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Abstract—Video traffic from content delivery networks occu-
pied 82% of all consumed bandwidth in 2022. Nevertheless, the
available bandwidth is sometimes volatile and limited. Adaptive
video streaming or, in other words, prediction of quality is the key
to increasing throughput and reducing storage. Unfortunately,
while developing video quality metrics, a problem exists in the
algorithmic representation of the human visual system, such as
the cognitive component, namely the delay of human reaction
to artifacts, which is not represented in the current works. The
presented new methodology of data collection of the delay of
the human visual system response to video artifacts in modern
terms of providing information in natural conditions is presented.
New knowledge of the human visual system adaptation or other
words time of reaction of perception of artefacts, including the
response to motion perceptions necessary for correct work of
video quality assessments, is presented and tested. The proposed
work introduced that the use of new data on the human visual
system adaptation gives an improvement in the performance of
video quality assessment metrics.

I. INTRODUCTION

Video quality metrics are a major feature of modern stream-
ing video processing algorithms. Unfortunately, not many
video quality metrics predict well the subjective perception
of quality by the human visual system (HVS). However, the
knowledge of HVS’s working represents to developers the
opportunity to increase throughput and reduce storage. While
developing video quality metrics, a problem exists in the
algorithmic representation of HVS. Algorithmic modelling of
HVS is possible based on data sets obtained from research
in the field of visual psychophysics. Collecting new data on
the performance of HVS provides a better understanding of
HVS by linking changes in the physical attributes of a visual
stimulus to corresponding changes in psychological responses
(visual perception and cognition). The studies typically involve

carefully constructed human experiments using tightly con-
trolled visual stimuli and viewing conditions.

Many of the most fundamental properties of visual percep-
tion are used to create predictors of video quality assessments
(VQA). However, the main purpose of the vast majority of
research in visual psychophysics is to gain knowledge about
how HVS works, when the object of research is extracted
from the natural environment, specifically the use of a head
holder, and medical eye drops. Using the data, obtained
in psychophysical studies, is difficult for the developers of
video quality assessment algorithms [1]. In other words, in
developing a more complete computational model of HVS,
video quality scientists face the problem of visual neurons,
often responding quite differently to natural stimuli than to
simply controlled stimuli [2].

Another problem developers encounter, when incorporating
psychophysical data into algorithms, is for evaluating dis-
tortions to be either compound or over-threshold during the
experiment. The term compound is used to describe a visual
target that stimulates more than one channel in multichannel
HVS analysis. In other words, two stages of early vision [3]. A
small number of modern video quality predictors using HVS
models [4] [5] work quite well, and use HVS models for the
initial part of the early vision [3]. Specifically, the filtering
stage, which contains the interpretation. In other words, the
attempt to reconstruct the response of the HVS to the spatial
and temporal components of the video sequences, as well as
the brightness and eccentricity (distance from the centre of
the fovea in visual degrees). Unfortunately, the second part
of the early vision, which contains the cognitive component,
specifically, the response of HVS to artifacts is omitted in the
current works.

The accurate time of reaction of human perception to arte-
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facts in video, including the perception of motion, is necessary
for the correct imitation of HVS. The primary function of the
mediovisual complex has been precisely established to analyze
the direction and velocity of the object’s movement in the
visual world [6]. In studies in psychophysics, the potentials
evoked by images were proven to be significantly different
from the potentials generated by videos: 60 to 320 ms after
the stimulus onset and 120 to 400 ms [7]. Currently, the most
commonly used objective quality metrics do not use data on
the cognitive delay of users when evaluating video. However,
when testing and evaluating the video quality metrics, user
perception datasets are used. Such sets usually consist of video
sequences with frame-by-frame user evaluation. The absence
of information about the cognitive delay of users in the video
quality metrics leads to an underestimation of the estimates and
an underestimation of the correlation between the subjective
data of users and the algorithmically obtained metrics. This is
due to the fact that the objective video quality metrics give an
instant response to the appearance of artefacts, while the user
needs time to evaluate what is presented on the screen [8].

