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Abstract — There are many methods and approaches for 
determining the similarity between two source codes. Many of 
them were inspired by developments in the field of NLP (Natural 
Language Processing) since the source text can be considered a 
special type of text. These methods have been implemented in 
many software tools and surprisingly, many of them are still in 
use (MOSS, JPlag). Artificial intelligence brought new 
procedures in the area of NLP, and they were also applied to the 
area of source code analysis. The article provides an overview of 
the methods for similarity detection in the source code, which we 
have not yet found in the literature to such an extent. Although it 
is certainly not exhaustive, it provides an overview of approaches 
from the oldest to those that are only beginning to gain attention 
at the present time. 

I. INTRODUCTION 

Detection of the similarity of source codes or code snippets 
can be used for various purposes in the field of informatics. 
One of them, which we encounter most often, is the detection 
of plagiarism in source codes, which finds its application 
mainly in universities and their IT faculties. However, it can 
also be used in other applications, for example, searching for 
similar errors in existing code, code refactoring based on 
duplicate parts of the code detecting and simplifying the entire 
application code consequently.  

We have been working on the detection of similar parts of 
code in our research for several years. This area, like other 
areas of informatics, has undergone very rapid development in 
recent years, which was mainly affected by artificial 
intelligence. Nevertheless, methods and tools developed earlier 
(we mean a horizon of 15-20 years in the past) are still used 
because they achieve results that are still applicable in solving 
many problems. For this reason, we decided to include these 
methods in our review as well. Several reviews of plagiarism 
detection tools based on searches for similarities in the source 
code are available in the literature [1], [2], [3], [4]. On the 
contrary, when studying the available literature, we did not find 
an overview of methods based on artificial intelligence, 
especially on neural networks, and this was the main impulse 
for the creation of this paper. 

II. SIMILARITY DETECTION

A. Methods for detecting similarities 

Source code is a text written in a programming language that 
differs from natural language in its grammar and syntax. On the 
other hand, since it is a text in a broader sense, it is possible to 
look at this type of text as a regular text. This thought led to the 
idea of using the ideas and methods used in the field of natural 
language processing (NLP) to analyze the source code. These 
procedures have proven to be only partially effective when 
processing source code, mainly to search for similarities [5], but 
many methods have found their inspiration precisely from 
similar methods that were developed for natural language. In 
particular, the first attempts to process the source code were 
based on lexical analysis methods. However, if we look at the 
source code as text, we do not capture its structure because we 
process it linearly (e.g., in the form of tokens). If we want to 
make better use of the code structure, we should consider using 
graphs. Several graph representations can be used to detect 
similarities in source codes, such as the Control flow graph 
(CFG), Program Dependence Graph (PDG), or Abstract syntax 
tree (AST). The development of artificial intelligence has also 
been shown in detecting similarities in source code. Many 
methods trained their models on graph representations (AST, 
CGF, etc.). Finally, deep learning methods (Deep Code Search) 
have found their application in this area as well. Whatever 
representation (tokens, graphs) is used to describe the source 
code, the result usually needs to be transformed into a one-
dimensional sequence of data, which we can consider as a 
vector. If we need to determine the similarity of two vectors, a 
very often used method is to determine how close these vectors 
are to each other in space. For this, known metrics are used, 
which we will introduce below. 

B. Metrics for determining similarity 

If two source codes (snippets) are similar, their vectors 
representation created from their characteristics should also be 
similar. Similarity, as already mentioned, is defined as the 
spatial proximity of given vectors. Among the most common 
metrics used to determine the similarity of vectors, we can 
include the following: 
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 Euclidean distance: a measure of the distance between
two points in space, which is calculated as the square
root of the sum of the squares of the differences of their
coordinates.

 Cosine similarity: a measure of the similarity of two
vectors in space, determined as the cosine of the angle
between them.

 Manhattan distance: a measure of the distance between
two points in a plane according to the sum of the
absolute values of the differences of their coordinates.

 Jaccard coefficient: a measure of the overlap of two
sets, which is calculated as the ratio of the number of
common elements to the total number of elements.

Several other metrics can be used, depending on the specific 
problem and the type of data being processed. However, in 
most of the methods described, either cosine similarity or 
calculation of the distance between two vectors using the 
Euclidean distance is used. 

