
Current Trends in the Search for Similarities in
Source Codes with an Application in the Field of

Plagiarism and Clone Detection

Patrik Hrkút, Michal Ďuračík, Štefan Toth, Matej Meško
University of Žilina

Žilina, Slovakia
{Patrik.Hrkut, Michal.Duracik, Stefan.Toth, Matej.Mesko}@fri.uniza.sk

Abstract — There are many methods and approaches for
determining the similarity between two source codes. Many of
them were inspired by developments in the field of NLP (Natural
Language Processing) since the source text can be considered a
special type of text. These methods have been implemented in
many software tools and surprisingly, many of them are still in
use (MOSS, JPlag). Artificial intelligence brought new
procedures in the area of NLP, and they were also applied to the
area of source code analysis. The article provides an overview of
the methods for similarity detection in the source code, which we
have not yet found in the literature to such an extent. Although it
is certainly not exhaustive, it provides an overview of approaches
from the oldest to those that are only beginning to gain attention
at the present time.

I. INTRODUCTION

Detection of the similarity of source codes or code snippets
can be used for various purposes in the field of informatics.
One of them, which we encounter most often, is the detection
of plagiarism in source codes, which finds its application
mainly in universities and their IT faculties. However, it can
also be used in other applications, for example, searching for
similar errors in existing code, code refactoring based on
duplicate parts of the code detecting and simplifying the entire
application code consequently.

We have been working on the detection of similar parts of
code in our research for several years. This area, like other
areas of informatics, has undergone very rapid development in
recent years, which was mainly affected by artificial
intelligence. Nevertheless, methods and tools developed earlier
(we mean a horizon of 15-20 years in the past) are still used
because they achieve results that are still applicable in solving
many problems. For this reason, we decided to include these
methods in our review as well. Several reviews of plagiarism
detection tools based on searches for similarities in the source
code are available in the literature [1], [2], [3], [4]. On the
contrary, when studying the available literature, we did not find
an overview of methods based on artificial intelligence,
especially on neural networks, and this was the main impulse
for the creation of this paper.

II. SIMILARITY DETECTION

A. Methods for detecting similarities

Source code is a text written in a programming language that
differs from natural language in its grammar and syntax. On the
other hand, since it is a text in a broader sense, it is possible to
look at this type of text as a regular text. This thought led to the
idea of using the ideas and methods used in the field of natural
language processing (NLP) to analyze the source code. These
procedures have proven to be only partially effective when
processing source code, mainly to search for similarities [5], but
many methods have found their inspiration precisely from
similar methods that were developed for natural language. In
particular, the first attempts to process the source code were
based on lexical analysis methods. However, if we look at the
source code as text, we do not capture its structure because we
process it linearly (e.g., in the form of tokens). If we want to
make better use of the code structure, we should consider using
graphs. Several graph representations can be used to detect
similarities in source codes, such as the Control flow graph
(CFG), Program Dependence Graph (PDG), or Abstract syntax
tree (AST). The development of artificial intelligence has also
been shown in detecting similarities in source code. Many
methods trained their models on graph representations (AST,
CGF, etc.). Finally, deep learning methods (Deep Code Search)
have found their application in this area as well. Whatever
representation (tokens, graphs) is used to describe the source
code, the result usually needs to be transformed into a one-
dimensional sequence of data, which we can consider as a
vector. If we need to determine the similarity of two vectors, a
very often used method is to determine how close these vectors
are to each other in space. For this, known metrics are used,
which we will introduce below.

B. Metrics for determining similarity

If two source codes (snippets) are similar, their vectors
representation created from their characteristics should also be
similar. Similarity, as already mentioned, is defined as the
spatial proximity of given vectors. Among the most common
metrics used to determine the similarity of vectors, we can
include the following:

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 77 --

 Euclidean distance: a measure of the distance between
two points in space, which is calculated as the square
root of the sum of the squares of the differences of their
coordinates.

 Cosine similarity: a measure of the similarity of two
vectors in space, determined as the cosine of the angle
between them.

 Manhattan distance: a measure of the distance between
two points in a plane according to the sum of the
absolute values of the differences of their coordinates.

 Jaccard coefficient: a measure of the overlap of two
sets, which is calculated as the ratio of the number of
common elements to the total number of elements.