The present work hypothesizes that by including in the
work of current video quality metrics the results of the HVS
time response to artefacts, the percentage of accuracy of the
predictors will increase by at least 5%.

The purpose of the proposed work is to demonstrate the
necessity of introducing new data about the work of HVS into
the existing metrics of video quality assessment. The proposed
work represents the creation of a module of time adaptation of
HVS to artifacts, including the response to motion perceptions
required to correctly simulate the work of HVS.

II. RELATED WORK

Numerous image and video evaluation methods based on
HVS models have been developed [9] [10] [11] [12]. Images
are usually processed, using a set of spatial filters to produce
signal processing-oriented spatial-frequency decompositions of
images designed to simulate initially linear neuronal responses.
The quality of the distorted image is evaluated based on the
degree to which the adjusted responses to the reference image
differ from the adjusted responses to the distorted image.
Many HVS-based methods were originally designed to work
as predictors of visible image differences; in other words,
were developed to determine whether changes are visible.
Consequently, the methods work best, when distorted images
contain artifacts closest to the detection threshold.

Currently, algorithmic metrics for evaluating video quality,
based on the interaction of spatial and temporal perception of
the user, are also relevant. Well-known examples of metrics
that take into account temporal aspects are STRRED [13] and
HDR-VQM [14]. STRRED - Spatiotemporal Entropy Refer-
ence Difference, a metric estimates quality degradation by
calculating the entropy of the difference between the reference
and distorted video sequences. Entropy is calculated from the
distribution of wavelet coefficients. The difference in entropy is
evaluated in non-overlapping blocks, separately for the spatial
and temporal aspects. Spatial entropy differences are calculated
using a spatial multi-scale multi-orientation decomposition
of each frame in the video sequence. STRRED does not
require large computing resources and uses much less random

information to transmit. The disadvantages of STRRED are
that the method does not show a linear relationship with
subjective perception, does not capture granular effects, and
does not integrate multi-scale information. HDR-VQM, which
is one of the most popular metrics for HDR video, takes
physical calibration into account. The metric splits the video
into spatial bands, which are then split into spatio-temporal
”streams”.

The scientific community has repeatedly argued that the
basic models of HVS need to be extended to better account for
the properties of human vision [1]. The current understanding
of the near-threshold vision for controlled stimuli is relatively
mature in terms of modeling. However, much less is known
about how HVS works, when distortions are more complex and
in the suprathreshold mode (which may involve areas of the
visual cortex). Nevertheless, recent HVS-based methods have
begun to use enhanced and/or mid- to high-level visual models
[15] and many of the presented methods have been shown to
be extremely effective for evaluation. However, when creating
VQAs, predictors based on HVS models are still in the initial
stage of development. Several video estimation metrics based
on psychophysical models exist, such as the contrast sensitivity
function [5]. The predictors of video quality assessment work
quite well, but the HVS models do not consider all the
necessary variations in stimuli and aspects of the initial vision.
Several visual HVS models have been developed, containing
a comprehensive description of spatial and temporal contrast
sensitivity, and a dependence of such sensitivity on retinal illu-
mination [8]. However, for modeling the current HVS models
underlying predictors of video estimation, as described earlier,
most researchers use data presented in psychophysiological
studies; only for the filtering stage, without consideration of
the cognitive component.

In our previous work, we presented the PSNR-M+ video
quality metric, which includes the HVS time response to arte-
facts [8]. PSNR-M+ considers the data for the first part of early
vision, specifically the filtering stage, which determines, which
spatial and temporal fluctuations in stimuli the HVS responds
to. The advantage of the given metric is for the PSNR-M+ to be
created under the current conditions of information provision.
Our previous work demonstrates that the metric based on
psychophysical HVS models including the HVS time response
to artefacts explains the human perception of video quality,
outperforming statistically based metrics.

III. HVS TIME ADAPTATION METHOD

The new methodology for collecting data on HVS adap-
tation is the use of delay analysis of user reactions to the
appearance of artifacts in videos. This work created a low-
pass filter block for human visual system functions based on
new subjective data about the user’s response rate to artifacts.

