individual components of the Markov model

varies across publications [23], [26]. In Fig. 1, we used the

notation from [23], where each component represents:

• Q = q1, q2, ..., qN - The set of states in which the system

can appear. It is a set of size N. In our case, this set

contains Q={uniformly, are, charming} and N=3.

• A = a11, a12, ..., aN1, ..., aNN - Transition probability

matrix A, where element aij represents the probability

of transitioning from state i to state j. Since this is a

probability, the following conditions must be met:

n∑
j=1

aij = 1 ∀i

aij ≥ 0 ∀ i, j

• π = π1, π2, ..., πN - Initial probability distribution across

states. State πi represents the probability that a Markov

chain will begin in state i. Some states i may have a

probability of πi = 0 which means that they cannot be

initial states. As this is a probability, conditions must be

satisfied in this case as well:

n∑
i=1

πi = 1

πi ≥ 0 ∀i
The Markov chain is useful when we want to calculate the

probability for a sequence of observable states. However, there

are many cases where the events of interest are hidden, mean-

ing that we cannot observe them directly [23]. An example

is the determination of part-of-speech tags in a sentence. We

can only directly observe the sequence of words, but the part-

of-speech tags of the words themselves remain hidden. Tags

are hidden because they cannot be easily determined from the

input. To infer them, we use the input observable sequence.

In a Markov chain, each state corresponds to a determinis-

tically observable event (i.e., the output symbol in a given

state is not random). The natural extension of a Markov

chain introduces a non-deterministic process that generates

observable output symbols in any state. This extended Markov

chain is known as a hidden Markov model. An HMM is

simply a Markov chain where the output observed symbol

is a random variable X generated according to the output

probability function associated with each state [26].

Fig. 2. Illustration of HMM for part-of-speech tagging.Adapted from [23].

As with Markov models, the notation for the individual

components of an HMM varies across publications [14], [23],

[26]. In Fig. 2, we use the notation used in [23], where the

individual components represent:

• Q = q1, q2, ..., qN - The set of states in which the system

can appear. It is a set of size N. In our case, N=3.

• A = a11, a12, ..., aN1, ...aNN - Transition probability

matrix A, where the element aij represents the probability

of transitioning from state i to state j. In our case, it

represents the transition between part-of-speech tag i and

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 228 --

a tag j. As it is a probability, the following conditions

must be satisfied:

n∑
j=1

aij = 1 ∀i

aij ≥ 0 ∀ i, j

• O = o1, o2, ..., oT - A sequence of observations with

length T. Each observation comes from a vocabulary

V = v1, v2, ..., vV . In our case, an observation represents

a single word.

• B = bi(ot) - Sequence of observation probabilities. It

is also called the emission probability, and each one

expresses how likely the observation ot was generated

from state qi. In our case, it will be the probability of

observing a word given that the word has a specific part-

of-speech tag. Since this is a probability, the following

condition must be met:

T∑
t=1

bi(ot) = 1

bi(ot) ≥ 0 ∀i, t
• π = π1, π2, ..., πN - Initial probability distribution across

states. State πi represents the probability that the Markov

chain starts in state i. Some states i can have probability

πi = 0 which in other words means they cannot be the

initial state. As it is a probability, the following conditions

must be satisfied:

N∑
i=1

πi = 1

πi ≥ 0 ∀i
The complete specification of an HMM includes two con-

stant parameters N and T, which represent the total number of

states and the size of the observed vocabulary, the observed

vocabulary O and three probability matrices A,B, π. The

following notation is typically used to indicate the entire set

of parameters [26]:

Φ = (A,B, π)

Sometimes, the symbol Φ is also used to represent the

hidden Markov model itself.

In HMM, we also encounter the term ”order of HMM.”

Order refers to the number of previous states taken into

account when determining the probability of the current state.

First-order and second-order HMM are commonly used. In a

first-order HMM, only the current state is considered when

determining the next state. In a second-order HMM, both the

current and previous states are taken into account. In theory,

HMMs of higher orders than two exist, but these models are

rarely used in practice due to their computational and data

complexity.