III. METHODS BASED ON LEXICAL ANALYSIS

A. N-grams method 

One of the oldest approaches is the use of similarity 
detection based on determining text similarity. The idea is 
based on comparing the substrings found in the compared 
source codes. It is ideal to compare all substrings against all 
other substrings, but this is computationally very demanding. 
Therefore, such a search is optimized using methods known as 
document fingerprinting [6]. With this method, a set of hash 
codes (a fingerprint) is created for each document, which 
dramatically reduces the total number of comparisons, making 
the whole process faster and less computationally demanding. 
The compared code is first preprocessed, when insignificant 
characters such as white characters are omitted, then n-grams 
are created from the text (An n-gram is a collection of n 
successive items in a source code that may include keywords, 
numbers, symbols, etc.). For a selected subset of n-grams, 
hash codes are calculated and used as a fingerprint of the 
document. Documents with a high number of matching 
fingerprints are marked as similarity candidates. The popular 
MOSS (Measure Of Software Similarity) system is based on 
this principle. The key to determining the similarity of source 
codes (or their sections) is the choice of fingerprints that will 
be selected for a given document. MOSS uses the winnowing 
algorithm [7] to select fingerprints. At the top level, it first 
applies a sliding window of a certain size to the list of hash 
codes. At each step, the algorithm records the rightmost 
minimum value in the window (if it has not been recorded 
already). When the window reaches the end of the sequence of 
hashes, the recorded set of hashes is taken as the fingerprint of 
the document.  

Such a procedure significantly reduces the number of 
fingerprints required for similarity detection. According to the 
results produced, MOSS is therefore very effective, e.g. when 
looking for plagiarism. If the original intention was to 
compare only two projects, there were also implementations 
extending the search to the larger set of projects [7]. 

Fig. 1. Creating fingerprints in MOSS [8] 

B. Token-based method 

Another method based on syntactic analysis, is used by the 
JPlag system [9]. JPlag first converts the source code into 
tokens. Tokens are usually the smallest independent lexical 
units in source code that can be analyzed and processed by a 
parser. Tokens in the source code include e.g. 

 Keywords
 Names of variables, functions, methods, classes
 Operators
 Literals
 Other characters which define the structure of the

program.

Depending on the specific programming language, the 
definition of tokens may vary, but in general, tokens are 
considered the basic building blocks of source code. These 
tokens are connected into a long string, from which substrings 
are then selected for comparison. JPlag uses GST (Greedy 
String Tiling) algorithm to find the Longest Common 
Subsequence of a string. It is a heuristic algorithm based on 
one-to-one matching and is able to deal with the transposition 
of substrings [10]. 

To optimize the whole process, JPlag implements the Running 
Karp-Rabin algorithm [11], which uses sliding-window 
hashing to find exact pattern matches and gradually adjusts the 
hash values according to new data added to the text. The 
algorithms combination makes the JPlag system the perfect 
tool for searching for plagiarism in source codes, especially 
when comparing pairs of files (projects). 
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IV. METHODS USING GRAPH REPRESENTATIONS

A graph representation of source code creates a graph 
structure that represents the structure of the code, including its 
dependencies. In the graphical representation, a graph is 
created, where nodes represent code elements (e.g., classes, 
functions, variables) and edges represent relationships between 
them (e.g., function call, variable assignment). This approach 
allows more accurate identification of code similarity that 
might not appear when comparing a sequence of tokens. On 
the other hand, creating a graph representation of the code is 
more difficult and requires a more complex algorithm 
compared to token generation. 

A. Control flow graph 

A control flow graph (CFG) represents the flow of a 
program using a directed graph, where each node of the graph 
represents a basic block of the program (a basic block is a 
sequence of instructions that are executed without branching 
or jumping) and each edge corresponds to the flow of control 
between the basic blocks. A CFG is created by analyzing the 
code and tracing the control flow in the program. Similarity 
detection using (CFG) consists of analyzing the structure and 
flow of a program, instead of analyzing its syntactic structure. 

Fig. 2. An example of CFG [12] 

When detecting similarities using CFG, graphs are first 
created for each source code file to be compared. CFGs are 
then compared using a graph-matching algorithm. The 
comparison usually results in lists of functions or methods that 
occur in multiple files and that have a similar structure or 
control flow. One tool for finding similarities using CFG is 
SourcererCC [13]. This tool uses the technique of cross-
boundary function extraction, which makes it possible to 
identify parts of code that are connected to other parts of code 
through function interfaces. SourcererCC also uses other 
techniques to increase the accuracy of the similarity search, 
such as detecting plagiarism with different syntactic structures, 
searching for modified and moved copies, and others. 