Several other metrics can be used, depending on the specific
problem and the type of data being processed. However, in
most of the methods described, either cosine similarity or
calculation of the distance between two vectors using the
Euclidean distance is used.

III. METHODS BASED ON LEXICAL ANALYSIS

A. N-grams method

One of the oldest approaches is the use of similarity
detection based on determining text similarity. The idea is
based on comparing the substrings found in the compared
source codes. It is ideal to compare all substrings against all
other substrings, but this is computationally very demanding.
Therefore, such a search is optimized using methods known as
document fingerprinting [6]. With this method, a set of hash
codes (a fingerprint) is created for each document, which
dramatically reduces the total number of comparisons, making
the whole process faster and less computationally demanding.
The compared code is first preprocessed, when insignificant
characters such as white characters are omitted, then n-grams
are created from the text (An n-gram is a collection of n
successive items in a source code that may include keywords,
numbers, symbols, etc.). For a selected subset of n-grams,
hash codes are calculated and used as a fingerprint of the
document. Documents with a high number of matching
fingerprints are marked as similarity candidates. The popular
MOSS (Measure Of Software Similarity) system is based on
this principle. The key to determining the similarity of source
codes (or their sections) is the choice of fingerprints that will
be selected for a given document. MOSS uses the winnowing
algorithm [7] to select fingerprints. At the top level, it first
applies a sliding window of a certain size to the list of hash
codes. At each step, the algorithm records the rightmost
minimum value in the window (if it has not been recorded
already). When the window reaches the end of the sequence of
hashes, the recorded set of hashes is taken as the fingerprint of
the document.

Such a procedure significantly reduces the number of
fingerprints required for similarity detection. According to the
results produced, MOSS is therefore very effective, e.g. when
looking for plagiarism. If the original intention was to
compare only two projects, there were also implementations
extending the search to the larger set of projects [7].

Fig. 1. Creating fingerprints in MOSS [8]

B. Token-based method

Another method based on syntactic analysis, is used by the
JPlag system [9]. JPlag first converts the source code into
tokens. Tokens are usually the smallest independent lexical
units in source code that can be analyzed and processed by a
parser. Tokens in the source code include e.g.

 Keywords
 Names of variables, functions, methods, classes
 Operators
 Literals
 Other characters which define the structure of the

program.

Depending on the specific programming language, the
definition of tokens may vary, but in general, tokens are
considered the basic building blocks of source code. These
tokens are connected into a long string, from which substrings
are then selected for comparison. JPlag uses GST (Greedy
String Tiling) algorithm to find the Longest Common
Subsequence of a string. It is a heuristic algorithm based on
one-to-one matching and is able to deal with the transposition
of substrings [10].

To optimize the whole process, JPlag implements the Running
Karp-Rabin algorithm [11], which uses sliding-window
hashing to find exact pattern matches and gradually adjusts the
hash values according to new data added to the text. The
algorithms combination makes the JPlag system the perfect
tool for searching for plagiarism in source codes, especially
when comparing pairs of files (projects).

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 78 --

IV. METHODS USING GRAPH REPRESENTATIONS

A graph representation of source code creates a graph
structure that represents the structure of the code, including its
dependencies. In the graphical representation, a graph is
created, where nodes represent code elements (e.g., classes,
functions, variables) and edges represent relationships between
them (e.g., function call, variable assignment). This approach
allows more accurate identification of code similarity that
might not appear when comparing a sequence of tokens. On
the other hand, creating a graph representation of the code is
more difficult and requires a more complex algorithm
compared to token generation.

A. Control flow graph

A control flow graph (CFG) represents the flow of a
program using a directed graph, where each node of the graph
represents a basic block of the program (a basic block is a
sequence of instructions that are executed without branching
or jumping) and each edge corresponds to the flow of control
between the basic blocks. A CFG is created by analyzing the
code and tracing the control flow in the program. Similarity
detection using (CFG) consists of analyzing the structure and
flow of a program, instead of analyzing its syntactic structure.