For the part-of-speech tagging task, a first-order HMM is

used. This simple and computationally efficient assumption

that the next state depends only on the current state is often

sufficient to capture the dependencies relevant to part-of-

speech tagging.

In a first-order HMM, two assumptions are made [23], [26]:

1) Markov assumption for a Markov chain described in

equation 1.

2) Output independence assumption:

P (oi|q1..., qi, ..., qT , o1, ..., oi, ..., oT) = P (oi|qi)
which states that the probability of the output observa-

tion oi depends only on the state qi that produced the

observation and not the previous states or observations.

In general, when using HMM, we want to solve one of the

following problems [9], [14], [26]:

1) The Evaluation Problem - Given a model Φ and a

sequence of observations O = (o1, o2, ..., ot), we aim to

find out with what probability P (O,Φ) the given model

generated this sequence of observations.

2) The Decoding Problem - Given a model Φ and a

sequence of observations O = (o1, o2, ..., ot), we want

to determine the most probable sequence of states

Q = (q0, q1, q2, ..., qt) in the model that produced this

sequence.

3) The Learning Problem - Given a model Φ and a set

of observations, we try to adjust the parameters Φ̂ to

maximize the joint probability
∏

O P (O|Φ).
For part-of-speech tagging, we are solving the decoding

problem. We are trying to find the most probable sequence

of tags t1, ..., tn (states sequence) given the sequence of

observations of n words w1, ..., wn (observation sequence)

[23]:

t̂1:n = argmax
t1...tn

P (t1...tn|w1...wn)

≈ argmax
t1...tn

n∏
i=1

emission︷ ︸︸ ︷
P (wi|ti)

transition︷ ︸︸ ︷
P (ti|ti−1)

The Viterbi algorithm is used for efficient decoding.

C. Conditional Random Fields

HMM represents a powerful and useful model, but it has

been shown that achieving high accuracies requires a lot of

augmentation. In the task of PoS tagging, we often encounter

unknown words, such as proper nouns, abbreviations and even

verbs that enter the language at a surprising pace. It would

be nice to have a way to add arbitrary features that could

address this problem with unknown words [23]. Such a feature

could be the initial letter case of a word, as proper nouns are

generally capitalized or information about affixes, as the suffix

-ed is usually present in past tense verbs. Information about

the preceding or succeeding word can also be a useful feature

(e.g., if the preceding word was an article, the succeeding

part-of-speech tag will not be a verb).

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 229 --

We can attempt to make changes to HMM and find a way

to include some of these features. However generally, it is

challenging for generative models such as HMM to directly

add such features to the model in a clear way. Log-linear

models, on the other hand, can combine such features in

a principled way. An example of such a model is logistic
regression, but it is not able to process a sequential data.

However, there is a discriminative sequential model based on

log-linear models, conditional random fields [23].

CRF is a framework for creating probabilistic models for

sequence labeling and segmentation [12], [27]. Simply put, it

is a conditional distribution p(y|x) associated with a graphical

structure [28]. It takes the form of an undirected graphical

model that defines a single log-linear distribution over se-

quence of labels given a particular observed sequence. The

main advantage of CRF over HMM is their conditional nature,

which allows relaxing the strong independence assumption that

HMM requires to ensure inferable conclusions.

CRFs are a special case of Markov random fields [7], which

are an undirected graphical model that satisfies the Markov

property. In the case of CRF, we can view it as an undirected

graph, globally conditioned on X, which is a random variable

representing observed sequences. In the case of part-of-speech

tagging, X ranges over natural language sentences [12]. We

define an undirected graph G = (V,E), where each vertex

v ∈ V corresponds to each random variable, representing an

element Yv of Y [27]. It is assumed that all components Yv

of Y range over a finite set of labels Y [12]. Y in the case of

part-of-speech tagging ranges over part-of-speech taggings of

sentences, and Y is the set of all possible part-of-speech tags

[12]. If each random variable Yv obeys the Markov property

with respect to G, then (Y, X) is a CRF [27]. The structure

of the graph G can be theoretically arbitrary, but it must

provide a representation of the conditional independencies

in the modeled tagging sequences. The absence of an edge

between two vertices in G implies that the random variables

represented by these edges are conditionally independent with

respect to all other random variables in the model [27].

