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Abstract—High cost, time intensive work, labor shortages
and inefficient strategies have raised the need of employing
mobile robotics to fully automate agricultural tasks and fulfil
the requirements of precision agriculture. In order to perform
an agricultural task, the mobile robot goes through a sequence
of sub operations and integration of hardware and software
systems. Starting with localization, an agricultural robot uses
sensor systems to estimate its current position and orientation in
field, employs algorithms to find optimal paths and reach target
positions. It then uses techniques and models to perform feature
recognition and finally executes the agricultural task through
an end effector. This article, compiled through scrutinizing the
current literature, is a step-by-step approach of the strategies and
ways these sub-operations are performed and integrated together.
An analysis has also been done on the limitations in each sub
operation, available solutions, and the ongoing research focus.

I. INTRODUCTION

Owing to the benefits, the applications and adoption of

robots have tremendously increased over the last two decades.

Rapid advancements in technology and subsequent industrial

revolutions have stipulated the rise and capabilities of robots.

This is the reason that advanced robots are not only an integral

part of industries but are taking charge in all sectors like

services, agriculture, e commerce, healthcare, retail, construc-

tion, transport, defense etc. In the last decade from 2009 to

2019, the operational stock of robots in industries increased

by more than 166% [1] signifying the expansion of this field.

This evolution has also led to the development of several

fully functional human-less warehouses and factories which

is also known by the name of “lights out manufacturing”

[2]–[4]. Furthermore, an unusual increase (38%) has been

witnessed in the sale of personal and domestic robots from

2019 to 2020. The data suggests that this increase is expected

to continue following the same trend in the coming years with

a forecasted annual growth rate of 31% [1]. Georg and Guy

[5] studied this trend and evaluated that the reason is not only

the decrease in output prices but also it has been seen that

increased robot adoption has contributed towards increasing

the creativity, productivity and wages of labor.

Moreover, mobile robotics has currently become one of

the highly researched fields with the efforts ongoing since

1940s to develop an intelligent system with focus on imitating

animals [6]. The field has grown at a much faster pace

in the recent years thanks to the development of state of

the art sensor systems, advanced artificial intelligence and

highly sophisticated software tools like robot operating system

(ROS). Traditionally, robots were programmed to follow a

predefined sequence of actions in confined work spaces [7].

However, the field has now become much more challenging

and research oriented as mobile robots require intelligence

and autonomy to take smart actions in complex work-spaces.

A mobile robot is equipped with sensors and systems that

sense the environment and then a central processing unit

accordingly generates control signals for actuators to enable

locomotion. In such a way, a robot is capable of mapping

or remembering a previously unknown environment, localize

itself in this environment and move to target locations while

ensuring collision free operation [8].

Innovation in mobile robotics have made them an integral

part in all industries. Similar is the case for agriculture industry

where extensive research is being carried out to enable robots

to carry labor intensive tasks. In this regard, Mahmud et al. [9]

list out the current as well as future possible applications of

agricultural robotics which include planting, inspection, weed

control, spraying and harvesting. All of these are physical,

repetitive and time-consuming tasks that require intensive hu-

man labor. Robots are specifically intended to replace humans

in the 4D tasks which are dull, dumb, dangerous or dirty [10]

and thus are a perfect solution for the agricultural industry.

This is also the reason that the average age of agricultural

labor is increasing [11], indicating that these agricultural tasks

are now considered inferior and the younger generation is not

interested in them. This further signifies the need of research

and development of automation in agricultural tasks.

As per the economic point of view, labor accounts for

the major cost in agriculture, almost 38% of the total op-

erational cost [12]. Zahid et al. [13] discuss the need for

a robotic pruning system in an apple orchard because of

the unavailability of labor and its huge cost which accounts

for approximately 56% of the total variable cost in their

case. The research on agricultural robotics started in 1960s

mainly focused on the implementation of guidance systems

for agricultural vehicles. Later it was observed that computer

vision and GPS are the feasible solutions to achieve it [14].

In addition, food safety, environmental protection and sus-

tainability have become the major concerns in agricultural

sector. Increasing world population and food demand has led

to the introduction of “Good Agriculture Practices (GAP)”

and “Precision Agriculture” [15]. Robotics and automation
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are the underlying technologies that can enable precision

agriculture by fulfilling and adhering to the requirements of

correct information, observation, analysis, dose, place, time

and equipment [16]. Research has revealed that in future

agricultural robots shall not only minimize the operational

costs but also reduce wastes, fuel consumption, pollution and

environmental impact [17].

Traditionally, agricultural robots have been very expensive

with inefficient performance. However Post, Bianco and Yan

[18] attempted to build an affordable environment monitoring

agriculture robot using off the shelf hardware and open source

software. They were able to achieve it at a very affordable

price with reasonable efficiency and anticipated that in near

future machine vision based intelligent navigation stacks will

revolutionize the challenging farming operations at low cost.

The progress in artificial intelligence and the implementa-

tion of its models has drastically improved the performance

of agricultural mobile robotics and is producing promising

research outcomes. Saleem et al. [19] performed a systematic

review of the advancements in agricultural tasks performed

through machine and deep learning models and presented a

framework for an AI powered agricultural robot. According

to them, the choice of a machine or deep learning model

should be highly dependent on the agricultural task which is

intended to be performed by the robot. Correct selection of

models resulted in higher accuracy even exceeding 90% for

some agricultural tasks.