Fig. 2. An example of CFG [12]

When detecting similarities using CFG, graphs are first
created for each source code file to be compared. CFGs are
then compared using a graph-matching algorithm. The
comparison usually results in lists of functions or methods that
occur in multiple files and that have a similar structure or
control flow. One tool for finding similarities using CFG is
SourcererCC [13]. This tool uses the technique of cross-
boundary function extraction, which makes it possible to
identify parts of code that are connected to other parts of code
through function interfaces. SourcererCC also uses other
techniques to increase the accuracy of the similarity search,
such as detecting plagiarism with different syntactic structures,
searching for modified and moved copies, and others.

Other authors use CFG similarity detection to detect
malware [14], or other security issues [15], but CFG is also
used to detect plagiarism [16] [17] and [18].

B. Program Dependence Graph

Program Dependence Graph (PDG) [19] is a directed
graph that represents dependencies between entities in source
code, such as variables, function calls, assignments, and
control structures. Unlike CDG, it contains not only
application dependencies but also data dependencies [20].

Fig. 3. An example of PDG [21]

Similarity detection using PDG is based on a comparison
of the PDGs of two or more source code files [22], looking for
similarities in the dependencies between the mentioned entities
in the source codes. In a PDG, if the dependencies between
entities are similar, the subgraphs are similar too. Similarity
search algorithms in PDGs usually try to find isomorphic
subgraphs, i.e. subgraphs that have the same structure and the
same dependencies between entities [23]. When comparing
PDGs, the syntactic structure of the program is usually
ignored, as it focuses on the dependencies between the above
entities. This means that similarity search algorithms using
PDG can also detect similarities that have different syntactic
structures but the same dependencies between entities.

PDGs are used in some plagiarism detection tools, such as
CloneDR. The CloneDR algorithm works with both types of
graphs (PDG and PDG), which are used for comparing
programs and searching for plagiarism. The use of these types
of graphs with various improvements appeared in the
contributions of several authors and have applications in many
fields of informatics (plagiarism [23], code refactoring [24], or
software engineering [25]).

C. Abstract syntax tree

Abstract syntax tree (AST) [26] is a tree representation of
the syntactic structure of the code, which allows to analyze
and compare the source code at a higher level of abstraction.
The advantage of AST is that it allows identifying code
similarities even in cases where tokens in different code files
are written differently, but the syntactic structure is the same.
The AST can be obtained using a parser included with most
compilers (C# – Roslyn, Java – JavaParser, PHP – PHPStan,
C-clang, etc.).

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 79 --

Fig. 4. An example of AST generated by Roslyn

When searching for similarities using AST, first an AST is
created from the source code. Then, it is normalized by
removing irrelevant nodes. The similarity measure can be
calculated based on various factors, such as the size of the
subtree, the number of matching nodes, the number of edits
required to convert one tree (or subtree) to another, and so on.
Since the comparison of graphic representations, or their parts
are computationally demanding, trees are usually converted to
vector representation (describing the characteristics of AST
nodes). The similarity search then compares the vectors by
some metric (described in section II.B).

This approach has become very popular and a large
number of methods and tools have been created based on AST
similarity detection, e.g. CCS (Code Comparison System) [27],
a scalable architecture based on AST fingerprinting [28], a
general-purpose search engine (CodEX) [29] or a plagiarism
detection system based on fuzzy Petri nets and AST [30].

We also have dealt with this method of detecting similarity
in our research. Our similarity search method was based on
AST, which we used to represent source codes [31]. Unlike
previous methods, we focused on finding similarities in large
source code bases, where several problems had to be solved
[32]. When optimizing the search of a large number of files
and vectors representing individual parts of AST trees, we
used the incremental clustering method [33], [34]. The result
was the creation of a system for searching large-scale source
codes, which is described in detail in [35].

V. SIMILARITY DETECTION USING NEURAL NETWORKS

The application of neural networks has also been found in
the search for similarities in the source code since these
networks make it possible to more accurately identify
similarities between source codes, even if these codes are
different in syntax and structure. Neural networks can also
identify more complex patterns in code that previous
algorithms would miss, and they can also be trained on various
types of code. In addition, they can be trained on an amount of
data that would be difficult for previous algorithms. In
addition, they can learn from data, which means that there is
no need to manually create rules to find similarities in the
code. Many methods are taken from NLP and modified for
source code processing needs. We will detail some of them in
the next sections.