The graphical structure of a CRF allows the joint distribu-

tion to be factorized over the elements Yv of Y into a normal-

ized product of feature functions. A feature function operates

on a subset of random variables represented by vertices in G
[27]. Feature functions must ensure that the joint probability

can be factorized such that the conditional independent random

variables do not appear in the same feature function. The way

to achieve this requirement is to require each feature function

to operate on a set of random variables whose corresponding

vertices form a maximum clique in the graph G [27].

Individual feature functions have no probabilistic interpre-

tation. They represent constraints placed on sets of random

variables on which the function is defined [27]. However,

this affects the probability of the global set, where a higher

probability belongs to the set where more of these constraints

are satisfied.

When modeling sequences, the simplest graph encountered

is usually a linear chain, where G is a simple chain in which

the vertices corresponding to elements of Y form a linear chain

[12], [27]: G = (V = {1, 2, ..., n}, E = {(i, i + 1)}). This

graph is shown in Fig. 3. The limitations of this structure,

known as a linear chain CRF, allow for versions of the

efficient Viterbi algorithm and Forward-Backward algo-

rithm from HMM to be used. In contrast, general CRFs allow

for connections to exist between any two vertices, which is

necessary for tasks where the decision depends on distant

vertices, such as Yi−4.

Fig. 3. Structure of first-order chain CRFs. Adapted from [27].

In the case of CRF with chain structures, the entire observed

sequence x, the position i within the sequence, and the labels at

positions i and i-1 are input into the feature function. In some

publications [12], [27], these feature functions are divided into:

• Transition feature functions, which take the entire

observed sequence and the labels at positions i and i-1 in

the label sequence as input. This function has the form

tk(yi−1, yi,x). An example in the field of part-of-speech

tagging could be:

tk(yi−1, yi,x) =

{
1 if yi−1 = DET and yi = NOUN

0 otherwise

• State feature function, which takes the position i and the

entire observation sequence x as input. It has the form

sk(yi,x, i). An example in the field of part-of-speech

tagging could be:

sk(yi,x, i) =

⎧⎨
⎩
1 if yi =DET and the observation on

position i is word xi =”the”

0 otherwise

For simplicity, it is not necessary to distinguish between

these two types of feature functions, and therefore they can

be written uniformly as fk(yi−1, yi,x, i).
Using the feature functions, it is possible to calculate the

probability of the label sequence y given the observation

sequence x:

p(y|x) =
exp

(∑K
k=1 wkFk(x,y)

)
∑

y‘∈Y exp
(∑K

k=1 wkFk(x,y‘)
) (2)

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 230 --

Where these K functions Fk(x,y) are called global fea-
tures, because each represents a property of the entire input

sequence x and output sequence y. We obtain them by sum-

ming the local features for each position i in the sequence

y.

Fk(x,y) =
n∑

i=1

fk(yi−1, yi,x, i)

Each of these global features is associated with a weight

wk, which is learned during training phase.

The denominator in equation 2 goes through all possible

output sequences y. It is called the normalization factor and

ensures that the result is in the range 0 to 1. This denominator

is usually pulled out into a function [12], [23], [27], [28]:

Z(x) =
∑
y‘∈Y

exp

(
K∑

k=1

wkFk(x,y‘)

)

D. Brill’s tagger

Stochastic taggers such as HMM, CRF have many ad-

vantages, but perhaps the most obvious one is that they

do not require demanding manual construction of rules to

capture useful information. However, they also have their dis-

advantages, including memory requirements, since linguistic

information is captured indirectly in large tables of statistics.

Another problem is the demanding search and implementation

of improvements to these models. Another cons is poorer

portability from one tagset or genre corpus to another. Many of

these downsides can be eliminated by Brill’s tagger [5], which

combines rule-based and transformation-based approach. This

tagger surpasses common rule-based NLP approaches because

it is robust and the rules are automatically acquired.