Through the Moscow Technical University of Communi-
cations and Informatics, 30 observers between the ages of 18
and 36 with normal vision were recruited. In the current work,
normal vision is defined by the typical participant who does
not use glasses, lenses or other medical devices to correct
vision in their normal daily activities. Most participants have
no experience with human perception of visual information.
Informed consent was obtained from all participants. The
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Fig. 1. Scheme of the method for finding an acceptable minimum perceptual threshold

subjective testing was performed on the equipment introduced
in [16]. 15 uncompressed video clips have been used as the
reference video. For one reference video, was been created
9 versions with compression artifacts (H.264) with different
qualities. Participants viewed a video sequence of 15 video
clips of 15 seconds each, separated by a grey background
of 3 seconds [17]. Participants measured the quality of the
encoded video by finding an acceptable minimum perceptual
threshold. When evaluating the video, participants used a
manipulator to set a minimum acceptable threshold of video
perception. Where the minimum acceptable threshold indicates
the threshold below which the video quality does not satisfy
the users and therefore is not acceptable for transmission.
Scheme of the method for finding an acceptable minimum
perceptual threshold is shown in Fig. 1. In order to avoid
a step change in quality with a limited number of levels
(10), the manipulator set intermediate levels of quality by
the programming of mixing neighbouring levels of quality
in a proportion determined by the pressing force. All videos
are presented in YUV422 progressive format with a fixed
resolution. 1920×1080 is currently the most popular. The frame
rate is 25 fps. Video clips for the database were professionally
recorded in uncompressed digital format, which makes the
distortions in the video possible. To ensure a constant quality
of perception frame by frame, a two-pass coding scheme was
used for subjective real estimation.

The display is a 22-inch flat screen. The display provides
proper brightness, color adjustment, and calibration with a
professional exposure meter. A curved display can also be used
in the experiment since the curvature of the display surface can
be ignored because the ”working” area of the stimulus is small.
We measure the stimulus in the middle, the edges are used so
that there is no stimulus-background transient. The brightness
is 200 cd/m2 and the white color temperature is calibrated to
standard D65. According to the knowledge of the HVS and the
field of clarity, visual acuity is 1/60th of a degree [18]. The
minimum allowed distance from this monitor to the participant
to find the stimulus in the point of fixation of vision is 0.872

m, and the maximum is 1.149 m [19]. The color of the inactive
screen should be light grey.

When viewing a grey background between videos, partici-
pants set the manipulator to a position of satisfaction according
to instructions. We investigated users’ reaction times to the
appearance of artifacts, and scene changes; in other words, the
adaptation time of the human visual system. The experiment
finished when the experimental uncertainty, as measured by the
confidence interval, became less than 5% of the current value
for all tests performed during the experiment. Among all the
tests, the maximum variation of delay values is achieved in the
11655th frame: from 662 to 724 milliseconds (this happens due
to camera movement and the large number of objects in the
frame immediately after the scene change), the minimum - at
7777-th frame: from 720.2 to 720.3 milliseconds. On average,
the scatter of values is 0.0058 milliseconds. The example of
the spread of results for scene changing is shown in Fig. 2.

More than 700 HVS adaptation thresholds were obtained.
Analyses of the HVS adaptation thresholds resulted in an
average response delay of 766.7 ms. Based on this delay, a
Gaussian filter was created, which, due to its properties, is best
suited for modelling the HVS delay [20]. The filter coefficients
were obtained using formula (1).

w(n) = e−
1
2 (α

n
(L−1)/2 )

2

= e−
n2

2σ2 , (1)

where

−L− 1

2
≤ n ≤ L− 1

2
, (2)

where L is window length, n is window function argument,
α is inversely proportional to the standard deviation, σ, of the
Gaussian random variable, σ = (L−1)/(2α). After processing
with the filter described above, the vector of video quality
metric values goes to the adaptation filtering block. The block
scheme is shown in Fig. 3. VQAs require 1 second of the
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Fig. 2. The deviation of results of the subjective evaluation for scene changing.
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Fig. 3. The HVS adaptation model.

video sequence to stabilize weight values, which is why the
video quality metric adaptation filtering block was created [8].
In a given block, the quality measure values at the time of
adaptation are replaced by the mean value of the next two
video frames after adaptation(3):

P (n) =
P (T + 1) + P (T + 2)

2
, n ≤ T (3)

P (n) is the video quality metric value in the n-th frame, T is
the delay in the video quality metric adaptation.