A. Siamese Neural Network

Siamese Neural Network (SNN) [36] is a type of neural
network that compares two input patterns and determines how
similar they are to each other. An SNN consists of two
identical branches that have the same architecture and share
weights. Each branch takes one of the input patterns and
converts it to a vector. This idea can also be applied to
comparing source codes. The authors in [37] use Term
Frequency-Inverse Document Frequency (TF-IDF) used in
NLP to determine the weights of a series of word vectors.
Then the SNN model is built to learn the semantic vector
representation of code snippets. Cosine similarity is used to
determine the similarity measure. A similar detection approach
with slightly different vector generation for the SNN input is
mentioned in [38].

B. CodeBERT and CodeGraphBERT

The CodeBERT neural network [39] is based on the
transformer architecture [40], which was originally used in the
language model BERT (Bidirectional Encoder
Representations from Transformers), in NLP domain.
However, CodeBERT, unlike BERT, was specifically
designed for working with code and uses several techniques to
improve performance on tasks that are specific to
programming. The CodeBERT training process uses the
masked language modeling (MLM) technique that is also used
in BERT, but with some modifications to better deal with the
specifics of the source codes. The technique randomly select
some tokens from the code and replace them with the [MASK]
token, then train the network to predict these masked tokens.
CodeBERT also uses the cross-lingual pre-training technique,
which means that the network is trained on several
programming languages.

The model trained with CodeBERT is represented in the form
of vectors. Similar to the previous cases, the similarity
measure between the vectors can be calculated to obtain the
comparison results using CodeBERT. Another approach to
evaluating similarity is offered by the CodeBERTScore
calculation [41]. CodeBERT is also used in other applications,
e.g. in the automatic correction of bugs in the source code
[42], or for detecting code vulnerabilities [43].

CodeGraphBERT [44] is a neural network model for source
code representation, again based on the transformer
architecture [40]. Unlike CodeBERT, CodeGraphBERT uses
the CDG concept – code representation using a graph, where
vertices represent tokens and edges represent relationships
between tokens. Various code sources such as GitHub and
other open-source repositories were used to train
CodeGraphBERT. The training data was chosen to
include different programming languages, libraries, and
applications. When using CodeGraphBERT, code is
represented using language tokens and syntax trees. The model
can then generate a vector representation of the code suitable
for comparison..

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 80 --

C. Code2Vec

Code2Vec [45] is a machine-learning model used to
represent source code. It works based on contextual vector
representations, which are obtained using the word2vec
method (NLP) [46]. Unlike the word2vec model, which works
with tokens in the text, code2vec works with the AST tree of
the source code. When training a model, an AST is first built
for each feature in the training data. Then, the AST for each
function is represented by a low-dimensional vector that
captures the structure and meaning of the code. After creating
an AST for each function in the training data, these ASTs are
assembled into one large AST, the root of which is a fictitious
function. This large AST is then trained using the following
code prediction method, i.e., the code following the current
code is predicted. Compiling this large AST from individual
function ASTs ensures that the model captures the global
structure of the code, not just the structure of individual
functions [45].

Fig. 5. Neural network architecture used in code2vec [45]

Similarity detection in this method is again based on
comparing vector representations of the source code. If the
vector representations of the code are close to each other in
space, it means that the codes are similar. Applications of this
approach can be found e.g., in [47], where code2vec is used to
classify sections of the source code, solving code reusability
[48], or searching for semantically similar code libraries [49].

D. Abstract syntax tree neural network (AST NN)

As we already mentioned, an abstract syntax tree (AST) is
a tree representation of program code that captures the
structure of the language and the relationships between
different parts of the code. AST NN [50] is neural network
designed to work with AST. The source code processing
process begins by converting the source code to an AST. Then
this representation of the code is used as input to a neural
network that is trained to recognize certain patterns in the
code. These patterns can be, for example, identifying certain
types of variables or detecting the presence of certain patterns
in the code.

For each node in the AST tree, a vector is created
representing its properties, such as the type of the node, its
children, attributes, and so on. These vectors are subsequently
processed using a neural network that can learn the
relationships between individual nodes and their context in the
AST tree. Once the network is trained, it can be used to

compare vector representations of different AST trees. Based
on the distance between the vectors, it is possible to determine
the degree of similarity between the codes. To determine the
similarities, the known metrics for determining the similarities
of vectors, which we mentioned in the text above, are used
again.