As mentioned, this is a combination of rule-based and

transformation-based taggers. Rule-based because an initial-

state annotator is part of this tagger, which assigns a part-of-

speech tag to each word based on certain rules. The tagger then

applies a series of transformations to the initially annotated

text, which, based on the context of words in the sentence,

attempt to correct the initial tag assignments, leading to

increased accuracy of the tagger. This is why it is also a

transformation-based tagger.

To train and evaluate the tagger, we need three corpora [15]:

[15]:

• A large high-quality tagged training corpus, used for

training,

• a smaller tagged corpus called a patch corpus, used for

creating patches,

• a test corpus, used to evaluate the tagger.

During training, a list of patches is created based on a patch

corpus, which is subsequently applied to the output of the

initial-state annotator. In the original version of the tagger [5],

transformations were added that were created based on 8 pre-

specified patch patterns, which had the following form:

• if a word has tag a and is in context C, then change the

tag to b, or

• if a word has tag a and has lexical property P, then change

the tag to b, or

• if a word has tag a and a word in region R has lexical

property P, then change the tag to b.

In a later version of the tagger [6], the original transforma-

tions were extended to include:

• contextual transformations, which could refer to both

words and part-of-speech tags,

• unknown-word transformations, which contained patch

templates used for words not seen in the training corpus.

The process of training the tagger takes place in several

steps:

1) In the first step, the initial-state annotator is trained.

In the original version of the tagger [5], the initial-

state annotator determined the most probable tag for

each word and used this information to initially assign

states to the input text. Additionally, the tagger contained

two procedures to improve performance, both of which

did not use any contextual information. One procedure

provided information that if a word not seen in the

training corpus had a capital letter, it is likely a proper

noun, and attempted to correct errors based on this. The

second procedure try to assign tags to words not in the

training corpus by assigning them the most common tag

for words that end with the same three letters. In later

versions of the tagger, a different initial-state annota-

tor could be used. The complexity of the initial-state

annotator ranged from random output assignment to a

sophisticated manually crafted rules for tag assignment

[6].

2) In the next step, the patch corpus is annotated based on

the trained model of the initial-state annotator. Transfor-

mations from a pre-specified list of templates are applied

to the initially annotated data in sequence. The annotated

text of the patch corpus is compared to the true labels,

generating a list of tagging errors. The list consists of

triples < taga, tagb, number > that indicate how many

times the tagger incorrectly labeled the word with taga
when it should have been labeled as tagb based on the

true labels.

3) Subsequently, for each error triple, the patch template

is determined that led to the highest score after its

application. In the original version of the tagger [5],

this score was represented by error reduction, which

was calculated as the difference between the number of

corrected words after patch application (the incorrect tag

of the word was changed from taga to the correct tag

tagb) and the number of new errors that appeared after

patch application (the correct tag of the word taga was

changed to the incorrect tag tagb). This was limiting,

so in later versions, the user could choose a scoring

function for comparison and transformation selection

4) The transformation with the highest score from all

combinations of taga, tagb, number triples and trans-

formations is selected. If its application results in an

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 231 --

error reduction above a predetermined threshold, the

transformation is added to the ordered list, and the

training process on the patch corpus is repeated.

The entire training process is depicted in a flow-chart

diagram in Fig. 4.

Fig. 4. Flow-chart diagram of the Brill tagger training process. Adapted from
[6].

Once training is complete and a ordered list of transforma-

tions is generated, new texts can be annotated. The text is first

labeled using the initial-state annotator and then all learned

transformations are applied sequentially one by one.

V. NATURAL LANGUAGE TOOLKIT LIBRARY

NLTK is a popular open-source Python library for natural

language processing that provides a comprehensive set of tools

and resources for building NLP applications. It offers a wide

range of functions and modules for working with text data, in-

cluding tokenization, part-of-speech tagging, chunking, named

entity recognition and more. It also provides an interface for

working with popular corpora such as the Brown Corpus

and Penn Treebank, and allows access to various pre-trained

datasets and models.

