ISSN 2305-7254

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

Platform Attestation in Consumer Devices

Arto Niemi, Vijay Nayani, Mariam Moustafa, Jan-Erik Ekberg
Huawei Technologies Oy (Finland) Co Ltd.
Helsinki, Finland
firstname.surname @huawei.com

Abstract—Platform attestation allows consumer devices to
report their security state to relying parties such as cloud services
and network gateways. In contrast to more restricted forms of
remote attestation, such as key attestation, platform attestation
provides more information to the verifier, but is complex to
deploy, which has hindered its adoption in the industry. Recently,
new approaches such as device health attestation (DHA) have
been introduced that simplify the remote attestation process
especially from the relying party’s perspective. A common de-
nominator in these developments is the use of an external, usually
cloud-based verification service that is physically separate from
the relying party. The service transforms attestation evidence into
a health report — a standard and simplified format that is easier
for relying parties to process. In this paper, we survey the state of
art in platform attestation in the industry, focusing on Windows
DHA, Samsung Knox DHA, Android Play Integrity, Huawei
SysIntegrity, and Apple’s App integrity and Device Check.

I. INTRODUCTION

Remote attestation — the presentation of cryptographically
verifiable evidence regarding the identity and state of software
or firmware — is now widely supported in the commercial off-
the-shelf devices. The most popular form of remote attestation,
especially on smartphones, is key attestation [1], [2]. It is
used by remote services to verify an application’s access to a
hardware-protected key that is not extractable from the device
and whose usage may require successful user authentication.
Key attestation is increasingly complemented with application
attestation [3] to also verify that an application binary is gen-
uine and not hacked or compromised by malware. In contrast,
platform attestation [4], [5] has a wider scope, covering the
integrity of the hardware and software on top of which apps
run — for example, that a known-good operating system version
is running and root privileges are available only to trusted
system components. The main use case of platform attestation
is enterprise mobile device management [6], [7], where it is
exploited to establish trust in PCs and mobile devices [8]
before the devices are allowed to access protected resources,
or to connect to internal networks. In smartphones, platform
attestation is increasingly combined with app attestation as an
anti-abuse mechanism to detect misuse of services, such as
cheating in online games.

In all attestation methods, evidence is collected and signed
by a device-local attester, which is more trustworthy than
the attestee [9]. In particular, the attestee must not be able
to influence evidence collection. This is commonly achieved
by protecting the attester using hardware-based isolation. The
protection may be vertical such as privilege rings, or horizontal
such as a secure processor mode or a trusted execution
environment (TEE). Another approach is to allow the attester
to finish evidence collection before other, untrusted software is

198

loaded in a boot chain. Trust in the attester and its protections
may be achieved by recursive attestation such as measured boot
[10] or layered attestation [11], [12]. Once attestation evidence
has been generated, it is transmitted to a remote device, where
it is appraised by a verifier. The verifier’s verdict, or attestation
result, is then used by a relying party to make a trust decision
[13].

Implementing platform attestation is challenging. A verifier
needs to know which device identities and software binaries
are trustworthy, and which security features must be enabled
on the device to make it secure for a particular use case.
Often, this requires an enormous database of trusted reference
hashes to be maintained, which makes evidence appraisal
complex. The current trend is towards external cloud-based
verification services. These hide most of the complexity, or
at least delegate it to appraisal policies and their processing
engine. The verifier produces a digestible message called
attestation result that the relying party can use for its decision-
making without complex verification machinery. We believe
the external verifier paradigm may well be the step that clears
the hurdles that have so far prevented platform attestation from
being used widely in consumer devices.

In this paper, we attempt to survey the state of the art
of platform attestation in the industry. We look for answers
to questions such as: How is evidence collection protected
from malicious influence? What is the coverage of evidence?
How is evidence bound to the attestation context, such as
time or the communication channel, — to prevent replay
and relay attacks? Who owns and controls the verifier? Or,
what are the contents of attestation results — what kind of
inferences can the relying party make based on the results? We
focus on existing implementations of attestation, deployed in
commercial consumer devices — in contrast to prior surveys
that cover academic proposals and non-commercial projects.
For example, attestation for embedded systems [14], [15] and
for TEE and confidential computing [11], [16] have been
considered previously.

The rest of the paper is structured as follows. First, we
motivate our survey with a short history of platform security
in consumer devices and the trends behind the increasing
use of platform attestation. Then, we describe the hardware-
backed elements that constitute the foundation of platform
attestation. We present the terminology framework and a set
of questions that shall guide our survey. Then, we analyze,
in turn, Windows Device Health Attestation, Knox Attestation,
Android Play Integrity, EMUI SysIntegrity and Apple Device
Check and describe how these answer our survey questions.
Finally, we present conclusions and topics for further study.

ISSN 2305-7254

Device Service

Client app P [Protected resource]
2.
Platform -t
&
P b ol
Trustworthy ‘ 7.
mechanism | |«&
° Result appraisal
6. Verifier y

Verifier owner
[]

[ﬂ|0.

Evidence authentication o
Evidence appraisal .

>

Fig. 1. Platform attestation using the background check model. During a setup
phase (step 0), the verifier owner provisions reference values (endorsements)
into the verifier’s database. Later, (1) a client app requests a protected resource
from an online service, which (2) returns an attestation challenge. (3) A trust-
worthy, hardware-backed mechanism measures the platform and, optionally,
application state and generates attestation evidence. (4) The application sends
the evidence to the service, who (5) forwards it a verifier. (6) The verifier
authenticates the evidence by validating its signature using a pre-provisioned
public key or root certificate, appraises the attestation claims and returns an
attestation result (health report, or verdict). (7) Based on the result, the service
decides whether to grant access or return an error.

Device Service
1.
Client app P [Protected resource]
Platform - z
Trullsti}orth > P Resutaprasal
mechanisn): *"(<"

4g Verifier T >

Evidence authentication o
Evidence appraisal

= N Trll

Verifier owner

Fig. 2. In the passport model, the device sends (4) the evidence directly to
the verifier and receives (5) a result (“the passport”), which it presents (6) to
the service when requested. The passport may be generated fresh, based on a
challenge from the service (1), or in advance and then cached.

II. BACKGROUND

End-user devices such as smartphones, desktops and lap-
tops have three characteristics that make them particularly
vulnerable to attacks. First, most of these devices allow
installation of user-chosen software or access to untrusted
webpages, both of which may contain malicious code. Second,
these devices provide ample opportunity for attacks requiring
physical proximity. Smartphones and laptops, for example, are
easily lost, stolen or confiscated, allowing both data extraction
and so-called evil maid attacks [17]. In some use cases, such
as digital rights management and mobile network subscriber
identity, secrets in the device may even need to be protected
against the user itself. Finally, supply-chain attacks are a
significant risk for devices such as PCs that may be assembled
by an untrusted integrator from untrusted components.

Starting from the late 1990s, considerable investments were
made to counter these threats. Common operating systems
received malware detection suites that now run by default.

199

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

Mobile phones were universally equipped with trusted exe-
cution environments (TEEs) based on secure elements such
as embedded secrue elements [18] or processor secure envi-
ronments such as Arm TrustZone [19]. Most new PCs and
laptops stock a Trusted Platform Module (TPM) [20], which
operating systems use to protect disk encryption keys and to
guard the boot process. More advanced isolation features such
as virtualization-based security is also increasingly designed
for deployment in consumer devices [21].

In parallel, mechanisms have been devised for verifying the
existence and status of these security features on a particular
platform. The commercial need for such verification is driven
by two trends. First, consumers today mainly use their devices
to access online services such as websites or cloud-based
software; working offline with only locally installed software is
becoming rare. Second, company employees are increasingly
allowed to use their own devices to access the company
network and services.

Remote attestation [9] provides a way to verify the status of
security measures enabled on a platform: a trusted component
in the device generates cryptographically protected evidence,
describing the platform’s security status to the remote verifier.
Remote attestation was first pioneered in the first decade of the
21th century by the Trusted Computing Group, which specified
a TPM-based method for verifying the identities of loaded
boot images [20]. This was followed by key attestation for
smartphones, first proposed in 2010 for Nokia devices with
M-Shield [22], and deployed at scale in Android 7 [23]. Key
attestation allows verifying that a credential is protected by
the device’s TEE. Main use of key attestation was initially to
ensure that DRM content decryption keys cannot be extracted
from the device, and to bind user identity to a particular device.
Since then, coverage of key attestation has been extended to
cover more properties of the platform [24].