Fig. 6. The architecture of AST-based Neural Network [50]

AST NNs are often used to solve tasks such as code
classification, code generation, code error detection, or finding
similarities in source code. In the literature, we can find its use
to identify and classify software vulnerabilities [51] or to
locate potential bugs in the application [52].

E. Deep Code Search

Deep Code Search [53] is a technique used to search for
relevant code in large source code repositories. Neural
networks used in Deep Code Search are usually trained using a
pre-training technique on a large amount of code and then
fine-tuned for specific tasks such as finding code similar to the
given code. The result of the trained model is a set of vectors
that describe the given code. At the search input, a vector is
created from the compared part of the source code and this
vector is compared with the vectors trained by the entire
neural network (cosine similarity is used).

As a proof-of-concept application, the authors implement a
code search tool named DeepCS using the proposed model.
They evaluated DeepCS on a large scale codebase collected
from GitHub [53]. The collected dataset consisted of methods
programmed in java programing language. They compare their
approach with Lucene and CodeHow tools. They experiments
showed, that their approach was effective and outperformed
the related approaches.

VI. DISCUSSION

One of the most common applications of finding
similarities in source codes is plagiarism detection. We have
been dealing with this issue for several years and have
published several articles [31]-[35], so in the discussion we
will focus mainly on this area of application of the described
methods.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 81 --

Currently, as mentioned in the article, there exist different
approaches to searching for plagiarism or clones in the source
code. Some of these methods have also found application in
the real world.

SourcererCC and CloneDR are among the basic tools for
searching for source code clones that developers routinely
utilize. In addition to these tools, we commonly find
proprietary implementations of these algorithms directly in
integrated development environments (IDE). These algorithms
primarily serve developers to remove duplication in the source
code. Algorithms found in IDEs are usually implemented on
top of syntax trees and are used for code refactoring. Practice
shows that even algorithms that do not use methods based on
artificial intelligence are sufficient for detecting duplication in
the source code.

In the case of searching for plagiarism in the source code,
the situation is similar. Currently, freely available tools that
can be used to search for plagiarism in the source code include
the MOSS and JPlag. Both systems use on relatively well-
known algorithms that are based on lexical analysis methods.
Our experience shows that JPlag and MOSS system is
sufficient to detect many plagiarism types. Both systems can
detect various source code modifications. When looking for
plagiarism in the source code, we need to answer a question
what we can consider plagiarism. We often come across
situations where a whole group of students has the same
assignment and thus each of them must create a basically
similar application. It is obvious that with a properly specified
assignment, two exactly the same source codes should not be
created under normal circumstances. On the contrary, when
we look at the problem from a higher perspective, every single
solution should lead to the same goal. In these cases, the
features of some algorithms, thanks to which they can identify
plagiarism even at a higher logical level, would be
counterproductive. In practice, we believe that modifying the
source code in such a way that it is not detected as plagiarism
using the JPlag and MOSS systems requires a certain amount
of knowledge and time from the student. This effort is often
greater than the effort needed to create his own solution. If the
student submitted plagiarism due to a lack of knowledge, in
most cases he does not have enough knowledge how to alter
the code itself.

In addition to freely available solutions, we can now
encounter a boom in commercial systems. Currently, the most
famous systems include copyleaks.com, codequiry.com and
codeio.com. The advantage of these systems over JPlag and
MOSS is that they contain their own database of source codes
against which they can compare embedded solutions. This
database allows searching for plagiarisms even outside the
group of works for which we are looking for matches. We also
mention in [34], that this database must be able to efficiently
provide stored data. Effective indexes [54] in database systems
must be used to make the data available effectively. In general,
it is not possible to easily find out what algorithm these
systems use because they consider it a trade secret. All of them
state using AI to some extent.

