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Abstract – Working on a larger, more general topic: 
«Large Language Models (LLMs). Learning and 
Reasoning at the Inference Stage», among other things, we 
investigated the following specific questions: 

1. What is more important for the emergent abilities 
(few-shot prompting and augmented prompting) observed 
at the inference stage in LLMs – model’s size (number of 
model parameters) or actual training dataset size (number 
of training tokens)?  

2. What is the composition of datasets on which LLMs 
demonstrating these abilities were trained and are there 
any correlations with the compositions and sizes of 
datasets? 

3. What are the qualitative data requirements for 
observing emergent inference abilities, i.e., is there 
something in the language data that causes these abilities? 

To answer these questions, we present analysis of 
selected theoretical and experimental results focused on 
LLMs. 

I. INTRODUCTION 

In this analysis, we systematically follow the terminology 
presented in [1] for the terms in-context learning, few-shot, 
one-shot, zero-shot, fine-tuning. 

Fine-Tuning – involves updating the weights of a pre-trained model 
by training on a supervised dataset specific to the desired task.  
 
Few-Shot – the setting where the model is given a few 
demonstrations of the task at inference time as conditioning [17], but 
no weight updates are allowed. 
 
One-Shot – is the same as few-shot except that only one 
demonstration is allowed, in addition to a natural language 
description of the task. 

 
Zero-Shot – is the same as one-shot except that no demonstrations are 
allowed, and the model is only given a natural language instruction 
describing the task. 

Terminology illustration – Fig. 1. 

By in-context learning we mean the general description 
given in [1], which is illustrated in Fig. 2. 

But in the form of a short and simplified formulation, you 
can use the definition given in [6]: "In-context learning is a 
paradigm that allows language models to learn tasks when  

 
Fig. 1 (Fig. 2.1 from [1]): Zero-shot, one-shot and few-shot, contrasted with 
traditional fine-tuning. 

only a few examples in the form of demonstrations". 

And today, we are witnessing the emergence of a separate 
discipline – prompt engineering (the development and 
optimization of prompts to improve work outcomes), which has 
emerged as a generalization of the ways we work with prompts. 

That is, in the context of our analysis, prompt engineering is 
a way to manage the results of a few-shot by changing the 
demonstrations – Few-Shot Prompting, Augmented Prompting 
– here we follow the terminology [2]. 

 

Fig. 2 (Fig. 1.1 from [1]) Learning via SGD (during unsupervised pre-training), 
contrasted with In-context learning (Meta-learning at Inference stage)
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Fig.3 (Fig. 12 from [2]) Specialized prompting may be emergent because it does not have a positive effect up to a certain model scale

Few-Shot and Augmented Prompting are essentially sides 
of the same phenomenon (as we analyze in our main work – 
LLMs. Learning and Reasoning at the Inference Stage, which 
is still being written) – they are emergent in nature (emergence 
is a qualitative property that arises spontaneously in the system 
when it reaches a certain threshold of complexity), in which we 
share the opinion with [2]. 

Next, we focus on the following questions: 

1) What is more important for the emergent abilities – 
number of parameters or number of training tokens? - 
Part 1, 2 

2) Does the composition of source datasets effect on 
emergent abilities?  - Part 3 

3) Is there something in the language data that causes of 
emergent abilities? - Part 4  

In the analysis section we consider all these questions. 

II. ANALYSIS 

1. Model’s size 

In [2], the authors purposefully investigated of emergent 
properties of LLMs, i.e., properties not observed in smaller 
models. The authors show that specialized prompting can be 
emergent in that it only has a positive effect at a certain model 
scale – Fig. 3. 

Fig, 4 and 5 [1] also show that an increase in the number of 
parameters (in this case, GPT-3) directly affects accuracy on 
in-context tasks. 

 
Fig. 4 (Fig. 1.2. from [1] – Larger models make increasingly efficient use of 
in-context information) 

Also note that to achieve accuracy > 50% (aggregate 
performance across 42 benchmarks), the number of parameters 
must exceed 13B. However, the nature of the behavior of the 
model between 13B and 175B is not clear, as intermediate 
models have not been studied.  

A similar pattern of previously unobserved properties in 
LLMs, we see for 4 other LLMs (along with GPT-3): LaMDA 
[7], Gopher [3], Chinchilla [4], PaLM [5] – on Few-Shot 
prompted tasks – Fig. 6 [2]: 

A more detailed picture of the required model sizes for 
efficient occurrence of emergent properties can be obtained by 
analyzing Fig. 6 in conjunction with Table I. 

With the rarest exception – Gopher 7.1B on two types of 
tasks, T5 11B – on one task and GPT-3 13B on one task (and 
with very poor accuracy on them), the required model size is > 
40-50-60B.  

That is, emergent properties (properties not observed in 
models of smaller size) begin to appear significantly 
(significantly for the accuracy value), in most cases, in models of 
size larger than 40B-60B. 