However, the complexity of platform attestation has signif-
icantly delayed its wide-scale adoption. Appraisal of evidence,
in particular, has been a major stumbling block. Appraisal typi-
cally involves comparing the asserted attestation claims against
reference claims provided by a trusted endorser. Gathering the
reference values for all possibly attestable components can be
a daunting task. The exact semantics of each reference value
can also be difficult to determine. A smartphone manufacturer
may have endorsed a particular OS kernel version, but does
this mean the kernel is trustworthy for both consumer and
government, or even military use? The problem is that trust is
always contextual (Bursell, [25]). Moving evidence verification
to a specialized service that is in a better position to handle the
complexities of appraisal is one way to address these issues,
and this is in practice becoming the dominant paradigm. All
the platform attestation methods surveyed in this paper rely on
a central verification service provided by either the OS or the
device manufacturer.

Current deployments of platform attestation are based on
two interaction modes [13]: passport and background check,
illustrated in Fig. 1 and Fig. 2, respectively. In the former, the
attester sends evidence to a verifier, receiving an attestation re-
sult (“passport”) that it can later use to prove its trustworthiness
to relying parties. In the latter, the attester sends the evidence
to the relying party, which forwards it “in the background” to
the verifier, from which it receives the result.

ISSN 2305-7254

III. IMPLEMENTING THE TRUSTWORTHY MECHANISM

Platform attestation requires the attesting device to have
a trustworthy mechanism that can be relied upon to collect
the attestation claims and sign the attestation evidence. The
mechanism must be protected from malicious influence. Espe-
cially, run-time isolation is needed to ensure that the attestee
cannot cheat by influencing the measuring process. In practice,
two forms of isolation are used for this purpose in platform
attestation: hardware-based isolation and temporal, i.e. “boot-
based” isolation, illustrated in Fig. 3.

A. Trusted Execution Environments

A trusted execution environment (TEE), also called a
processor secure environment (PSE), is a secure mode of op-
eration in a general-purpose processor that runs alongside but
isolated from the rest of the system, called the rich execution
environment (REE). The applications protected by a TEE are
called trusted applications (TAs). [26] While traditional CPU
privilege levels (rings) provide vertical isolation, TEEs provide
horizontal isolation [27].

The first TEE that was widely deployed commercially is
Arm TrustZone. The TrustZone architecture, popular especially
on smartphones, provides a single TEE called the secure world.
The secure world runs its own operating system, and periph-
erals can be configured to be accessible only from the secure
world. The operating system, often referred to as TEE OS, and
its interfaces have been standardized by the GlobalPlatform
technical standards organization [28]. Recently, the trend has
been towards architectures that allow multiple TEEs (often
called enclaves) on the same device. Examples include Intel
SGX, AMD SEV-SNP and Arm CCA [18]. While enclaves
are now offered as a VM protection feature by some cloud
providers, they have not yet found much use on consumer
devices [29].

B. Secure co-processors

While TEEs are widely used and offer excellent per-
formance by the virtue of being part of the device’s main
processor, recent years have seen the increasing adoption
of physically separate secure co-processors in devices [30].
Compared to TEEs, secure co-processors are less vulnerable
to side-channel attacks [18, p. 82], and require less extensive
interaction with the untrusted OS, making their software in-
terface easier to implement securely [30]. Even if the main
CPU and its TEE are compromised, a secure co-processor can
still remain trustworthy. Consequently, secure co-processors
are increasing used to support platform security and attestation
on consumer devices. Examples of such co-processors include
Microsoft Pluton, Apple’s Secure Enclave Processor (SEP),
Google’s Titan-M and Samsung’s Knox Vault.

Microsoft Pluton is a secure co-processor based on the
Security Complex hardware that first appeared in the SoCs of
Microsoft’s Xbox One game console in 2013. Jointly designed
by Microsoft and AMD, it received the codename Pluton in
2021, when it was introduced into PCs [31]. Currently, Pluton
is found in AMD Ryzen 6000 and Qualcomm Snapdragon
8cx Gen 3 series of processors [32]. Pluton implements the
TPM 2.0 specification, but also provides other features, such

200

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

as a hardware key store and the Device Identifier Composition
Engine (DICE) for attestation [33], [31].

Apple’s Secure Enclave Processor (SEP), first deployed
in the iPhone 5S in 2013, is now commonly found both on
Apple’s mobile devices, where it is integrated into the main
SoC, and on MacOS PCs, where it is part of the T2 security
chip [18, p. 84]. The SEP runs its own operating system
(SEPOS) that is based on the L4 microkernel. It has its own
crypto engine and fuses, and each SEP includes a unique root
key called UID. The SEP has little internal memory, but is
reserved a region in main memory, which it encrypts and
authenticates with AES-XTX and CMAC. [34] The SEP is
used both for attestation and for securing the boot process.

The Samsung Knox security framework includes an secure
co-processor called Knox Vault [5, pp. 15-21]. The processor
itself is implemented on the system-on-chip, but uses an
external integrated circuit for inline-encrypted non-volatile
storage. Knox Vault is used, for example, to protect the
boot process, storing the attestation private key and signing
attestation evidence.

C. Trusted Platform Modules

The Trusted Platform Module (TPM) [20] is a security
component that is found in all recent PCs. It is passive as it
can only receive commands from software or firmware, itself
having no control or oversight over the platform [35]. The
TPM provides a key store service with a small amount of
secure non-volatile storage and platform configuration registers
(PCRs) for collecting attestation metrics. The PCRs are not
directly writable; at start, they contain a constant value (all-0
or all-1) and can only be updated via a extend operation that
computes the new PCR value as Hash(oldV alue||newData),
where Hash is usually SHA-256. The PCRs can be used to
record a chain of events (such as boot image loads) as follows.
The first event must be extended into the PCR by a trusted
component such a read-only primary bootloader (PBL). Further
events may then be extended by any component, including non-
trustworthy ones. The final PCR value is included in attestation
evidence (called a TPM Quote), which is accompanied by
an unauthenticated log of the extended events. The verifier
then self-hashes the events in the log, validates the quote and
compares the self-computed hash against the quoted one. Any
non-trusted component may try to force the PCR to a particular
value by invoking extend with arbitrary data, but succeeding
in this requires a pre-image attack against the hash algorithm,
which is considered infeasible.

The TPM can be implemented as firmware or as a dis-
crete chip on the system-on-chip (SoC) or motherboard. To
reduce the bill-of-materials, many device vendors have recently
moved from discrete chips to firmware-based implementations,
especially on consumer PCs [31]. One example of a firmware
implementing the TPM specifications is Intel’s Platform Trust
Technology (PTT), implemented as an application inside
the Intel Management Engine (ME). The ME itself can be
considered a TEE [18, p. 83]. Another example is AMD’s
Firmware TPM [36]. Microsoft Pluton also implements TPM
2.0 functionality [32]. In China, where the TPM is banned [37],
the locally developed Trusted Cryptography Module (TCM) is
used instead. The TCM specifications are not fully available

ISSN 2305-7254

Service

Device

P [Protected resource]

‘ Client app ‘

Result appraisal

} Verifier y ¢

Evidence authentication r)
N

Evidence appraisal [

(a) TPM-based

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

Device Service

—»| [Protected resource]
Client app

Attestation agent

-
4. REE OS
i Result appraisal
S e \ Verifier &
Attestation TA

! Evidence authentication g
i TEE OS o ! N
L — Evidence appraisal

(b) TEE-based

Fig. 3. Common platform attestation implementations, using TPM-based and TEE-based trustworthy mechanisms. a) In the TPM-based implementation, successive
bootloaders extend boot image measurements to a PCR in the TPM (step 0). When the client application needs attestation evidence, it invokes the TPM through
a driver in the OS. The TPM returns a Quote, containing the final PCR value (step 4). The Quote is signed using the TPMs AIK private key, which usually
certified by the OS vendor’s server. b) In the TEE-based implementation, the client app requests attestation evidence from an attestation agent (step 3). The agent
invokes the attestation TA in the TEE via a driver in the REE OS to measure the platform and generate evidence (steps 4 and 5). The evidence is signed with
a private key, usually provisioned by the device manufacturer and protected by the TEE’s secure storage. The evidence is then returned to the client application

(step 6).

in public, but one main difference is that TCM only uses
cryptographic algorithms approved in China [35].