VII. CONCLUSION

In our article, we discussed the methods for detecting
similarities in the source code. The basic algorithms developed
for detecting similarities in source code based on similarity
detection in text documents are still used today. They show
good results even in the current era. Most of the currently used
tools for detecting plagiarism in source code are built on these
algorithms (MOSS, JPlag). In recent years, the development of
algorithms in this area has been strongly influenced by
advances in the field of neural networks. Thanks to this,
several new algorithms have been created, which are based on
well-known algorithms for generating AST trees and vectors,
and they apply innovative methods based on artificial
intelligence to these structures. These innovative approaches
improve the detection capabilities, which in the future will
enable the creation of new systems that will use these
algorithms. The given list of different approaches is certainly
not exhaustive, but it gives an overview of the direction the
field is heading. In the future, we can expect even more
sophisticated models using neural networks, especially deep
learning.

REFERENCES
[1] A. M. E. T. Ali, H. M. D. Abdulla, and V. Snásẽl, “Overview and

Comparison of Plagiarism Detection Tools,” in Databases, Texts,
Specifications, Objects, 2011.

[2] Z. Duric and D. Gaević, “A Source Code Similarity System for
Plagiarism Detection,” Comput. J., vol. 56, pp. 70–86, 2013.

[3] A. Bugarín-Diz, M. Carreira, M. Lama, and X. Pardo, “Plagiarism
detection using software tools: A study in a Computer Science
degree,” Apr. 2005.

[4] M. Agrawal and D. K. Sharma, “A state of art on source code
plagiarism detection,” in 2016 2nd International Conference on
Next Generation Computing Technologies (NGCT), 2016, pp.
236–241. doi: 10.1109/NGCT.2016.7877421.

[5] M. Ďuračík, E. Krsak, and P. Hrkút, “Using concepts of text based
plagiarism detection in source code plagiarism analysis,” Apr.
2017.

[6] Y. Kim and S. Ross, “An Approach to Document Fingerprinting,”
Apr. 2015. doi: 10.1007/978-3-319-27974-9.

[7] D. Sheahen and D. Joyner, “TAPS: A MOSS Extension for
Detecting Software Plagiarism at Scale,” Apr. 2016, pp. 285–288.
doi: 10.1145/2876034.2893435.

[8] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing,” in
Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, New York, NY, USA: ACM, Jun. 2003,
pp. 76–85. doi: 10.1145/872757.872770.

[9] L. Prechelt and M. Phlippsen, “JPlag: Finding plagiarisms among a
set of programs,” 2000.

[10] M. Wise, “String Similarity via Greedy String Tiling and Running
Karp−Rabin Matching,” Unpublished Basser Department of
Computer Science Report, Apr. 1993.

[11] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-
matching algorithms,” IBM J Res Dev, vol. 31, no. 2, pp. 249–260,
Mar. 1987, doi: 10.1147/rd.312.0249.

[12] R. Al-Ekram and K. Kontogiannis, “Source code modularization
using lattice of concept slices,” Apr. 2004, pp. 195–203. doi:
10.1109/CSMR.2004.1281420.

[13] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V Lopes,
“SourcererCC: Scaling Code Clone Detection to Big-Code,” in
2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 1157–1168. doi:
10.1145/2884781.2884877.

[14] P. P. F. Chan and C. Collberg, “A Method to Evaluate CFG
Comparison Algorithms,” in 2014 14th International Conference

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 82 --

on Quality Software, 2014, pp. 95–104. doi:
10.1109/QSIC.2014.28.

[15] S. Cesare and Y. Xiang, “Malware Variant Detection Using
Similarity Search over Sets of ControlFlow Graphs,” Apr. 2011,
doi: 10.1109/TrustCom.2011.26.

[16] D.-K. Chae, J. Ha, S.-W. Kim, B. Kang, and E. G. Im, “Software
plagiarism detection: A graph-based approach,” in International
Conference on Information and Knowledge Management,
Proceedings, Apr. 2013, pp. 1577–1580. doi:
0.1145/2505515.2507848.

[17] Y. Li, J. Jang, and X. Ou, “Topology-Aware Hashing for Effective
Control Flow Graph Similarity Analysis,” CoRR, vol.
abs/2004.06563, 2020, [Online]. Available:
https://arxiv.org/abs/2004.06563

[18] H.-Y. Tsai, Y. Huang, and D. Wagner, “A Graph Approach to
Quantitative Analysis of Control-Flow Obfuscating
Transformations,” IEEE Transactions on Information Forensics
and Security, vol. 4, pp. 257–267, Apr. 2009, doi:
10.1109/TIFS.2008.2011077.