A notable point is the fact that as the number of parameters 
of the same model increases and other things being equal, 
LLMs become able to solve few-shot prompting tasks on the 
inference stage, which they could not handle with a smaller 
model size. 

 

Fig. 5 (Fig. 1.3. from [1] – Aggregate performance for all 42 accuracy-
denominated benchmarks) 
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Fig. 6 (Fig. 2 from [2] – Eight examples of emergence in the few-shot prompting setting) 

We, like other researchers, have not considered in our 
research the influence of the nuances of the architecture of 
each of the models. All existing LLMs are Transformers, and 
at this stage of the development of research in this area, it 

seems to us that there is no mechanism to adequately take this 
into account. 

Therefore, we evaluated the models by the number of 
parameters, that allows us to draw some general conclusions

 

TABLE I. (TABLE 1 FROM [2]): 
LIST OF EMERGENT ABILITIES OF LARGE LANGUAGE MODELS AND THE SCALE 

(BOTH TRAINING FLOPS AND NUMBER OF MODEL PARAMETERS) AT WHICH THE ABILITIES EMERGE 
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about model’s global behavior on inference stage in few-shot 
and augmented prompting tasks. 

2. Dataset’s size 

We have not come across any direct studies on this issue, 
namely the influence of the size of data sets on the 
manifestation of emergence. 

However, we can estimate the order of the required data 
based on the datasets on which the LLMs discussed in the 
previous part 1 were trained. 

In the works on models themselves, it is not always clear 
from the available data on total dataset size what is the number 
of training tokens and in this part, we will follow [4] – Table 
II: 

Table II. (TABLE 1 FROM [4]) 

 

 Comparing the data of Table I and Table II, we notice that 
the larger models 137B-530B, with the number of training 
tokens from 168B to 300B, appear more often in Table I – 
displaying the manifestation of emergent properties. 

At the same time, Chinchilla [4] – a smaller model – 70B, 
but with a significantly larger number of training tokens 1.4T, 
does not show overwhelming superiority in Table I (that is, on 
the few-shot prompting and augmented prompting abilities we 
are interested in).  

It shows that the influence of the model size the emergent 
effect is more significant than the number of training tokens, 

Curiously, on many tests that do not include emergent 
abilities for inference, Chinchilla performs better than models 
with more parameters but fewer training tokens (Hoffmann et 
al., 2022). Although it is outside our scope of study. 

And to show emergence, the number of training tokens 
should probably not be less than a certain limit, which in the 
considered cases averages about 300B on GPT-3 – the model 
most often featured in Table 1 (but these data are not enough 
for more accurate estimates and question requires a separate 
study). 

3. Dataset composition 

Let's analyze the composition of the dataset for some of the 
models that appear in both Table I and Table II. 

GPT-3: 

The model that most often shows the best results in Table I, 
was trained on a large unlabeled text corpus – Table II. To 
what extent this factor can determine the manifestation of 
emergence is the material for a separate large study. 

 

 

TABLE II. GPT-3 DATASET (TABLE 2.2 FROM [1]) 

 

PaLM: 

PaLM train dataset include large multilingual corpus – text 
from more than 100 languages. – Table III. 

 
TABLE III. PaLM DATASET (TABLE 2 FROM [5]) 

 

LaMDA: 

It is initially focused on dialogue and therefore has a 
specific composition of dataset – Appendix E from [7]: 

«Pre-training data composition of LaMDA: The pre-
training data, called Infiniset, is a combination of dialog data 
from public dialog data and other public web documents. It 
consists of 2.97B documents and 1.12B dialogs with 13.39B 
utterances.  

The composition of the data is as follows: 50% dialogs data 
from public forums; 12.5% C4 data [11]; 12.5% code 
documents from sites related to programming like Q&A sites, 
tutorials, etc.; 12.5% Wikipedia (English); 6.25% English web 
documents; and 6.25% non-English web documents. The total 
number of words in the dataset is 1.56T.»  

According to Table I – LaMDA as well as GPT-3, it often 
demonstrates good results for augmented prompting abilities. 

Gopher: 

TABLE IV. GOPHER DATASET (TABLE 2 FROM [3]) 

 

Gopher MassiveText data makeup. For each subset of 
MassiveText, authors list its total disk size, its number of 
documents, and its number of SentencePiece tokens. During 
training authors sample from MassiveText non-uniformly, 
using the sampling proportion shown in the right-most 
column. 
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Chinchilla: 

TABLE V. CHINCHILA DATASET (TABLE A1 FROM [2]) 

 

Chinchilla MassiveText data makeup. For each subset of 
MassiveText, authors list its total disk size, the number of 
documents and the sampling proportion used during training– 
authors use a slightly different distribution than in Gopher: 
(Rae et al. (2021)). In the rightmost column show the number 
of epochs that are used in 1.4 trillion tokens. 