D. Boot firmware and bootloaders

On most consumer devices, the chain of trust for attestation
starts with the boot process (“late-launch” enclaves such as
Intel SGX are an exception). A primary bootloader (PBL) is
the first code that runs on the main CPU after device hardware
has been initialized by boot firmware. The PBL is almost
always immutable. On PCs, the PBL is commonly part of
boot firmware that implements the unified extensible firmware
interface (UEFI). In a multi-stage boot, the PBL loads the
secondary bootloader (SBL), such as GRUB, which then loads
the OS bootloader. In some designs, such as Samsung devices
based on the Exynos SoC, the boot stages are combined into
a single boot image such as S-BOOT [38]. On devices with
a TrustZone TEE, the PBL also splits the boot process splits
into two parts, covering the secure and normal worlds, with
both world’s having their own SBL [38].

There are roughly three general approaches to securing
the boot process. Secure boot checks the signature of each
boot image using the vendor’s public key and terminates the
boot process on verification failure. In contrast, measured boot
merely records hashes of the booted components to allow
later attestation of the boot. Trusted boot boot combines the
two approaches: it collects the boot image measurements for
attestation and verifies image signatures, but does not terminate
the boot process on signature verification failure. Instead,
trusted boot takes other action such as setting a fuse value
that marks the system as untrusted [5, p. 21]. Trusted boot may
also perform other checks in addition to signature validation,
such as checking whether the image is up-to-date based on
measurements stored in a secure location at run-time during
an earlier boot.

Smartphones typically rely on secure boot, while PCs often
use either secure or measured boot. In UEFI, the PBL is
often covered by secure boot [10], i.e. loaded by the boot

201

firmware only if it has been signed using a key that the
OEM trusts. On Linux PCs, the information whether secure
boot was performed by UEFI-compliant firmware is available,
along with other firmware variables, in /sys/firmware/efi.
On smartphones, secure boot status is often recorded in the
TEE’s secure storage.

IV. FRAMEWORK

The end goal of remote attestation is to allow a relying
party to establish trust in the the attestee. Trust is not an
inherent property, but a choice that the trustor makes regarding
the trustee. In attestation-based trust establishment, the choice
is made based on the evaluation of attestation evidence. A
critical question is, then, what information the evidence should
contain. Clearly, the evidence must identify the attestee for
which the evidence was generated. The evidence must also
allow predicting the behaviour of the attestee. Predictable
behaviour requires a specification to which evidence binds
the attestee. A specification can take various forms: it can
be as complex as the binary code of the attestee, vendor
documentation, a security policy, or something as simple as
an endorsement by a trusted evaluator. Isolation is required
so that the attestee can fulfill its specification without external
influence. Finally, attestation aims to evaluate trustworthiness
for a particular purpose. The evidence must be bound to a
context: one may e.g. trust a bootloader to load only authen-
ticated images, but this does not mean the bootloader should
be trusted for any other purpose. Evidence generated for one
context (such as for the purpose of accessing a particular online
resource) should not be used to evaluate trustworthiness in
another context. Evidence should also be bound to a temporal
context, such as a timestamp or a nonce, to prevent replay
attacks. We summarize the above trust requirements as follows:

1) Authentication. The component must be identified.
2) Specification binding. The component’s identity
must be bound to a specification.

ISSN 2305-7254

3) Context binding. The component’s identity must
be bound to the context in which the component’s
trustworthiness is being evaluated:

a) Temporal: the time at which the evaluation
takes place.

b) Operational: identity of the requested re-
source or operation.

c) Communicational: identity of the commu-
nication channel and session over which the
resource or operation is being requested.

4) Isolation. The component must execute unhindered
and protected from the influence of untrusted com-
ponents and actors.

It is not necessary for the trustor (such as a relying party
in attestation) to directly check all of the four requirements.
Many of them can be performed by a verifier on behalf of
the relying party. At the same time, not all checks can be
delegated: eventually it is the relying party’s job to make the
final verdict based on the information from the verifier. In
particular, the verifier typically has no understanding of the
operational context mentioned above, for example, whether
the attested component is authorized to access a particular
resource.

The component’s identity need not be unique as long as the
combination of context and identity is unique. For example,
it may be enough to know that the attested component is
some instance of a particular application (identity), if it is
also known that this particular instance is an endpoint of
the current communication session (communication context).
A common authentication method is the use of public-key
cryptography: the public key is a (cryptographic) identity,
which may be further bound to a non-cryptographic identities,
such as a name, via a certificate. An entity that can demonstrate
possession of the corresponding private key is then assumed to
have the identity. However, public-key based authentication is
only useful under threat models that do not consider co-located
attacks, such as with compromised OSs. Insider attackers can
easily extract the private key unless it is protected by hardware.
In such cases, authentication must be complemented with
attestation.

In our discussion of platform attestation, we mostly use
the terminology standardized by IETF’s remote attestation
procedures architecture (RATS) working group [13]. However,
we make some terminological choices of our own, described
below. We define a trust anchor (Bursell [25]), as a static
component that allows trustors to assume trust in the system
in which the trust anchor is present. Examples of trust anchors
include root certificates, public key hashes and symmetric
secrets. Trust anchors need not be attested; the mere presence
of a trust anchor is enough, assuming that it cannot be modified
by untrusted entities. Trust anchors are often provisioned
by hardware or firmware vendors, and stored in read-only
memory. A root of trust (RoT), is defined (GlobalPlatform
[26]) as a computing engine, code and possibly data co-located
on the same platform. An RoT provides security services to
other entities. A critical property of an RoT is that no entity
on the device can provide a trustable attestation for the RoT.
A key is not an RoT, but an RoT can include a key as a trust
anchor. Finally, we use the term trustworthy mechanism [9] to
refer to the software and hardware (RoT) components on the

202

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

device that work together to implement reliable measuring and
attestation evidence generation so that the process is isolated
from the interference of untrusted components such as the
attestee.

V. EVALUATION CRITERIA

In this work, we analyze attestation mechanisms and archi-
tectures that have been deployed in existing consumer products
for the purpose of remote attestation — in either enterprise
context (where the devices are part of a fleet of devices man-
aged by the company), or in consumer context, where a cloud
service might be interested in the device health of the terminal
device at the other end of a service communication channel.
We will evaluate the mechanisms based on the following set
of questions, adapted from [11]:

e Trustworthy mechanism. What is the implementation
of the trustworthy mechanism for evidence collection
and signing? What are its trust anchors (secrets, keys
and certificates)? How are they provisioned? How
are they protected? What are the device’s roots of
trust for attestation — the components implementing
the trustworthy mechanism that are themselves not
attested?

e Coverage. Does attestation cover boot-time or run-
time events, or both? Is application attestation sup-
ported in addition to platform attestation? What plat-
form and application properties and state information
are attested?

e Protocol. What are the interaction patterns involved in
attestation? Which entity verifies attestation evidence?
Who owns the verifier?

e Results. What is the format and the content of the
attestation result?

e Context binding. How is the attestation evidence and
result bound to the temporal, communicational and
operational contexts in which the trustworthiness of
the attestee is being evaluated?

In the following, we analyse in turn six distinct attesta-
tion frameworks: Windows Device Health Attestation, Apple
Managed Device Attestation, Knox Device Health Attestation,
Android Play Integrity, EMUI SysIntegrity and Apple App
Attest.

VI. WINDOWS TPM ATTESTATION AND DHA

The relationship between Microsoft, Windows and the
TPM module dates back to before TPM, to the so-called
Microsoft Palladium project [39]. Therefore it is no surprise
that Windows PCs have contained frameworks for TPM plat-
form attestation for more than a decade — in various forms
and with varying names. One comprehensive example is the
Platform Configuration Provider Helper-Kit (PCP-Kit) [40]
launched with Windows 8 in 2012. The kit encompassed client
components that integrated with the Windows Crypto Next-
Generation (CNG) interfaces in the Platform Crypto Provider,
and a library + tool (PCPTool) for attestation verification in
servers.

ISSN 2305-7254

Trustworthy mechanism. TPM-based platform attestation,
relies as, a root of trust for measurement, the hardware or
firmware-based TPM implementation. Its trust anchor is the
Endorsement Key (EKPriv) provisioned by the TPM manu-
facturer, often along with a certificate (EKCert). On first boot,
the device generates a private key called AIKPriv, and asks
Microsoft Cloud CA to issue a certificate (AIKCert) for the
public key, using EKPriv and EKCert to prove that it AIKPriv
is securely stored on device [4]. The main purpose of the AIK
is to improve privacy by providing the platform a per-context
identity instead of revealing the TPM’s unique identity [41].
Another root of trust is the primary boot loader (PBL), the
first code executed by the CPU at boot. It is provisioned by
the PC or motherboard manufacturer and trusted implicitly
without authentication. The currently executing loader collects
claims by measuring (hashing) the next image to be loaded.
Evidence is signed using the TPM-bound AIKPriv. Today,
some Windows devices use Pluton secure co-processor instead
of a TPM as the trust root.