Other authors use CFG similarity detection to detect 
malware [14], or other security issues [15], but CFG is also 
used to detect plagiarism [16] [17] and [18]. 

B. Program Dependence Graph 

Program Dependence Graph (PDG) [19] is a directed 
graph that represents dependencies between entities in source 
code, such as variables, function calls, assignments, and 
control structures. Unlike CDG, it contains not only 
application dependencies but also data dependencies [20]. 

Fig. 3. An example of PDG [21] 

Similarity detection using PDG is based on a comparison 
of the PDGs of two or more source code files [22], looking for 
similarities in the dependencies between the mentioned entities 
in the source codes. In a PDG, if the dependencies between 
entities are similar, the subgraphs are similar too. Similarity 
search algorithms in PDGs usually try to find isomorphic 
subgraphs, i.e. subgraphs that have the same structure and the 
same dependencies between entities [23]. When comparing 
PDGs, the syntactic structure of the program is usually 
ignored, as it focuses on the dependencies between the above 
entities. This means that similarity search algorithms using 
PDG can also detect similarities that have different syntactic 
structures but the same dependencies between entities. 

PDGs are used in some plagiarism detection tools, such as 
CloneDR. The CloneDR algorithm works with both types of 
graphs (PDG and PDG), which are used for comparing 
programs and searching for plagiarism. The use of these types 
of graphs with various improvements appeared in the 
contributions of several authors and have applications in many 
fields of informatics (plagiarism [23], code refactoring [24], or 
software engineering [25]). 

C. Abstract syntax tree 

Abstract syntax tree (AST) [26] is a tree representation of 
the syntactic structure of the code, which allows to analyze 
and compare the source code at a higher level of abstraction. 
The advantage of AST is that it allows identifying code 
similarities even in cases where tokens in different code files 
are written differently, but the syntactic structure is the same. 
The AST can be obtained using a parser included with most 
compilers (C# – Roslyn, Java – JavaParser, PHP – PHPStan, 
C-clang, etc.). 
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Fig. 4. An example of AST generated by Roslyn 

When searching for similarities using AST, first an AST is 
created from the source code. Then, it is normalized by 
removing irrelevant nodes. The similarity measure can be 
calculated based on various factors, such as the size of the 
subtree, the number of matching nodes, the number of edits 
required to convert one tree (or subtree) to another, and so on. 
Since the comparison of graphic representations, or their parts 
are computationally demanding, trees are usually converted to 
vector representation (describing the characteristics of AST 
nodes). The similarity search then compares the vectors by 
some metric (described in section II.B). 

This approach has become very popular and a large 
number of methods and tools have been created based on AST 
similarity detection, e.g. CCS (Code Comparison System) [27], 
a scalable architecture based on AST fingerprinting [28], a 
general-purpose search engine (CodEX) [29] or a plagiarism 
detection system based on fuzzy Petri nets and AST [30]. 

We also have dealt with this method of detecting similarity 
in our research. Our similarity search method was based on 
AST, which we used to represent source codes [31]. Unlike 
previous methods, we focused on finding similarities in large 
source code bases, where several problems had to be solved 
[32]. When optimizing the search of a large number of files 
and vectors representing individual parts of AST trees, we 
used the incremental clustering method [33], [34]. The result 
was the creation of a system for searching large-scale source 
codes, which is described in detail in [35]. 

V. SIMILARITY DETECTION USING NEURAL NETWORKS 

The application of neural networks has also been found in 
the search for similarities in the source code since these 
networks make it possible to more accurately identify 
similarities between source codes, even if these codes are 
different in syntax and structure. Neural networks can also 
identify more complex patterns in code that previous 
algorithms would miss, and they can also be trained on various 
types of code. In addition, they can be trained on an amount of 
data that would be difficult for previous algorithms. In 
addition, they can learn from data, which means that there is 
no need to manually create rules to find similarities in the 
code. Many methods are taken from NLP and modified for 
source code processing needs. We will detail some of them in 
the next sections. 

A. Siamese Neural Network 

Siamese Neural Network (SNN) [36] is a type of neural 
network that compares two input patterns and determines how 
similar they are to each other. An SNN consists of two 
identical branches that have the same architecture and share 
weights. Each branch takes one of the input patterns and 
converts it to a vector. This idea can also be applied to 
comparing source codes. The authors in [37] use Term 
Frequency-Inverse Document Frequency (TF-IDF) used in 
NLP to determine the weights of a series of word vectors. 
Then the SNN model is built to learn the semantic vector 
representation of code snippets. Cosine similarity is used to 
determine the similarity measure. A similar detection approach 
with slightly different vector generation for the SNN input is 
mentioned in [38]. 