VI. METHODOLOGY

In this section, we will describe the methodology of our ex-

periment. We will introduce the data on which the experiment

was run, the manner in which the experiment was performed,

and the metrics that we monitored for each tagger.

A. Data

In the experiment, we used a subset of the Penn Treebank

corpus, which is a widely used benchmark dataset for part-of-

speech tagging. It contains approximately 4.5 million words

of American English, including texts from various genres such

as news articles, books and conversation transcripts [29]. The

texts in this corpus were manually annotated with detailed

linguistic information, including part-of-speech tags, syntactic

structures and named entities.

We used a portion of this corpus that is directly available

through the NLTK library. The subset contains 5% of the Penn

Treebank corpus, corresponding to 3914 tagged sentences.

The tags used come from the Penn Treebank tagset, which is

a widely used tagset for part-of-speech tagging. It consists of

36 tags that are used to label each word in a sentence with its

part-of-speech tag, providing information on the grammatical

function of the word in the sentence.

B. Model training

The implementation of taggers available in the NLTK library

was used. For the unigram, HMM, and CRF models, pre-

defined settings and parameters were used for their creation

and training.

In the case of the Brill’s tagger, an initial-state annotator

was required, as well as a list of templates used to create

transformations. The selection of the set of templates depends

on the specifics of the task and the characteristics of the data

used. There is no universal set of templates that would be

optimal for every case.

In our case, the UnigramTagger was chosen as the initial

tagger, and the set of templates used was ”fntbl37”. It contains

a wide range of rule types, such as unigrams, bigrams, trigrams

as well as contextual rules that take into account surrounding

words in the sentence. There are several reasons why ”fntbl37”

may be a good choice for part-of-speech tagging. These

include efficiency, generality, and the fact that ”fntbl37” is

part of the NLTK library, making it very easy to use.

C. Experimental setup

In order to obtain accurate results, the experiment was run

1000 times. In each run, the tagged sentences from the Penn

Treebank corpus were divided into training and testing sets.

The training set represented 80% and the testing set 20% of

the original set. For each such division, we store the number

of sentences in the training set, the number of tokens in the

training set, the number of sentences in the testing set, the

number of tokens in the testing set and the number of unknown

words. The average values across the 1000 runs are shown in

Table I.

TABLE I. AVERAGE VALUES OF DATA SET DESCRIPTIVE
CHARACTERISTICS

No. of
train

sentences

No. of
train

tokens

No. of
test

sentences

No. of
test

tokens

No. of
unknown

tokens
3131 80550.449 783 20125.551 1501.13

Subsequently, each of the models was trained on the training

set and tested on the previously unseen testing set.

D. Evaluation

The testing set was used to evaluate the models. Tagging

was performed sequentially. For each model, sentences from

the testing set were iterated through in a cycle, and the cor-

responding tagger tagged the sentence. The labeled sequence

was then added to the list of predicted sentences. After tagging

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 232 --

all samples in the testing set, the resulting list of sentences

tagged by the taggers was used to evaluate the performance

of the model.

The performance of each model was evaluated based on

several metrics. We observed:

• Average training time - The average time it took to train

the model.

• Average prediction time - The average time it took for

the model to label all tokens in the test set.

• Average number of correct tokens - The average

number of tokens that the model correctly labeled.

• Average number of correct unknown tokens - The av-

erage number of unknown tokens that the model correctly

labeled.

• Accuracy - The proportion of correctly predicted tokens

to all tokens.

• Unknown tokens accuracy - The proportion of correctly

predicted unknown tokens to all unknown tokens.

• Correctly tagged sequences - The number of sentences

that were correctly tagged.

• Correctly tagged sequences accuracy - The proportion

of sentences that were correctly tagged to the total

number of sentences.

By correctly tagged sequences, we mean the case when the

tagger was able to correctly assign a part-of-speech tag to

each token in the sentence, thus correctly identifying the entire

sequence of tags. We consider it appropriate to include this

metric since many taggers achieve more than 97% accuracy in

tagging tokens, but the accuracy of labeling entire sequences

is around 56% [30]. High accuracy in determining tags for

individual tokens is also due to the fact that punctuation marks

are included, which artificially increases accuracy.