Coverage. During boot, the OS stores core OS measure-
ments as well as integrity measurements of the Early-Launch
Anti-Malware (ELAM) functionality, as well as potential anti-
malware daemons into TPM PCR registers. The ELAM driver
policy is also measured as a metric for what early-boot valida-
tions have taken place in this specific device. Further, if ELAM
(or the anti-malware) recognizes that an attack has taken place,
it adds a PCR record of that fact, changing the PCR metrics
as a consequence [40]. Together with an associated audit log
(TCG log) the PCR values (of firmware, ELAM policy and
anti-malware) do provide a comprehensive view of early boot
device integrity.

The evidence (a TPM Quote) contains as attestation claims
the aggregated hashes of booted. The TCG log is attached to
the evidence, and its integrity can be verified by reconstructing
the cumulative hash from the log entries and comparing it
against hashes in the TPM Quote. [42] In PCP (for Windows
8) there was no integrated protocol or privacy consideration in
PCP, although basic recommendations for attestation (server
should provide a nonce) were given. During verification, the
tool checked all cryptographic bindings between the TPM
Quote, CA keys, PCRs and the audit log, but the parsing of the
log itself (“the health report”), was left to the business logic
in the server. In the latest iterations of the Windows OS, a
verification server has been added to further abstract the TPM-
based attestation. This architecture is named Windows Device
Health Attestation (DHA), and is explored next.

Coverage (Windows 10 and 11). With DHA, measured
boot covers the Windows boot chain until the so-called early
boot drivers loaded by the kernel. Claim collection still occurs
only during load-time; no post-boot run-time state is attested.
Attestation coverage includes all bootloaders, the kernel loader
(winload.exe), the kernel (ntoskrnl.exe) and early boot drivers
such ELAM. Note that in Microsoft’s terminology, secure boot
refers to a UEFI 2.2+ feature that covers the boot process until
the OS loader. Next, trusted boot takes over, and works until
the early-launch drivers. Measured boot, on the other hand,
refers to the collection of boot image measurements during
secure and trusted boot.

Protocol. DHA adds a remote attestation protocol [44]
based on a centralized verification service (DHA-Service) [4]

203

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

described in Fig. 4. The main use case is to integrate attestation
with Mobile Device Management (MDM), where the state
of enterprise’s managed devices are checked before they are
allowed to access a protected resource. A free cloud-based
DHA-Service is provided by Microsoft. Companies with a
Windows Server 2016 license can also setup a DHA-Service
instance on the company premises or in a private cloud. The
DHA-Service converts the TPM-based attestation evidence into
a result format called a Health Report, which is simpler for
relying parties to interpret than hashes and logs.

Windows 11 further adds Microsoft Azure Attestation
(MAA) which is a unified, Microsoft-provided cloud-based
DHA verification service with well-defined and documented
APIs. Code for critical operations such as evidence verification
may be provided by the user and executed in an SGX enclave,
so that Microsoft (as a cloud operator) need not be trusted
by the relying party. MAA is not limited to TPM and DHA
attestation, but is also able to process evidences of other
types such as SGX and AMD SEV-SNP quotes. It additionally
provides a rich policy language [45] for evidence appraisal,
further improving the developer-friendliness of attestation.

Results. In Windows 10, the DHA service provides to the
MDM server attestation results (health reports) in XML format
using TLS [43] (see Fig. 5). In Windows 11 more report data
was added, the format of the report changed from XML to
JSON and the communication protocol changed from TLS to
HTTPS. The GetAttestReport API implemented in the MAA
provider instance returns a signed JWT containing the DHA
Report.

Additionally, Windows 11 has also added a TPM-based
integrated enterprise attestation solution named Windows Hello
for Business. Based on available information [46], [47], this
mechanisms abstracts TPM and its activation just like PCP-Kit
did a decade earlier. It integrates with the Windows Domain
Controller as well as with a Kerberos provided for tickets, but
Windows Hello functionality only provides key attestation and
use for a TPM-hosted key for the single purpose of multi-factor
authentication in an enterprise cloud context.

VII. APPLE MANAGED DEVICE ATTESTATION

In 2022, Apple introduced Managed Device Attestation
(MDA) [48] for devices running the iOS 16, iPadOS 16.1
and tvOS operating systems. Like Windows DHA, the goal of
MDA is mainly to support the enterprise use case, and MDA
provides MDM servers with information on device identity and
integrity via attestation evidence.

Trustworthy mechanism. Hardware backing for attesta-
tion on Apple devices is provided by the SEP secure co-
processor (see Section III-B). An application-specific private
key is generated by the SEP and stored securely. The SEP also
measures the platform and generates attestation evidence.

Coverage. The contents of the evidence generated by the
SEP are not publicly disclosed, but attestation coverage almost
certainly includes identity of the SEP and proof that the device
is a genuine Apple device. Whether also runtime state is
attested is unclear based on current documentation.

Protocol. In contrast to Windows DHA, Apple’s solution
is tightly coupled with standard infrastructure (PKI), such

ISSN 2305-7254

Device
(Attester)
On every boot or reboot:

DHA-Boot-Data (TPM-QuoteA, bootCounterA, TCG-Log, AIK-Cert)

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

DHA-Service
(Verifier)
Validate AIK-Cert

evidence, request attestation”’

DHA-Encrypted-Data (attestationResult, bootCounterA)

|__Appraise TPM-QuoteA and TCG-Log

results

MDM Server

(Relying party)

Request health report
Ready’ J
L Get report (nonceA)

TPM-QuoteB (nonceB, bootCounterB),

|
DHA-Encrypted-Data /Check that nonceA==nonceB
>
TPM-QuoteB, DHA-Encrypted-Data

Generate DHA-Encrypted-Data (encrypted using
DHA-Service private key)

Decrypt DHA-Encrypted-Data

Validate AIK-Cert

Validate signature of TPM-QuoteB using AlK-Cert
Check that bootCounterA == bootCounterB

DHA-Report

/ Check that nonceA==nonceB
Appraise i

Generate DHA-Report (Attestation Health Report)

Fig. 4. MS-DHA protocol for Windows Device Health Attestation, symmetric case. The protocol essentially follow the passport model. The passport bound to
the boot counter. When the passport is used, a second TPM Quote is generated, also containing a boot counter, thus ensuring that the passport can be deemed
valid only if no reboots have occured in the meantime. The asymmetric case similar, except that the Device has no DHA-Encrypted-Data ready and must fetch

one from DHA-Service when MDM Server requests a health report.

<2xml version="1.8" encoding="utf-8"2>
<HealthCertificateValidationResponse xmlns:xsd="http://wiw.w3.0rg/2001/XMLSchema™

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance” ErrorCode="8" Protocolversion="@"

“iat™: 1633665112,
"iss": "https://contosopolicy.eus.attest.azure.net”,

xmlns="http://schemas.microsoft.com/windows/security/healthcertificate/validation/response/v3™>

<HealthCertificatePreoperties>
<Issued>2016-18-21T82:12:58.66565772</Issued>

<BootManagerRevListVersion>@</BootManagerRevListVersion>
<SecureBootEnabled>false</SecureBootEnabled>
<CodeIntegrityEnabled>true</CodeIntegrityEnabled>

<ELAMDriverLoaded>true</ELAMDriverLoaded>

<BOOTAppSVN>1</BOOTAPPSVN >
<BootManagerSVN>1</BootManagersyi>

<BootRevlListInfo»>@@50447A7CC6D1a126008000@BAAC. . . </BootRevListInfox>
<0SRevListInfo>8073EEA7FBFADRO1200G00GOPBEOAB2. . . </0SRevListInfo>
</HealthCertificateProperties>
</HealthCertificatevalidationResponse>

(a) Excerpt of a Windows 10 health report

": "RSA",
"yZGC3-1rFZBt6n6VRHIRJvrOYIHEOTF LIQWOXIEH..",
"e": "AQAB"

“WindowsDefenderelambriverLoaded” :
“bootAppSvn™: 1,

“bootMgrsvn™: 1,
“bootRevListInfo": "gHWQR2F-1WEgAAAACWBXrZXHbaiuTuO@Ps..”,
“codeIntegrityEnabled™: true,

true,

"osRevListInfo": "gHLuW2F-1wEgAARACKDLYDTUQILjdz_RF.",
“secureBootEnabled”: true,

(b) Excerpt of a Windows 11 health report

Fig. 5. Example attestation results (health reports) extracted from Microsoft documentation [43]. Windows 10 uses XML format, while Windows 11 uses JSON
Web Token. Both objects contain similar information: (1) The issuance time and date of the report (2) Whether ELAM (Windows Defender) was loaded during
initial boot. (3) The security version numbers of the boot application and boot manager that were loaded during the initial boot. (4) Whether only integrity
verified code is allowed to execute and the version of the code that is performing those integrity checks. Windows 11 health report also includes additional
information such as the “iss”, which identifies the entity that generated the JWT, and “cnf” or confirmation, which represents a proof-of-possession of the attested
key. A Windows 11 health report can also include SGX and SEV-SNP attestation results.

as CA-issued X.509 certificates [49] and related protocols,
enhanced with key attestation. Attestation evidence includes
key attestation for an SEP-protected key whose handle is
available to the attesting application. The evidence, essentially
a certificate signing request, is sent to Apple’s Attestation
CA, which appraises the evidence and issues an attestation
certificate [50]. The device can use this certificate with Apple’s
enterprise Automatic Certificate Management Environment
(ACME) (RFC 8555) server during device enrollment or re-
attestation [51], [50]. Transmission freshness and security
follows the ACME Device Attestation Challenge mechanism,
which is currently a draft RFC [52].