In general, the question of the influence of the dataset 
composition on the emergent abilities remains open. We have 
not seen unambiguous evidence, and although some comments 
can be made, which is done in this section, but there is an 
obvious need for more in-depth research. 

However, we can see that the Gopher – Table IV and the 
Chinchilla – Table V were trained on almost identical datasets.  

The difference in the number of training tokens: Gopher – 
300B, Chinchilla – 1.4T. 

Fig. 6 – Graph G – MultiTask NLU at few-shot settings is 
the only task in which Chinchilla (70B parameters) is better 
than other models, but it is ahead of Gopher (280B 
parameters) by no more than 6-7%. 

That is, with a dataset almost identical in composition, 
almost 5 (4.67) times the number of training tokens –          
1.4T training tokens in Chinchilla 70B parameters, against 
300B training tokens in Gopher 280B parameters (with the 
same training costs of about 10 in 24 degree of FLOPs) does 
not give a significant advantage (5 times more tokens and the 
gain in accuracy is only 0.06-0.07 – a difference of 2 orders of 
magnitude). 

Whereas Gopher has a model size of 280B prs (but with 
fewer tokens – 300B training tokens), which is 4 times more in 
the number of parameters than in Chinchilla, allows you to 
achieve almost the same results in few-shot prompting tasks. 

 
Fig. 7a. Examples of Zipfian distributions, Fig. 6a from [8]) 

Thus, larger number of parameters compensates smaller 
number of training tokens – it matches even the order of 
difference 4.67 times in training tokens versus 4 times in 
parameters. 

4. Language as a training set. 

Intuitively, the fact that the training of a language model 
should be done on a language dataset is obvious, since the data 
on which we train, the model must correspond to the problem 
being solved. 

But what should be the properties of the original dataset in 
order to observe the effect of in-context learning at the 
inference stage? Are they related at all? 

As shown in (Chan et al., 2022), in-context learning was 
observed under certain distribution properties of the training 
data themselves (and was not observed in their absence), 
namely when the model was trained:  

1. On data following a skewed Zipfian distribution – which 
is a common property of naturalistic data, including language 
– Fig. 7a, Fig 7b. 

2. When the data exhibits a property such as burstiness – items 
appear in clusters rather than being uniformly distributed over time. 

That is, a given entity (word, person, object, etc.) may have 
a distribution that is not uniform across time, instead tending 
to appear in clusters. 

3. When the data has a large number of rare classes. 

4. In-context learning also emerges more strongly when 
item meanings or interpretations are dynamic rather than fixed, 

That is, the “meaning” of entities in data, such as words in a 
language, can have many possible interpretations-polysemy, 
and synonymy-when a single value can correspond to a set of 
entities. 

All these 4 properties are present in languages (but are also 
inherent in other natural data, which opens a field for thinking 
about what other types of data it is possible to train LLMs on). 

III. CONCLUSION 

As a result of this analysis, two potential areas of possible 
further in-depth research were identified: 

 
Fig. 7b. Distribution of tokens in a natural language corpus, (Fig. 6b from [8]) 
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a) The influence of the composition of the language dataset 
on the occurrence and effectiveness of emergent abilities in 
LLMs (the available evidence does not allow unambiguous 
conclusions, while only to compile a series of observations, 
point 4 in this section). 

b) Determination of the lower bound on the number of 
training tokens required for observation of emergent abilities 
in LLMs at the inference stage (point 5 in this section). 

This analysis also allows us to make the following 
conclusions and observations: 

1. Learning from data comparable in complexity to 
languages is a critical moment for the appearance of emergent 
abilities in LLMs in the inference stage. 

2. The size of LLMs, namely, the number of the parameters, 
is more important than the number of training tokens on which 
LLMs were trained, which is observed both with the same 
(and different) datasets in general composition. 

3. Generally, model size should be greater than 40-50B for 
stable few-shot and augmented prompt effect, with high 
accuracy. 

However, in certain types of tasks this behavior can be 
observed from 7-13B sized models. 

As the number of parameters of the same model increases, 
and all other things being equal, LLMs become able to solve 
problems in inference (for few-shot, augmented prompt tasks) 
that they could not handle with a smaller model size. 

4. In general, the question of the influence of the 
composition of the language dataset on the manifestation of 
emergent abilities remains open. We have not observed 
unequivocal evidence, and the need for more in-depth research 
is clear, but although individual comments can be made: 

GPT-3 – the model most often showing the best results (for 
few-shot and augmented prompting), trained on a large body 
of unlabeled text 

LaMDA – initially dialogue-oriented and therefore has a 
specific dataset composition, as well as GPT-3, it often shows 
good results for augmented prompting abilities. 

5. Obviously, there is a lower bound on the required 
number of training tokens for observing emergence, and this 
bound should be, among other things, a function of the number 
of model parameters, but this issue requires a separate detailed 
study. Rough estimate of the average value ~ 300B training 
tokens for models in the parameter range from 175 to 530 B. 
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