VII. RESULTS

The results of the experiments revealed that unigram, HMM,

CRF and Brill’s taggers performed differently in the part-

of-speech tagging task. The performance of each tagger was

evaluated based on several metrics, including accuracy, ac-

curacy on unknown tokens, the average number of correctly

tagged sequences and others. All metrics along with their

descriptions can be found in subsection VI-D. Overall, CRF

tagger performed the best in terms of accuracy. It had the best

results in assigning tags and was also able to correctly tag a

significant portion of tokens that did not appear in the training

set.

VIII. DISCUSSION

Regarding prediction speed, the unigram tagger has the

fastest average prediction time. However, the accuracy of this

tagger is the lowest among the other tested taggers. This

suggests that when selecting a part-of-speech tagger, there may

be a trade-off between accuracy and tagging speed. Another

interesting observation about this tagger is its inability to

predict tokens that did not appear in the training set. This is

understandable given the functioning principle of this tagger,

which assigns a tag to words based on the tag they most

TABLE II. AVERAGE VALUES OF METRICS FOR EACH
TAGGER

Taggers
Metric Unigram HMM CRF Brill
Training time
[s]

0.136352 0.124735 33.542999 7.408718

Predicting time
[s]

0.013648 4.154508 0.136719 0.195736

Correct tokens 17685.687 18350.972 19089.906 18078.205
Correct
unknown
tokens

0 559.167 1231.530 0

Correct
sequences

72.201 146.737 254.298 112.552

Accuracy [%] 87.8773 91.1824 94.8538 89.8277
Unknown
tokens
accuracy
[%]

0 37.2440 82.0370 0

Correct
sequence
accuracy[%]

9.2211 18.7404 32.4774 14.3745

frequently occur with in the training set. Unknown words are

assigned the tag None. This limitation could be improved to

some extent by assigning a tag to unknown words based on

the most frequently occurring tag across the training set. Of

course, more sophisticated methods could also be used to solve

the problem of assigning tags to previously unseen words.

An interesting value is found in the column for the HMM

tagger. Specifically, the average prediction time is several times

higher than that of the other taggers. One reason for this result

may be that although HMM typically has a simpler model

structure compared to CRF, it may require more computations

during the inference phase to calculate probabilities for each

possible sequence of tags. HMM uses the Viterbi algorithm to

compute the most probable sequence of tags for a given input,

which requires computing a table of probabilities for each

possible tag at each position in the input sequence. This can be

computationally demanding for long input sequences or large

tagsets. In our case, we used the Penn Treebank tagset, which

contained 36 tags, and the test sentence consisted of an average

of approximately 25.7 tokens. Whether this is the reason for

the high prediction time is left to the reader’s consideration.

Another reason may be the specific implementation of HMM

in the NLTK library. It is possible that the implementation of

HMM is suboptimal in terms of efficiency.

The experiment results suggest that the CRF tagger with

default parameters available in the NLTK library outperformed

other part-of-speech taggers, also available in the NLTK

library and with default parameters, in terms of accuracy. It

achieved a high overall accuracy (94.85%), but also signif-

icantly better accuracy in tagging unknown tokens (82.04%)

compared to the other taggers in the experiment. As a result, it

was able to correctly tag an average of 32.48% of sentences. Its

disadvantage is a considerably longer training time. However,

the longer training time compared to other taggers is under-

standable, as CRF is a more complex and computationally

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 233 --

demanding tagger than Unigram, HMM or Brill’s taggers.

CRF is a discriminative model that takes into account all

combinations of feature values and output labels when making

predictions, which makes it more computationally demanding.

The remaining taggers are generative models that consider

only the probabilities of input features. Although the training

time takes more than in the case of other taggers, the accuracy

achieved by this tagger is better than that of other taggers.