Results. The attestation result is the ACME certificate that
is issued based on the evidence sent to the ACME server.
The server uses the attestation evidence as part of a trust
score based on which the server grants the requested certificate
[51]. The MDM validates the attestation result (certificate)
by ensuring that the certificate is rooted with Apple’s CA.
The attestation result can only be updated once a week as
generating new attestation is resource consuming to both the
Apple device and servers [48].

204

VIII. KNOX DEVICE HEALTH ATTESTATION

In 2013 Samsung introduced Knox, a security framework
for its Arm-based smartphones. Two attestation schemes are
currently deployed in Knox devices: v2 and v3. The main
difference is that v2 only provides platform attestation, while
v3 provides both platform and app attestation [53]. In the
following, we analyse v3.

Trustworthy mechanism. Knox uses a TEE-based trust-
worthy mechanism. The root of trusts include the TrustZone-
protected TEE, which is relied upon to isolate Samsung-
approved trusted applications (TAs) from the REE. Three
TEE OS implementations are currently in use in Samsung
devices: Kinibi, QSEE and TEEGRIS [53] — all of them are
GlobalPlatform compliant [18, p. 160]. Another root of trust is
the Knox Vault secure co-processor that is used to protect the
attestation key. [5, pp. 15-20] All Knox devices have several
hardware-protected and factory-provisioned trust anchors. The
first is a symmetric Device-Unique Hardware Key (DUHK),
generated on the device during manufacturing. The DUHK is
used to generate and encrypt an RSA keypair called Device
Root Key (DRK) and an ECDSA keypair called Samsung
Attestation Key (SAK). Certificates for DRK and SAK are
also provisioned during manufacturing. The Samsung Secure

ISSN 2305-7254

"reguestDetails”™: {

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

"requestPackagelame": "com.package.name”,
"nonce": "aGVshGegd29scmQgdGhlen”,
"timestampMillis™: 1617893780

"appIntegrity”: {

"appRecognitionVerdict™: "PLAY_RECOGNIZED", i
"packageMame": "com.package.name”, "advice": "RESTORE_TO_FACTORY_ROM",
"certificateSha2seDigest™: ["apkCertificateDigestSha256™: [

{ "6abala74bscbbb2b1aas7eebc3” " gupz0q/WtjtIZZKS1TXL74F1/80AKGLANGh1znKkLhQ="

“version”: 18, 1
“nonce": "83f3c19fc71543beb8acc63edabi44bf",
“verdict”: "ves",
“timestamp”: 1568818487637,
"warrantyFuseState": @,
"trustBootState": 8,
“deviceldState”: @, 1
"app”: {)
“pkg": "com.samsung.android.eatest.plat”,
“signature”: "CMGFvTzMed6wn81ERINLjY13pyIt@IBNBus58ab+7Zg="

(a) Knox Attestation

"versionCode": 42
"deviceIntegrity”: {

"deviceRecognitionVerdict": [
"MEETS_DEVICE_INTEGRITY"

"accountDetails™: {
"applLicensingVerdict”: "LICENSED"

(b) Android Play Integrity

1
"apkDigestSha256": "nBrInk2DLVQrgcQlDXYnIUIMnjl+mvo@lwUicF70zIM=",
“apkPackageName": "com.huawei.hms.safetydetectsample”,
"appld”: TIFEEEREET
"basicIntegrity”: false,
"detail™: [

“root”,

“unlocked”
1.
"nonce": "UJIScmEyNGZWbTVAYTINZw==",
"timestampMs”: 1612683290520

}
(c) EMUI SysIntegrity

Fig. 6. Examples of attestation results in the surveyed TEE-based platform attestation schemes.

Boot Key (SSBK) keypair is used to sign all boot executables
that are approved by Samsung. The SSBK public key is stored
in one-time-programmable (OTP) fuse memory [5, p. 13].
Furthermore, Knox devices have a so-called warranty fuse,
which starts with the value O, but is set to 1 whenever non-
Samsung approved firmware is loaded. Once the bit has been
set to 1, it cannot be reverted back to 0. The attestation claims
are securely stored in the TEE of the device.

Coverage. Attestation claims include the application iden-
tity (name, version and developer key), boot-time measure-
ments and the warranty fuse value. The Samsung’s implemen-
tation of the Keymaster TA gathers the claims and signs them
using the SAK private key. Via the warranty bit, attestation
covers not just the current boot-time measurements and the
app identity, but also historical information. The warranty it
1 one when a non-approved image was ever loaded during
the device’s history. In addition, run-time state is attested via
the warranty bit: in Knox devices, a runtime kernel protection
(RPK) and a TEE-based TrustZone Integrity Measurements
Architecture (TIMA) periodically monitor the kernel and some
other device components — the warranty bit is set if either of
them detects a compromise [53]. The warranty bit value is
used in the decryption of some TEE-protected encryption keys,
making data encrypted them inaccessible after the bit is set [5,
p. 14].

Protocol. To start the attestation process, the relying party
first asks for a nonce from Samsung’s Attestation Server. It
then invokes an API to request attestation from an application
running on the device, using the provided nonce. The app
invokes the Knox Attestation Agent, which forwards the request
to Samsung’s Keymaster TA. Confusingly, Samsung documen-
tation calls the resulting object attestation results, although
according to the RATS architecture [13], it should be called
attestation evidence. The evidence is signed using the device’s
SAK, which is protected and operated by Knox Vault. The
evidence is transmitted by the Attestation Agent over a TLS
session to the relying party, which forwards it to Samsung
Attestation Service. The service checks that the SAK certificate
validates against the Samsung root certificate [5, pp. 25-27].
The service returns an attestation results, called verdict.

Results. The attestation result is a JSON-encoded object,
which contains information about the attested application,

205

including the package name and signature. In addition, it spec-
ifies whether the device has been rooted, whether the device
ID passed the integrity checks, and whether the bootloader has
been unlocked [54]. Fig. 6a shows an example.

IX. ANDROID PLAY INTEGRITY

Google’s Android is the market-leading smartphone oper-
ating system. Since smartphone applications are often used in
security-sensitive contexts such as online banking or two-factor
user authentication, there is a need for the applications and
their backends to verify the integrity of the platform and the
application code. In particular, applications and their backends
often wish to check whether the device is rooted or not,
i.e. whether it is running custom system software. Traditional
methods, such as checking for the presence of the su binary,
do not work if the device is under the control of an attacker
due to a compromised operating system. Also, such checks
must be implemented in the application code, which is hard
for developers to get right. To make integrity checks easier for
developers, Google provides the Play Integrity API (previously
called SafetyNet Attestation API, which is now deprecated)
[3]. Although it is possible to use Play Integrity on devices
without hardware-backed security, using a software-only trust-
worthy mechanism, this does not provide a satisfactory level
of security. Here, we assume that Play Integrity is used on a
device with a TEE.

Trustworthy mechanism. In Play Integrity attestation, the
trustworthy mechanism consists of two parts. The hardware-
backed part generates the key attestation evidence — a chain
of X.509 certificates ending a trusted root certificate — and is
implemented using the TEE, secure storage and the Keymaster
TA. The evidence signing key is required to be shared by
enough devices so that it cannot be used as a device identifier
[55, Sec 9.11]. The second part is REE-based, consisting
of lightweight Java-based checks such as inspecting Android
system properties, complemented with an obfuscated, closed-
source monitor called DroidGuard. The inner workings of
DroidGuard have been reverse engineered by Romain Thomas
[56]. The current findings indicate that DroidGuard is a virtual
machine running obfuscated interpreted code. Separately for
each attestation, the latest version of DroidGuard is down-
loaded from Google’s server, and provisioned with unique

ISSN 2305-7254

code [56, p. 5]. DroidGuard attempts to detect system-level
tampering such as the presence of rooting software like Magisk
and KingRoot, mostly via filesystem based checks [56, p. 13].