Also, the delay in HVS response to sudden scene change
(hard cut) during the viewing of content is present. VQAs, such
as PSNR, due to the principle of operation, react to a scene
change by an abrupt change in the metric value. We named it
scene’s stalls because the metric’s score changes instantly, but
a person needs time to change the quality score after a scene
change [18]. In practice, we get stalls in human perception. The

scene cuts detecting (stalls detecting) and scene cuts removing
blocks (stalls removing) were created to process the scene
change. If several scene changes are presented at intervals
shorter than the HVS delay, such changes will be smoothed
out, because the HVS will not have time to recognize the
change in quality. Another aspect, which is not considered in
the VQA, is the compression errors leading to fading frames.
In experiments, was found the user smoothly lowers the score
while watching the content. Then the subjective score evens
out, as the HVS receives no new information. VQAs, in
contrast, are arranged in such a way in the occurrence of
such artefacts is accompanied by a sharp drop in the score.
The value of the VQA score changing is much more strongly
concerning the change in subjective score. Stalls detecting and
removing blocks were created to simulate the response of HVS.
The Stalls detecting block implements recognition using the
Histogram Differences method. The adaptive threshold for this
method is set to 80% of the maximum histogram difference.
Recognition of smooth scene changes is a part of our future
work. In the scene cuts detecting (stalls detecting) block,
the shift of metric values at scene change is implemented
according to formulas (4), (5).

P (C+T +n) = P (C+T +n)+(P (C+T −1)−P (C+T )),
(4)

P (n) = P (n− T ).n ∈ [C;C + T ), (5)

where C is the scene change frame number, T is a delay in
HVS adaptation, P (n) is metric value in the n-th frame.

IV. RESULTS AND DISCUSSION

The most popular methods of video quality assessment
were chosen for analysis. The peak signal-to-noise ratio
(PSNR) is calculated on a logarithmic scale by amplitude
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TABLE I. THE NUMERICAL DATA WITH THE AVERAGE INCREASE IN THE PERCENTAGE OF THE METRICS ON THE LIVE-NFLX DATABASE