[19] G. Snelting, T. Robschink, and J. Krinke, “Efficient path
conditions in dependence graphs for software safety analysis,”
ACM Transactions on Software Engineering and Methodology,
vol. 15, no. 4, pp. 410–457, Oct. 2006, doi:
10.1145/1178625.1178628.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions
on Programming Languages and Systems, vol. 9, no. 3, pp. 319–
349, Jul. 1987, doi: 10.1145/24039.24041.

[21] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and L. Tratt,
“Survey of Slicing Finite State Machine Models,” Apr. 2023.

[22] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Apr. 2001, pp. 301–309. doi:
10.1109/WCRE.2001.957835.

[23] Z. Zhang, H.-H. Yan, and X.-W. Zhang, “Code Similarity
Detection by Program Dependence Graph,” in Proceedings of the
2016 International Conference on Computer Engineering and
Information Systems, Paris, France: Atlantis Press, 2016. doi:
10.2991/ceis-16.2016.50.

[24] T. Henderson and A. Podgurski, “Sampling code clones from
program dependence graphs with GRAPLE,” Apr. 2016, pp. 47–
53. doi: 10.1145/2989238.2989241.

[25] S. Horwitz and T. Reps, “The use of program dependence graphs
in software engineering,” in Proceedings of the 14th international
conference on Software engineering - ICSE ’92, New York, New
York, USA: ACM Press, 1992, pp. 392–411. doi:
10.1145/143062.143156.

[26] G. Fischer, J. Lusiardi, and J. von Gudenberg, “Abstract Syntax
Trees - and their Role in Model Driven Software Development,” in
International Conference on Software Engineering Advances
(ICSEA 2007), 2007, p. 38. doi: 10.1109/ICSEA.2007.12.

[27] B. Cui, J. Li, T. Guo, J. Wang, and D. Ma, “Code Comparison
System based on Abstract Syntax Tree,” in 2010 3rd IEEE
International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), 2010, pp. 668–673. doi:
10.1109/ICBNMT.2010.5705174.

[28] M. Chilowicz, E. Duris, and G. Roussel, “Syntax tree
fingerprinting for source code similarity detection,” in 2009 IEEE
17th International Conference on Program Comprehension, 2009,
pp. 243–247. doi: 10.1109/ICPC.2009.5090050.

[29] M. Zheng, X. Pan, and D. Lillis, “CodEX: Source Code Plagiarism
Detection Based on Abstract Syntax Trees,” Apr. 2018.

[30] V. Shen, “Novel Code Plagiarism Detection Based on Abstract
Syntax Tree and Fuzzy Petri Nets,” International Journal of
Engineering Education, vol. 1, pp. 46–56, Apr. 2019, doi:
10.14710/ijee.1.1.46-56.

[31] M. Ďuračík, E. Kršák, and P. Hrkút, Source code representations
for plagiarism detection, vol. 870. 2018. doi: 10.1007/978-3-319-
95522-3_6.

[32] M. Ďuračík, E. Kršak, and P. Hrkút, “Issues with the Detection of
Plagiarism in Programming Courses on a Larger Scale,” in ICETA
2018 - 16th IEEE International Conference on Emerging eLearning
Technologies and Applications, Proceedings, 2018. doi:
10.1109/ICETA.2018.8572260.

[33] P. Hrkút, M. Ďuračík, M. Mikušová, M. Callejas-Cuervo, and J.
Zukowska, Increasing K-Means Clustering Algorithm Effectivity

for Using in Source Code Plagiarism Detection, vol. 1154 CCIS.
2020. doi: 10.1007/978-3-030-46785-2_10.

[34] M. Ďuračík, E. Kršák, and P. Hrkút, “Searching source code
fragments using incremental clustering,” Concurr Comput, vol. 32,
no. 13, 2020, doi: 10.1002/cpe.5416.

[35] M. Duracik, P. Hrkut, E. Krsak, and S. Toth, “Abstract syntax tree
based source code antiplagiarism system for large projects set,”
IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3026422.

[36] J. BROMLEY et al., “SIGNATURE VERIFICATION USING A
‘SIAMESE’ TIME DELAY NEURAL NETWORK,” Intern J
Pattern Recognit Artif Intell, vol. 07, no. 04, pp. 669–688, Aug.
1993, doi: 10.1142/S0218001493000339.