B. CodeBERT and CodeGraphBERT 

The CodeBERT neural network [39] is based on the 
transformer architecture [40], which was originally used in the 
language model BERT (Bidirectional Encoder 
Representations from Transformers), in NLP domain. 
However, CodeBERT, unlike BERT, was specifically 
designed for working with code and uses several techniques to 
improve performance on tasks that are specific to 
programming. The CodeBERT training process uses the 
masked language modeling (MLM) technique that is also used 
in BERT, but with some modifications to better deal with the 
specifics of the source codes. The technique randomly select 
some tokens from the code and replace them with the [MASK] 
token, then train the network to predict these masked tokens. 
CodeBERT also uses the cross-lingual pre-training technique, 
which means that the network is trained on several 
programming languages. 

The model trained with CodeBERT is represented in the form 
of vectors. Similar to the previous cases, the similarity 
measure between the vectors can be calculated to obtain the 
comparison results using CodeBERT. Another approach to 
evaluating similarity is offered by the CodeBERTScore 
calculation [41]. CodeBERT is also used in other applications, 
e.g. in the automatic correction of bugs in the source code 
[42], or for detecting code vulnerabilities [43]. 

CodeGraphBERT [44] is a neural network model for source 
code representation, again based on the transformer 
architecture [40]. Unlike CodeBERT, CodeGraphBERT uses 
the CDG concept – code representation using a graph, where 
vertices represent tokens and edges represent relationships 
between tokens. Various code sources such as GitHub and 
other open-source repositories were used to train 
CodeGraphBERT. The training data was chosen to 
include different programming languages, libraries, and 
applications. When using CodeGraphBERT, code is 
represented using language tokens and syntax trees. The model 
can then generate a vector representation of the code suitable 
for comparison.. 
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C. Code2Vec 

Code2Vec [45] is a machine-learning model used to 
represent source code. It works based on contextual vector 
representations, which are obtained using the word2vec 
method (NLP) [46]. Unlike the word2vec model, which works 
with tokens in the text, code2vec works with the AST tree of 
the source code. When training a model, an AST is first built 
for each feature in the training data. Then, the AST for each 
function is represented by a low-dimensional vector that 
captures the structure and meaning of the code. After creating 
an AST for each function in the training data, these ASTs are 
assembled into one large AST, the root of which is a fictitious 
function. This large AST is then trained using the following 
code prediction method, i.e., the code following the current 
code is predicted. Compiling this large AST from individual 
function ASTs ensures that the model captures the global 
structure of the code, not just the structure of individual 
functions [45]. 

Fig. 5. Neural network architecture used in code2vec [45] 

Similarity detection in this method is again based on 
comparing vector representations of the source code. If the 
vector representations of the code are close to each other in 
space, it means that the codes are similar. Applications of this 
approach can be found e.g., in [47], where code2vec is used to 
classify sections of the source code, solving code reusability 
[48], or searching for semantically similar code libraries [49]. 

D. Abstract syntax tree neural network (AST NN) 

As we already mentioned, an abstract syntax tree (AST) is 
a tree representation of program code that captures the 
structure of the language and the relationships between 
different parts of the code. AST NN [50] is neural network 
designed to work with AST. The source code processing 
process begins by converting the source code to an AST. Then 
this representation of the code is used as input to a neural 
network that is trained to recognize certain patterns in the 
code. These patterns can be, for example, identifying certain 
types of variables or detecting the presence of certain patterns 
in the code. 

For each node in the AST tree, a vector is created 
representing its properties, such as the type of the node, its 
children, attributes, and so on. These vectors are subsequently 
processed using a neural network that can learn the 
relationships between individual nodes and their context in the 
AST tree. Once the network is trained, it can be used to 

compare vector representations of different AST trees. Based 
on the distance between the vectors, it is possible to determine 
the degree of similarity between the codes. To determine the 
similarities, the known metrics for determining the similarities 
of vectors, which we mentioned in the text above, are used 
again. 

Fig. 6. The architecture of AST-based Neural Network [50] 

AST NNs are often used to solve tasks such as code 
classification, code generation, code error detection, or finding 
similarities in source code. In the literature, we can find its use 
to identify and classify software vulnerabilities [51] or to 
locate potential bugs in the application [52]. 