VQA PSNR FVVDP VMAF HDR-VQM

Without adaptation module 0.282 0.240 0.258 0.245

Using adaptation module 0.304 0.297 0.318 0.275

TABLE II. THE NUMERICAL DATA OF THE METRICS ON THE LIVE-NFLX DATABASE WITHOUT ADAPTATION MODULE

Video/VQA PSNR FVVDP VMAF HDR-VQM

Content 4, Sequence 0 0,175 -0,277 0,070 0,119

Content 4, Sequence 2 0,117 0,112 0,169 0,090

Content 4, Sequence 4 0,509 0,464 0,562 0,505

Content 4, Sequence 7 0,580 0,560 0,707 0,557

Content 5, Sequence 0 0,099 0,253 0,155 -0,073

Content 5, Sequence 2 -0,500 -0,092 -0,131 -0,504

Content 5, Sequence 4 -0,470 0,130 0,124 -0,231

Content 5, Sequence 7 -0,266 0,230 0,270 -0,030

Content 6, Sequence 0 0,282 0,333 -0,027 0,445

Content 6, Sequence 2 -0,284 -0,095 -0,164 -0,178

Content 6, Sequence 4 0,077 0,224 0,427 0,016

Content 6, Sequence 7 0,020 0,114 0,285 -0,187

TABLE III. THE NUMERICAL DATA OF THE METRICS ON THE LIVE-NFLX DATABASE WITH ADAPTATION MODULE

Video/VQA PSNR FVVDP VMAF HDR-VQM

Content 4, Sequence 0 0,227 -0,36 0,117 0,174

Content 4, Sequence 2 0,149 0,086 0,225 0,124

Content 4, Sequence 4 0,625 0,571 0,686 0,65

Content 4, Sequence 7 0,644 0,635 0,779 0,655

Content 5, Sequence 0 0,059 0,282 0,214 -0,123

Content 5, Sequence 2 -0,488 0,033 -0,061 -0,45

Content 5, Sequence 4 -0,42 0,247 0,242 -0,164

Content 5, Sequence 7 -0,208 0,353 0,395 0,047

Content 6, Sequence 0 0,298 0,376 -0,021 0,47

Content 6, Sequence 2 -0,286 -0,095 -0,172 -0,19

Content 6, Sequence 4 0,163 0,34 0,537 0,086

Content 6, Sequence 7 0,081 0,188 0,366 -0,165

(in decibels), which is an advantage. However, PSNR cor-
relates poorly with visual quality assessment and does not
consider psychovisual patterns [21]. The structural similarity
metric [22] for images with fragments of large or small mean
brightness values gives unstable results and correlates poorly
with human perception. Video multimethod assessment fusion
(VMAF) [23] is based on machine learning and uses databases,
which use the quality scores of real users of training videos.
HDR-VQM considers the temporal aspects of VMAF [14].
Evaluations, simulating the performance of the HVS, are also
included for analysis. FovVideoVDP is built on the HVS
model, which considers the peripheral domain. The predictor,
however, does not consider modern video screens.

Below shows the results of the performance of the above
metrics on the LIVE-NFLX database [24] [25]. LIVE-NFLX
consists of 112 distorted videos; the distorted videos were
generated with compression errors. The LIVE-NFLX database
was chosen because it represents very realistic content with
Quality of Experience responses to various design parameters.

In this work, we used the contents of the LIVE-NFLX
data set, which are presented in Fig. 4 with the compression
artefacts : Sequences with the number 0 consist of a constant
encoding bitrate of 500 kbps. Sequences with the number 2
consist of an encoding bitrate of 500 kbps and include a single
video segment of 160 kbps. Sequences with the number 3
consist of one video segment encoded at 250 kbps followed
by a 66 kbps segment, followed by another 250 kbps segment.
Sequences with the number 4 consist of one video segment at
250 kbps followed by a segment at 100 kbps and then another
segment encoded at 250 kbps. This pattern may be the least
practical among all the considered playout patterns. However,

it is of interest to be able to study the subjective data resulting
from such an “ideal” client reaction.

The numerical data with the average increase in the per-
centage of the metrics are shown in Tables I, II and III for
each video and the average for the database.

The poor of the Gaussian window in the first frames
were represented by some ”very ability” of the filtered values,
leading to an understatement estimation of the results for a
number of videos. The analysis revealed that after the first
frames, this effect is not observed in the rest of the video
clips.

The research of human psychophysical reaction represented
information on the response of HVS to photographs of objects
implying motion (e.g., an athlete running or a cup falling
from a table) gives a slower physiological response than to
photographs without implying motion (e.g., a sitting person
or a cup on a table) [26]. The neural response to implied
movement in areas of human motion is slower compared to the
response to actual movement. Based on the above information,
our future work will include the adaptation module should
be integrated with the motion detection module. In addition,
the reaction detection capabilities for static frames should be
extended.

V. CONCLUSION

Models of the human visual system are used to create
predictors of video quality assessments, which have proven
superior to algorithmic methods correlating poorly with subjec-
tive human assessments. The proposed work demonstrates the
need for metrics containing a cognitive component, specifically
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Fig. 4. The video content of LIVE-NFLX database

accurate human perception of video, including motion percep-
tion, to correctly simulate performance. The use of the new
data on the adaptation of human visual systems has been shown
to give an improvement in the performance of video quality
assessment metrics by more than 10%. We predict that such a
model could reduce the amount of information transmitted in
video streaming by 70%. However, the presented data of the
human visual system do not consider the neural response to
statics, and implied motion in human motion areas is slower
compared to the response to real motion. These extensions are
planned to be considered in our future work.
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