In the case of the Brill’s tagger, we achieved only slightly

better accuracy than with unigram tagger. Such results are

understandable, since Brill’s tagger used unigram tagger as an

initial annotator, which it then tried to improve by applying

transformations learned during the training phase. The results

table also showed that Brill’s tagger using the ”fntbl37”

template set is not able to tag unknown words. This fact

could have led to a poor overall accuracy of the tagger. The

reason why the tagger was not be able to tag unknown words

may be related to the used template set, which is designed

to capture common patterns in the data and does not have

rules for dealing with unknown words. In our experiment,

the tagger assigns a value of None to unknown words, just

like the unigram tagger. This may also be related to the fact

that we used unigram tagger without extensions to deal with

unknown words as an initial annotator. This limitation could be

addressed by choosing a more sophisticated model as an initial

annotator that can to some extent deal with unseen words.

Adding additional transformation rules that apply to unknown

words could also help.

IX. CONCLUSION

In our study, we focused on providing a comprehensive

introduction to several part-of-speech taggers and their subse-

quent comparison. We looked in detail at how unigram, HMM,

CRF and Brill taggers work. We wanted to find out how well

the implementation of these taggers available in the NLTK li-

brary perform. When comparing, we used taggers with default

settings. We performed 1000 runs of the experiment, in which

for each tagger we observed metrics such as overall accuracy,

accuracy on unknown tokens, training time, prediction time,

accuracy of correctly predicted sequences and others.

In terms of accuracy, the CRF tagger appears to be the best

choice, with an overall accuracy of approximately 94.85%.

It was also able to handle unseen words, achieving an accu-

racy of approximately 82.04%, which was more than twice

that of the second-best performing HMM tagger. Regarding

prediction speed, the unigram tagger clearly leads, being

multiple times faster than the other taggers in the comparison.

An interesting finding we find out was the relatively high

prediction time of the HMM tagger compared to the other

taggers. The results also show that the unigram and Brill

taggers were unable to handle unknown words with default

settings. In the case of the Brill tagger, part of the blame may

lie with the incorrectly selected template set ”fntbl37”, which

may not have contained the patterns necessary for tagging

unknown words.

The study had several limitations. We only tested a portion

of the taggers available in the NLTK library. We used only

default settings and parameter values directly available in the

NLTK library for each tagger. This could have caused, for

example, the Brill tagger to be unable to handle unknown

words. Another limitation was the used corpus. In the study,

we only used a portion of the Penn Treebank corpus available

through the NLTK library. We also used only a single tagset,

specifically the Penn Treebank tagset.

In future studies, it would be appropriate to also look at

taggers available within the NLTK library. For taggers partic-

ipating in the comparison, we could use different settings and

parameter values estimated by a more sophisticated method.

The performance of individual taggers should also be tested on

different corpora and tagsets to obtain more objective results.

If you do not want to deal with tuning and finding the

optimal parameters of a part-of-speech tagger, we recommend

using the implementation of the CRF part-of-speech tagger

available in the NLTK library. This model provides relatively

fast and accurate results considering the amount of work and

time required for its creation.

ACKNOWLEDGMENT

This publication was realized with support of Operational

Program Integrated Infrastructure 2014 - 2020 of the project:

Intelligent operating and processing systems for UAVs, code

ITMS 313011V422, co-financed by the European Regional

Development Fund.

It was partially supported by the Erasmus+ project: Project

number: 022-1-SK01-KA220-HED-000089149, Project title:

Including EVERyone in GREEN Data Analysis (EVER-

GREEN).

REFERENCES

[1] H. H. Thorp, “Chatgpt is fun, but not an author,” pp. 313–313, 2023.
[2] E. A. van Dis, J. Bollen, W. Zuidema, R. van Rooij, and C. L. Bockting,

“Chatgpt: five priorities for research,” Nature, vol. 614, no. 7947, pp.
224–226, 2023.

[3] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[4] T. Brants, “Tnt - A statistical part-of-speech tagger,” CoRR, vol.
cs.CL/0003055, 2000. [Online]. Available: https://arxiv.org/abs/cs/
0003055

[5] E. Brill, “A simple rule-based part of speech tagger,” Pennsylvania Univ
Philadelphia Dept of Computer and Information Science, Tech. Rep.,
1992.