Coverage. The key attestation evidence generated by the
Keymaster TA contains claims on both the platform and
application, including, for example, bootloader status, OS
version and the application name and hash of the application’s
signature [24, p. 317]. Most of the claims in the definition
of the key attestation data type are optional [57] so coverage
varies per device vendor. However, the Android Compatibility
Definition requires the secure boot status to be stored in a
tamper-proof location and the private component of the attested
key to be protected by a TEE [55], so it seems safe to assume
that these properties are always attested. The key attestation
claims are gathered by the Keymaster TA, and combined with
the DroidGuard-provided REE-based claims to form the final
attestation evidence.

Protocol. The Play Integrity attestation is started by the
application’s backend service, which must provide a challenge
to the application. The challenge consists of a nonce, and
optional suffix such as a session or request identifier that allows
binding the attestation to a particular context. The application
invokes the Play Integrity API with the challenge and the
developer key. DroidGuard is then started, and the Keymaster
TA is invoked to collect the measurements and combine them
into attestation evidence. The Play Integrity API sends the
combined evidence to the Google Play server, which validates
the evidence and returns an attestation result.

Results. The result, called integrity verdict, is an encrypted
and integrity-protected JSON Web Token (JWT). As example
of a decrypted result is shown in Fig. 6b. The most important
fields are appRecognitionVerdict, which encodes whether
the app and its certificate match the versions available on
Google Play, and deviceRecognitionVerdict, which indicates
whether the device passed integrity checks and whether the
device meets Android compatibility requirements. How exactly
Google’s verifier performs these evaluations based on the
evidence is not disclosed.

X. HUAWEI SYSINTEGRITY

Huawei’s SysIntegrity [58], included in its EMUI operating
system since version 3.0 as part of the Safety Detect solution,
closely resembles Play Integrity, both in terms of the API and
the attestation process.

Trustworthy mechanism. Hardware-backing is provided
by a TrustZone-based TEE, iTrustee, previously TrustedCore
[59]. Claims are collected both during boot and dynamically
at runtime and stored in the TEE. Integrity measurements are
provided by the EMUI Integrity Measurement Architecture
(EIMA) [60, p. 19-20]. A TA in iTrustee generates and signs
the evidence [61, p. 42]. It is not documented whether REE-
based processes are also involved in claim collection.

Coverage. The attestation claims include various boot and
runtime integrity measurements and identifiers, such as device
ID, version numbers of system components, and the Huawei
ID of the user is included [62].

Protocol. To start the attestation process, an application
invokes the SysIntegrity API in the Safety Detect SDK. The

206

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

calling application shall provide a 16-66 octet nonce, which
the documentation recommends to be derived from the data the
application sends to its backend server. In addition, the request
contains an App ID and a signature algorithm identifier. Once
collected and signed, the SDK securely transmits the evidence
over a TLS channel to Huawei’s HMS server. The server
appraises the evidence, generates and signs an attestation
result, and returns it to the SDK. The application can request
the results from the SDK via an API, and send them to the
application’s backend server as a proof of integrity.

Results. The attestation result is JSON-encoded and signed
using the JWS format. The JWS signature can be verified
using an embedded X.509 certificate chain, rooted at a Huawei
Root CA certificate. The results are illustrated in Fig. 6¢. The
nonce field in the attestation result shall match the nonce in
the original application challenge. The boolean field named
basicIntegrity is set to true if if system integrity has not
been violated (the device rooted or unlocked). The array detail
can then be consulted for further info. Here, once can find
values such as unlocked (indicating an unlocked bootloader),
Root (indicating the device is rooted), Emulator (indicates
thath the EMUI OS is running in an emulator) and Attack
(which indicates that the device has been attacked). As with
Play Integrity and Knox attestation, the inner workings of the
verifier are not disclosed.

XI. APPLE APP ATTEST

Apple’s AppAttest [63] supported from iOS 14 onwards,
provides developers with a mechanism to validate the integrity
of their i0S application when in use, and communicating with
a service provider.

Trustworthy mechanism. The SEP provides a hardware-
backed root of trust, and is used for secure boot and key
attestation. The operating system is involved in attestation and
assumed be the trustworthy [64].

Coverage. According to Apple’s documentation, the fol-
lowing properties are attested: (1) Integrity of the iOS applica-
tion code, (2) whether the application is running on a genuine
Apple device and (3) authenticity of the data exchanged
between i0OS app and the service. However, the exacts of
attestation evidence that is transmitted to Apple’s verifier is
not disclosed.

Protocol. The installed application uses the AppAttest
framework to generate a key pair in the SEP that binds the
application with an user account on the device, associates the
key with a keyID, and sends key attestation evidence to an
Apple server. This application credential certificate follows
the web authentication specification [65]. The key will remain
valid for all future application updates but will not survive
activities such as re-installation, device migration or restoration
of device from backups [63]. When the application subse-
quently communicates with the service, the 10S app requests
a one time challenge from the server, combines this challenge
with whatever data the application wants to attest to into a
hash, and calls the AppAttest service with the hash and Key
ID. The AppAttest service returns an assertion token signed
by the application’s key and containing the app’s Key ID, the
provided authentication data and counter values that the server
can use for verification.

ISSN 2305-7254

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

TABLE 1. ATTESTATION COVERAGE IN THE SURVEYED PLATFORM ATTESTATION SCHEMES

App 0oS Boot Identity Context binding
Scheme State Code State Code Images History Device User Time Channel Operation
Windows DHA N N [note I NN N N N N N
Apple MDA N N N N N N N N
Knox Attestation N note 2 N N
Play Integrity note 3 note 3 N N
SysIntegrity N N note 4
App Attest note 5 note 6 N N N
Device check note 7 N N N N N N N N N N

Note 1: In Windows DHA, part of the OS runtime state is implicitly attested via proof that Windows Defender has been loaded.
Note 2: Runtime kernel measurements are collected in Knox by RKP, but it is unclear if they are attested.
Note 3: Via software-based REE monitoring; runtime claims are not TEE-backed.

Note 4: A context string is recommended, but not required.

Note 5: Unclear if application’s runtime state is attested. Note 6: App ID is recorded.

Note 7: App state can be recorded in the DeviceCheck bits.

Results. The attestation token contains both authenticator
data and an attestation statement in a proprietary Apple
format. Authenticator data consists of application identification
metrics such as application ID digest, a counter denoting times
the attested key has been used to sign assertions and if the at-
tested key belongs to development or production environment.
The attestation statement includes an application credential
certificate along with a chain of intermediate ones that can
be validated against Apple App Attest Root Certificate from
Apple PKI. After successful validation, the backend stores
the verified public key from credCert (application credential
certificate) and associate it with the user for the specific device.
This key is used validate any assertions that follow later. The
attestation statement also contains receipts, which the backend
server can later submit to an Apple server to request a fraud
assessment metric, for example, to examine the number of
attested keys in use for a specific device.

Apple introduced the DeviceCheck [66] feature in iOS 11
to help developers detect on-device frauds. Activities such
as game cheating and illegitimate access to premium content
often cuts into the revenue of developers. The DeviceCheck
framework provides interfaces both on device and server side
that developers can use to verify whether their iOS applications
are used legitimately. To accomplish this, Apple allows two
bits of information per device and application, along with a
timestamp, to be stored in Apple’s back-end servers, from
where they are provided to application developers on request.
It is up to developers to decide on how to use these bits. The
bits can be used, for example, to mark various app life-cycle
states, or record app re-installation counts or promotional offer
use. The bits and timestamp maintain user privacy while giving
developers a tool to monitor application use “in the wild”.