[37] C. Xie, X. Wang, C. Qian, and M. Wang, “A Source Code
Similarity Based on Siamese Neural Network,” Applied Sciences,
vol. 10, no. 21, p. 7519, Oct. 2020, doi: 10.3390/app10217519.

[38] Y. Wu and W. Wang, “Code Similarity Detection Based on
Siamese Network,” in 2021 IEEE International Conference on
Information Communication and Software Engineering (ICICSE),
IEEE, Mar. 2021, pp. 47–51. doi:
10.1109/ICICSE52190.2021.9404110.

[39] Z. Feng et al., “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” CoRR, vol.
abs/2002.08155, 2020, [Online]. Available:
https://arxiv.org/abs/2002.08155

[40] A. Vaswani et al., “Attention Is All You Need,” Jun. 2017.
[41] S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “CodeBERTScore:

Evaluating Code Generation with Pretrained Models of Code,”
Feb. 2023.

[42] E. Mashhadi and H. Hemmati, “Applying CodeBERT for
Automated Program Repair of Java Simple Bugs,” in 2021
IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 505–509. doi:
10.1109/MSR52588.2021.00063.

[43] X. Yuan, G. Lin, Y. Tai, and J. Zhang, “Deep Neural Embedding
for Software Vulnerability Discovery: Comparison and
Optimization,” Security and Communication Networks, vol. 2022,
pp. 1–12, Jan. 2022, doi: 10.1155/2022/5203217.

[44] D. Guo et al., “GraphCodeBERT: Pre-training Code
Representations with Data Flow,” Sep. 2020.

[45] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec:
Learning Distributed Representations of Code,” CoRR, vol.
abs/1803.09473, 2018, [Online]. Available:
http://arxiv.org/abs/1803.09473

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
Estimation of Word Representations in Vector Space,” Jan. 2013.

[47] B. Arora, S. VC, G. R. Dheemanth, M. Thakral, and N. S. Kumar,
“Code Semantic Detection,” in 2021 Asian Conference on
Innovation in Technology (ASIANCON), 2021, pp. 1–6. doi:
10.1109/ASIANCON51346.2021.9544660.

[48] B. RamyaSree, B. Ramakrishna, M. I. Harshitha, A. Kavya, P.
Reshvanth, and N. V Krishna Rao, “Code Component Retrieval
Using ode2Vec,” in 2021 Fifth International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
IEEE, Nov. 2021, pp. 1044–1048. doi: 10.1109/I-
SMAC52330.2021.9640648.

[49] M. Talari, K. C. N, and C. R. K. Reddy, “CODE2VEC Based
Cognitive Agent System to Retrieve Relevant Code Component
from Repository,” E3S Web of Conferences, vol. 184, p. 01064,
Aug. 2020, doi: 10.1051/e3sconf/202018401064.

[50] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
Novel Neural Source Code Representation Based on Abstract
Syntax Tree,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 783–794. doi:
10.1109/ICSE.2019.00086.

[51] G. Partenza, T. Amburgey, L. Deng, J. Dehlinger, and S.
Chakraborty, “Automatic Identification of Vulnerable Code:
Investigations with an AST-Based Neural Network,” in 2021 IEEE
45th Annual Computers, Software, and Applications Conference
(COMPSAC), 2021, pp. 1475–1482. doi:
10.1109/COMPSAC51774.2021.00219.

[52] H. Liang, L. Sun, M. Wang, and Y. Yang, “Deep Learning With
Customized Abstract Syntax Tree for Bug Localization,” IEEE
Access, vol. PP, p. 1, Apr. 2019, doi:
10.1109/ACCESS.2019.2936948.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 83 --

[53] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings
- International Conference on Software Engineering, IEEE
Computer Society, May 2018, pp. 933–944. doi:

10.1145/3180155.3180167.
[54] M. Kvet, J. Papán, “The Complexity of the Data Retrieval Process

Using the Proposed Index Extension”, IEEE Access, vol. 10, 2022.

ISSN 2305-7254__PROCEEDING OF THE 33RD CONFERENCE OF FRUCT ASSOCIATION

-- 84 --