[6] ——, “Some advances in transformation-based part of speech tagging,”
arXiv preprint cmp-lg/9406010, 1994.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 234 --

[7] P. Clifford, “Markov random fields in statistics,” Disorder in physical
systems: A volume in honour of John M. Hammersley, pp. 19–32, 1990.

[8] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-
of-speech tagger,” in Third conference on applied natural language
processing, 1992, pp. 133–140.

[9] S. R. Eddy, “Hidden markov models,” Current opinion in structural
biology, vol. 6, no. 3, pp. 361–365, 1996.

[10] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov
model: Analysis and applications,” Machine learning, vol. 32, pp. 41–
62, 1998.

[11] J. Kupiec, “Robust part-of-speech tagging using a hidden markov
model,” Computer speech & language, vol. 6, no. 3, pp. 225–242, 1992.

[12] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[13] B. Pham, “Parts of speech tagging: Rule-based,” 2020.
[14] L. Rabiner and B. Juang, “An introduction to hidden markov models,”

IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986.
[15] S. Acedański, “A morphosyntactic brill tagger for inflectional lan-

guages,” in Advances in Natural Language Processing, H. Loftsson,
E. Rögnvaldsson, and S. Helgadóttir, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 3–14.

[16] A. Allauzen and H. Bonneau-Maynard, “Training and evaluation of pos
taggers on the french multitag corpus.” in LREC, 2008.

[17] S. Besharati, H. Veisi, A. Darzi, and S. H. H. Saravani, “A hybrid
statistical and deep learning based technique for persian part of speech
tagging,” Iran Journal of Computer Science, vol. 4, pp. 35–43, 2021.

[18] W. Demilie, “Analysis of implemented part of speech tagger approaches:
the case of ethiopian languages,” Indian J Sci Technol, vol. 13, no. 48,
pp. 4661–71, 2020.

[19] E. Giesbrecht and S. Evert, “Is part-of-speech tagging a solved task? an
evaluation of pos taggers for the german web as corpus,” in Proceedings
of the fifth Web as Corpus workshop. Citeseer, 2009, pp. 27–35.

[20] F. M. Hasan, N. UzZaman, and M. Khan, “Comparison of different
pos tagging techniques (n-gram, hmm and brill’s tagger) for bangla,” in
Advances and innovations in systems, computing sciences and software
engineering. Springer, 2007, pp. 121–126.

[21] T. Horsmann, N. Erbs, and T. Zesch, “Fast or accurate?-a comparative
evaluation of pos tagging models.” in GSCL, 2015, pp. 22–30.

[22] S. Sayami and S. Shakya, “Nepali pos tagging using deep learning
approaches,” NU. International Journal of Science, vol. 17, no. 2, pp.
69–84, 2020.

[23] D. Jurafsky and J. H. Martin, “Speech and language processing: An
introduction to natural language processing, computational linguistics,
and speech recognition (3rd draft ed.), 2023,” 2022.

[24] H. Schmid, “Part-of-speech tagging with neural networks,” CoRR,
vol. abs/cmp-lg/9410018, 1994. [Online]. Available: http://arxiv.org/
abs/cmp-lg/9410018

[25] A. Voutilainen, “Part-of-speech tagging,” The Oxford handbook of com-
putational linguistics, pp. 219–232, 2003.

[26] X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken language
processing: A guide to theory, algorithm, and system development.
Prentice hall PTR, 2001.

[27] H. M. Wallach, “Conditional random fields: An introduction,” Technical
Reports (CIS), p. 22, 2004.

[28] C. Sutton, A. McCallum et al., “An introduction to conditional random
fields,” Foundations and Trends® in Machine Learning, vol. 4, no. 4,
pp. 267–373, 2012.

[29] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” 1993.

[30] C. D. Manning, “Part-of-speech tagging from 97% to 100%: is it
time for some linguistics?” in Computational Linguistics and Intelligent
Text Processing: 12th International Conference, CICLing 2011, Tokyo,
Japan, February 20-26, 2011. Proceedings, Part I 12. Springer, 2011,
pp. 171–189.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 235 --