DeviceCheck and AppAttest are complementary frame-
works that work independently: the former aims to mitigate
fraud and the latter to safeguard application integrity. Apple
recommends developers to integrate both frameworks in their
business logic [66]. According to Apple [64], a compromised
iOS application running on genuine Apple hardware cannot
create valid assertions. No guarantees are given if the attacker

207

TABLE II. SUMMARY OF THE SURVEYED PLATFORM ATTESTATION
SCHEMES

Method Trustworthy mechanism Trust anchors Interaction Result format

Windows DHA TPM or Pluton, PBL EK, AIK Passport XML/ JWT
Apple MDA SEP SEP UID key Passport X.509 certificate
Knox Attestation TEE, Knox Vault, PBL DUHK. SAK, SSBK pub Background JSON

Play Integrity TEE, PBL Device and TEE keys Passport JSON
SysIntegrity TEE (iTrustee), PBL HUK Passport JSON + JWS
App Attest SEP SEP UID key Passport custom

has compromised the operating system. User privacy is a
design goal: the produced attestation objects do not contain
device identifiers or information that would allow client appli-
cations to track the users via device tracking [67].

XII. SUMMARY

The coverage of attestation evidence of the surveyed
schemes is summarized in Table I. We find that boot time
events are well covered by most schemes. System state at-
testation is however less supported. For example, Windows
DHA focuses on attesting boot time events, and only implic-
itly covers the run-time, by attesting the launch of an anti-
malware solution and that no root-level malware is present
which could affect its operation. Play Integrity includes run-
time measurements, but these are performed by an REE-
based process and thus not backed by the hardware-based
trustworthiness mechanism. Revealing user or device identity
to the verifier can be considered detrimental for user privacy.
Fortunately, verifiers in the surveyed schemes are operated by
established, well-known OEM and OS vendors. Evidence is
also transmitted to the verifier either in encrypted form or
over a secure channel such as a TLS session, protecting it
from eavesdroppers.

We also note that there is still a lot of room for improve-
ment in context binding of attestation evidence. On one hand,
evidence must be bound to a temporal context, such as a
timestamp or a nonce, to prevent attackers using the evidence
in a replay attack. This is well accounted for in the surveyed

ISSN 2305-7254

schemes. On the other hand, channel binding is required to
prevent relay attacks, i.e., where an attacker presents evidence
from a valid platform to attest a compromised device over
a separate channel [68], [69]. This binding is in practice
absent from the surveyed mechanisms. In addition to time and
channel binding, we also stress the need to bind attestation
evidence to the particular resource or operation being requested
— trust should never be regarded as absolute. In the current
schemes, evidence generation is a black box, and attacks where
evidence meant for evaluating trust in e.g., a low-security
context but used as evidence for a high-secure operation should
be prevented.

Referring to Table II, we see that the surveyed schemes
can be categorized into three groups: TPM, TEE and enclave
based ones. We find that most of the surveyed schemes follow
the passport model of interaction, with only Knox using the
background check model. Which model should be preferred
is not security-critical and the choice can be made mostly
on implementation related grounds. However, a passport is
effectively a cached result, and with this some form of replay
protection should be used. The passport model may leak less
privacy-sensitive claims to the relying party, since such claims
can be stripped out by the verifier.

XIII. CONCLUSIONS

The survey of deployed platform attestation solutions for
consumer devices shows that verification is indeed increasingly
outsourced to a service operated by the device OEM or OS
vendor, for convenience but also presumably to hide some of
the brittleness of detailed OS measurements, metrics and state
information that likely changes over time when OSs evolve and
new versions appear. Privacy for the communication between
attestor and attestee is today considered, and collected evidence
is vetted against the likelihood that it might end up indentifying
a single user, his device use or both. Beyond the selection of
data and protocol formats, the device health solutions of the
Apple, Android and Harmony ecosystems are surprisingly sim-
ilar to each other, only Windows DHA stands out being based
on TPM and measured boot. Interesting new developments
are the Apple DeviceCheck and AppAttest frameworks which
tweak attestation in new ways — here we are not any more
only attesting the platform, but rather use attestation as a tool
to support the application framework, and more specifically to
satisfy existing needs of application developers. Maybe, when
device health attestation becomes a commonplace requirement
for a cloud service to serve a consumer customer and his
device, we will see more of these business-oriented systems
that leverage platform attestation as a core function, but apply
it for a specific purpose in the user domain.

REFERENCES

[1]1 P. Vachon, “The identity in everyone’s pocket,” Communications of the
ACM, vol. 64, pp. 46-55, Jan. 2021.

[2] A. Shakevsky, E. Ronen, and A. Wool, “Trust dies in darkness: Shedding
light on Samsung’s TrustZone Keymaster design,” in Proceedings of the
31st USENIX Security Symposium, Aug. 2022.

[3] M. Ibrahim, A. Imran, and A. Bianchi, “SafetyNOT: On the usage of
the SafetyNet attestation API in Android,” in Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications and
Services, ser. MobiSys '21. New York, NY, USA: ACM, Jun. 2021,
pp. 150-162.

208

[4]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

“Windows security / Control the health of Windows 10-based devices,”
https://web.archive.org/web/20230205141009/https://learn.microsoft.
com/en-us/windows/security/threat- protection/protect-high-value-
assets-by-controlling- the- health- of-windows- 10-based-devices, 2022.

“Samsung Knox white paper v2.1)” https://web.archive.org/
web/20230208155147/https://image-us.samsung.com/SamsungUS/
samsungbusiness/solutions/topics/iot/071421/Knox- Whitepaper-v1.5-
20210709.pdf, 2021.

M. M. Yamin and B. Katt, “Mobile device management (MDM) tech-
nologies, issues and challenges,” in Proceedings of the 3rd International
Conference on Cryptography, Security and Privacy, ser. ICCSP ’19.
New York, NY, USA: ACM, Jan. 2019, pp. 143-147.

H. Batool and A. Masood, “Enterprise mobile device management
requirements and features,” in JEEE INFOCOM 2020 - IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, Jul. 2020, pp. 109-114.

A. Lima, B. Sousa, T. Cruz, and P. Simdes, “Security for mobile device
assets: A survey,” in Proceedings of the 12th International Conference
on Cyber Warfare and Security (ICCWS 2017). Academic Conferences
Ltd, Mar. 2017.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
H. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, pp.
63-81, 2011.

J. Frazelle, “Securing the boot process,” Communications of the ACM,
vol. 63, pp. 38-42, Mar. 2020.

A. Niemi, S. Sovio, and J.-E. Ekberg, “Towards interoperable enclave
attestation: Learnings from decades of academic work,” in 2022 31st
Conference of Open Innovations Association (FRUCT). 1EEE, Apr.
2022, pp. 189-200.

G. Arfaoui, P.-A. Fouque, T. Jacques, P. Lafourcade, A. Nedelcu,
C. Onete, and L. Robert, “A cryptographic view of deep-attestation,
or how to do provably-secure layer-linking,” in Proceedings of the
20th International Conference on Applied Cryptography and Network
Security, ser. Lecture Notes in Computer Science. ~Cham: Springer
International Publishing, 2022, pp. 399-418.

H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan, “Remote
attestation procedures (RATS) architecture,” RFC 9334, Jan. 2023.

W. A. Johnson, S. Ghafoor, and S. Prowell, “A taxonomy and review of
remote attestation schemes in embedded systems,” IEEE Access, vol. 9,
pp. 142390-14210, 2021.

B. Kuang, A. Fu, W. Susilo, S. Yu, and Y. Gao, “A survey of
remote attestation in internet of things: Attacks, countermeasures and
prospects,” Computers & Security, vol. 112, p. 102498, 2022.

M. Sardar, T. Fossati, and S. Frost, “SoK: Attestation in confidential
computing,” ResearchGate pre-print, Jan. 2023.

T. Miiller and F. C. Freiling, “A systematic assessment of the security
of full disk encryption,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 5, pp. 491-503, 2015.

L. Gunn, N. Asokan, J.-E. Ekberg, H. Liljestrand, V. Nayani, and T. Ny-
man, “Hardware platform security for mobile devices,” Foundations and
Trends in Privacy and Security, vol. 3, pp. 214-394, Jun. 2022.

S. Pinto and N. Santos, “Demystifying Arm TrustZone: A comprehen-
sive survey,” ACM Computing Surveys, vol. 51, pp. 1-36, Feb. 2019.

A. Segall, Trusted Platform Modules: Why, when and how to use them.
London, United Kingdom: Institution of Engineering and Technology,
2017.

V. Ushakov, S. Sovio, Q. Qi, V. Nayani, P. Ginzboorg, and J.-E.
Ekberg, “Trusted hart for mobile RISC-V security,” in 2022 IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). 1EEE, dec 2022, pp. 1587-1596.

K. Kostiainen, A. Dmitrienko, J.-E. Ekberg, A.-R. Sadeghi, and
N. Asokan, “Key attestation from trusted execution environments,” in
Trust and Trustworthy Computing, ser. Lecture Notes in Computer
Science, vol 6101. Berlin, Heidelberg: Springer, 2010, pp. 30-46.