E. Deep Code Search 

Deep Code Search [53] is a technique used to search for 
relevant code in large source code repositories. Neural 
networks used in Deep Code Search are usually trained using a 
pre-training technique on a large amount of code and then 
fine-tuned for specific tasks such as finding code similar to the 
given code. The result of the trained model is a set of vectors 
that describe the given code. At the search input, a vector is 
created from the compared part of the source code and this 
vector is compared with the vectors trained by the entire 
neural network (cosine similarity is used). 

As a proof-of-concept application, the authors implement a 
code search tool named DeepCS using the proposed model. 
They evaluated DeepCS on a large scale codebase collected 
from GitHub [53]. The collected dataset consisted of methods 
programmed in java programing language. They compare their 
approach with Lucene and CodeHow tools. They experiments 
showed, that their approach was effective and outperformed 
the related approaches. 

VI. DISCUSSION

One of the most common applications of finding 
similarities in source codes is plagiarism detection. We have 
been dealing with this issue for several years and have 
published several articles [31]-[35], so in the discussion we 
will focus mainly on this area of application of the described 
methods. 
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Currently, as mentioned in the article, there exist different 
approaches to searching for plagiarism or clones in the source 
code. Some of these methods have also found application in 
the real world. 

SourcererCC and CloneDR are among the basic tools for 
searching for source code clones that developers routinely 
utilize. In addition to these tools, we commonly find 
proprietary implementations of these algorithms directly in 
integrated development environments (IDE). These algorithms 
primarily serve developers to remove duplication in the source 
code. Algorithms found in IDEs are usually implemented on 
top of syntax trees and are used for code refactoring. Practice 
shows that even algorithms that do not use methods based on 
artificial intelligence are sufficient for detecting duplication in 
the source code. 

In the case of searching for plagiarism in the source code, 
the situation is similar. Currently, freely available tools that 
can be used to search for plagiarism in the source code include 
the MOSS and JPlag. Both systems use on relatively well-
known algorithms that are based on lexical analysis methods. 
Our experience shows that JPlag and MOSS system is 
sufficient to detect many plagiarism types. Both systems can 
detect various source code modifications. When looking for 
plagiarism in the source code, we need to answer a question 
what we can consider plagiarism. We often come across 
situations where a whole group of students has the same 
assignment and thus each of them must create a basically 
similar application. It is obvious that with a properly specified 
assignment, two exactly the same source codes should not be 
created under normal circumstances. On the contrary, when 
we look at the problem from a higher perspective, every single 
solution should lead to the same goal. In these cases, the 
features of some algorithms, thanks to which they can identify 
plagiarism even at a higher logical level, would be 
counterproductive. In practice, we believe that modifying the 
source code in such a way that it is not detected as plagiarism 
using the JPlag and MOSS systems requires a certain amount 
of knowledge and time from the student. This effort is often 
greater than the effort needed to create his own solution. If the 
student submitted plagiarism due to a lack of knowledge, in 
most cases he does not have enough knowledge how to alter 
the code itself. 

In addition to freely available solutions, we can now 
encounter a boom in commercial systems. Currently, the most 
famous systems include copyleaks.com, codequiry.com and 
codeio.com. The advantage of these systems over JPlag and 
MOSS is that they contain their own database of source codes 
against which they can compare embedded solutions. This 
database allows searching for plagiarisms even outside the 
group of works for which we are looking for matches. We also 
mention in [34], that this database must be able to efficiently 
provide stored data. Effective indexes [54] in database systems 
must be used to make the data available effectively. In general, 
it is not possible to easily find out what algorithm these 
systems use because they consider it a trade secret. All of them 
state using AI to some extent. 

VII. CONCLUSION

In our article, we discussed the methods for detecting 
similarities in the source code. The basic algorithms developed 
for detecting similarities in source code based on similarity 
detection in text documents are still used today. They show 
good results even in the current era. Most of the currently used 
tools for detecting plagiarism in source code are built on these 
algorithms (MOSS, JPlag). In recent years, the development of 
algorithms in this area has been strongly influenced by 
advances in the field of neural networks. Thanks to this, 
several new algorithms have been created, which are based on 
well-known algorithms for generating AST trees and vectors, 
and they apply innovative methods based on artificial 
intelligence to these structures. These innovative approaches 
improve the detection capabilities, which in the future will 
enable the creation of new systems that will use these 
algorithms. The given list of different approaches is certainly 
not exhaustive, but it gives an overview of the direction the 
field is heading. In the future, we can expect even more 
sophisticated models using neural networks, especially deep 
learning. 
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