“Android 7.0 for developers - key attestation,” https://developer.android.
com/about/versions/nougat/android-7.0?hl=en#key_attestation, 2016.

B. Priinster, G. Palfinger, and C. P. Kollmann, “Fides: Unleashing
the full potential of remote attestation,” in Proceedings of the 16th
International Joint Conference on e-Business and Telecommunications,

ISSN 2305-7254

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

SECRYPT’19. SciTePress - Science and Technology Publications,
2021, pp. 314-321.

M. Bursell, Trust in Computer Systems and the Cloud. Hoboken, New
Jersey, USA: John Wiley & Sons, 2022.

GlobalPaltform, “Root of trust definitions and requirements — public
release v1.1.1,” GlobalPlatform, Tech. Rep. GP_REQ_025, 2022.

1. Szefer, Principles of Secure Processor Architecture Design. Morgan
& Claypool Publishers, 2019.

K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “Library imple-
mentation and performance analysis of GlobalPlatform TEE Internal
API for Intel SGX and RISC-V Keystone,” in 2020 IEEE 19th Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), 2020, pp. 1200-1208.

K. Vrancken and F. Piessens, “Do we need consumer-side enclaved
execution?” in Proceedings of the 5th Workshop on System Software
for Trusted Execution (SysTEX 22 Workshop). New York, USA: ACM,
2022.

K. Kostiainen, A. Dhar, and S. Capkun, “Dedicated security chips in the
age of secure enclaves,” IEEE Security & Privacy, vol. 18, pp. 38-46,
Sep. 2020.

M. Mattioli, “PCs take a page from Xbox with Pluton,” IEEE Micro,
vol. 41, pp. 125-128, 2021.

“Microsoft Pluton security processor,” https://web.archive.org/web/
20230224120614/https://learn.microsoft.com/en-us/windows/security/
information-protection/pluton/microsoft- pluton-security-processor,
2022.

DICE Attestation Architecture, Trusted Computing Group, Mar. 2021,
version 1.0, revision 0.23.

T. Mandt, M. Solnik, and D. Wang, “Demystifying the Secure Enclave
Processor,” in Black Hat USA, 2016.

J. D. Osborn and D. C. Challener, “Trusted platform module evolution,”
John Hopkins APL Technical Digest, vol. 32, pp. 536-543, 2013.

“White paper: AMD Ryzen PRO 5000 series mobile processor
security features,” https://www.amd.com/system/files/documents/amd-
security-white-paper.pdf, 2021.

J. Ye, “How a banned encryption chip is stopping China from running
Windows 11, for now,” South China Morning Post, Oct. 2021.

A. R. Bertels, R. E. Bell, and B. K. Eames, “Emulating the android boot
process,” Sandia National Laboratories, Albuquerque, New Mexico,
USA, Tech. Rep. SAND2022-13571, Oct. 2022.

A. Carroll, M. Juarez, J. Polk, and T. Leininger, “Microsoft palladium:
A business overview,” Microsoft Content Security Business Unit, vol. 5,
2002.

“Using the Windows 8 platform crypto provider and associated TPM
functionality,” https://tinyurl.com/3794ndph, Microsoft.

A. Martin, “A ten-page introduction to trusted computing,” Oxford
University Computing Laboratory, Tech. Rep., 2008.

“Compatibility cookbook for Windows / Measured boot,”
https://web.archive.org/web/20230205111217/https://learn.microsoft.
com/en-us/windows/win32/w8cookbook/measured-boot, 2021.

“HealthAttestation CSP,” https://learn.microsoft.com/en-us/windows/
client-management/mdm/healthattestation-csp, Microsoft, 2023.

“MS-DHA: Device health attestation protocol,” https://web.archive.org/
web/20221207003013/https://winprotocoldoc.blob.core.windows.net/
productionwindowsarchives/MS-DHA/[MS-DHA .pdf].

“Microsoft Azure Attestation / Attestation policy / Claim rule
grammar,” https://web.archive.org/web/20230208153416/https:
//learn.microsoft.com/en-us/azure/attestation/claim-rule- grammar,
2022.

“Windows Hello for Business overview,” https:/learn.microsoft.com/
en-us/windows/security/identity- protection/hello-for-business/hello-
overview, Microsoft.

“Windows Hello for Business cloud trust and kdc proxy,”
https://cloudbrothers.info/en/windows-business-cloud-trust-kdc-proxy/,
Cloudbrothers.

“Managed device attestation for Apple devices,” https://support.apple.

com/guide/deployment/managed-device- attestation-dep28afbde6a/web,
2022.

209

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 public key infrastructure certificate and certificate
revocation list (CRL) profile,” RFC 5280, May 2008.

H. Slatman, “Managed device attestation: ACME as the bottom turtle
in mobile device management,” Smallstep blog, 2022.

“Device management profile / ACMECertificate,” https://developer.
apple.com/documentation/devicemanagement/acmecertificate, 2022.

B. Weeks, “Automated certificate management environment (ACME)
device attestation extension,” https://datatracker.ietf.org/doc/draft-acme-
device-attest/00/, Dec. 2022.

A. Aldoseri, T. Clothia, J. Moreira, and D. Oswald, “Symbolic mod-
elling of remote attestation protocols for device and app integrity on
Android,” in Asia CCS ’23: Proceedings of the 2023 ACM on Asia
Conference on Computer and Communication Security. ACM, 2023,
to appear.

“Knox attestation API reference (v3.0),” https://docs.samsungknox.com/
devref/knox-attestation/index.htm#tag/Attestation/paths/~ l attestations/
get, 2022.

“Android 13 compatibility definition,” https://source.android.com/docs/
compatibility/13/android- 13, Google Inc., 2023.

R. Thomas, “DroidGuard: A deep dive into SafetyNet,” in SSTIC22:
Symposium sur la sécurité des technologies de I’information et des
communications. Cesson-Sévigné, France: Association STIC, Jun.
2022.

“AOSP / Docs / Security / Key and ID attestation,” https://source.
android.com/docs/security/features/keystore/attestation, 2023.

Huawei, “Security - Safety Detect - guides - Syslntegrity APL”
https://developer.huawei.com/consumer/en/doc/development/Security-
Guides/dysintegritydevelopment-0000001050156331, 2022.

M. Busch, J. Westphal, and T. Miiller, “Unearthing the TrustedCore:
a critical review on Huawei’s trusted execution environment,” in /4th
USENIX Workshop on Offensive Technologies. Boston, MA, USA:
USENIX Association, Aug. 2020.

“EMUI 11.0 security technical white paper,” https://consumer-img.
huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/
whitepaper/emui_11.0_security_technical_white_paper_v1.0.pdf,
Huawei, 2020.

“Huawei mobile services (HMS) security technical white paper
v.2.0,” https://consumer-img.huawei.com/content/dam/huawei-cbg-
site/common/campaign/privacy/whitepaper/huawei- mobile-services-
(hms)-security-technical-white-paper-v2.0.pdf, Huawei, 2021.

“Security / Safety Detect / Guides / SDK privacy and
security statement,” https://developer.huawei.com/consumer/en/doc/
development/Security-Guides/sdk-data-security-0000001050156339,
Huawei, 2023.

“Establishing your app’s integrity, Apple developer documentation,”
https://developer.apple.com/documentation/devicecheck/establishing_
your app s integrity, Apple Inc, 2022.

“Assessing fraud risk, apple developer documentation,” https://
developer.apple.com/documentation/devicecheck/assessing_fraud_risk,
Apple Inc, 2022.

“Web authentication: An API for accessing public key credentials, level
2, W3C documentation,” https://www.w3.org/TR/2021/REC-webauthn-
2-20210408/, W3C, 8 April 2021.

“DeviceCheck, Apple developer documentation,” https://developer.
apple.com/documentation/devicecheck, Apple Inc, 2022.

“Mitigate fraud with App Attest and DeviceCheck, transcript,
WWDC21,” https://developer.apple.com/videos/play/wwdc2021/10244,
Apple, 2021.

N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tunneled
authentication protocols,” in Security Protocols. Springer Heidelberg
Berlin, 2005, pp. 28-41.

A. Niemi, V. A. B. Bop, and J.-E. Ekberg, “Trusted Sockets Layer:
A TLS 1.3 based trusted channel protocol,” in Secure IT Systems:
26th Nordic Conference, NordSec 2021, ser. Lecture Notes in Computer
Science, N. Tuveri, Ed. Cham: Springer International Publishing, 2021,
pp. 175-191.