To perform a task e.g., weeding, pruning, harvesting, mon-

itoring etc. an agricultural robot goes through a series of

supporting tasks. Morar et al. [20] described the agricul-

tural robot as a structure of three components: locomotive

equipment, manipulating structure and end effector. For this

survey, Fig. 1, inspired by [21], presents a general structure

of supporting tasks that a robot performs in order to complete

the main agriculture task. This structure also gives an idea

of information flow between tasks and sensor systems. Thus,

to perform an operation (say weed control), a robot performs

the supporting task 1 to localize itself in an environment (an

agricultural field or greenhouse); plans a path and navigates

to target locations (safe navigation between rows of plants);

use systems and tools to gather data and detect parameters

relevant for the main operational task (image processing or

AI methods to distinguish plants from weed); and finally plans

the trajectory of the end effector or manipulator and performs

the task (a cutter or gripper to pluck out the weeds).

According to the author’s knowledge, there is no instance in

literature that cover all aspects and sub tasks which together

make an operative agricultural robot. Although, several review

articles are present but they only cover small parts of the

overall functionality. Hence, this survey shall contribute to

provide enough knowledge and explain the synchronisation

of all these sub tasks that make a complete and functional

robot for agriculture. The article is organized to sequentially go

through three sections of localization, autonomous navigation

and task execution. Each section covers the challenges and

limitations faced and provides an overview of the solutions,

ongoing research focus and prospects.

Fig. 1. Framework of an Agricultural Robot [21]

II. ROBOT SELF LOCALIZATION

For a mobile robot to navigate autonomously, it must

have real time information of its location within the work

environment. Localization and navigation, although closely

linked, are two separate tasks in mobile robotics. Localization

is the key problem that is necessary for a self driving robot to

be aware of its surroundings and successful navigation is then

dependent on it. It requires the timely availability of position

and orientation data of a moving robot with respect to a known

starting point.

A. Sensor Systems for Localization

From the current available literature, sensor systems that

have been primarily used in agricultural robotics for local-

ization include Global Positioning System (GPS), wheel en-

coders, visual odometry, Laser Imaging Detection and Ranging

(LIDAR), Inertial Measurement Units (IMUs) and beacon

based systems such as Infrared (IR), ultrasonic waves etc.

1) GPS and variants: Traditionally, global positioning sys-

tems (GPS) and compasses have been extensively used for

localization. With the availability of GPS for general ap-

plications in 1980s, the research in mobile robotics surged,

but the resulting systems were inefficient because of the low

accuracy and outages caused when the line of sight with the

satellite is blocked [22]. The introduction of differential GPS

(DGPS) [23] and real time kinematic GPS (RTK GPS) [24]

significantly increased the accuracy of GPS systems within a

centimeter but this research dates back to early 2000s.

2) Wheel Odometry: Wheel odometry has been often used

in mobile robotics in which wheel encoders are used for

localization [25]. However, wheel odometry has now become

irrelevant for agricultural tasks because of the inherent error

sources and wheel slippage [26]. These limitations led to the

development of more sophisticated localization technique of

visual odometry.

3) Visual Odometry: Visual odometry is an image process-

ing approach in which position and orientation is estimated

using a stream of successive images either from a monocular

(single) or stereo (multiple) camera system. The application of

computer vision-based sensors has gained commercial success
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in agricultural robotic applications [26], [27] for visual odom-

etry and point cloud data (PCD) formation. Presently, many

off-the-shelf machine vision-based systems [28] are available

that serve as a source of point cloud data. These sensors have

reasonable efficiency and are capable of use in both indoor

and outdoor agricultural robots. For instance, Beloev et al.

[29] employed Intel’s RealSense lineup of vision based depth

and tracking cameras for localization and mapping in their

precision agricultural robot.

4) Beacon Based Systems: Beacon based systems are an-

other form of localization methods for mobile robotics usually

based on infrared or ultrasonic/acoustic applications. In this

method, a set of two or more stationary beacons are placed

in the environment and another set of two mobile beacons

are placed on the robot. One set transmits waves which are

received by the other set and based on time the waves took

to travel between stationary and mobile beacons, position and

orientation of robot is estimated. Kostromins and Osadcuks

[30] utilized IR based beacons in agricultural robots and

achieved angular accuracy error of 2.89° and a localization

error below 7cm. Widodo et al. [31] used the same beacon

technology based on sound signals in an agricultural field

environment and were able to localize the mobile station

within 25mm of actual position.

5) LIDAR: LIDAR has been widely used for localization,

but it faces a huge challenge in agricultural field tasks because

of the unreliable detection of grass, leaves etc. [32]. For static

environments, 2D localization is sufficient. However, Le et

al. [32] suggested a completely online 3D version of LIDAR

odometry and mapping (LOAM), more suitable for agricultural

dynamic environments and proved its worth through simula-

tion and experimentation. Similarly, Weiss and Biber [33] also

highlight the advantages of 3D laser sensors for agricultural

tasks. According to them, 3D lasers are a more promising

solution to form a model of 3D environment also referred

to as 3D point cloud data (PCD). This PCD can be used to

detect individual plants and then localize the robot to perform

agricultural tasks. On the very same principle, Underwood

et al. [34] developed a 3D representation of orchard field

using 2D LIDARs and obtained perfect localization with an

accuracy of 98.2%. This was achieved using tree recognition

and matching from within an existing environmental model

using markov models based on the statistical and probability

theory.

From all the reviewed articles in this section, it can be

clearly seen that the trend in last two decades has moved from

GPS to LIDAR to computer vision based visual systems and

AI tools for robot localization.

B. Localization Methods and Strategies

1) SLAM: Localization of a mobile robot is mainly done

in a previously mapped environment. However, agricultural

environments are known for their uncertain and unpredictable

situations where parameters like terrain and landscape are

subject to continuous variability [35]. That is, a formed map

shall become irrelevant after continuous changes over time.

This raises the need for the methodology of simultaneous

localization and mapping (SLAM) for agriculture [36], [37]

where a mobile robot continuously forms and updates a model

of its environment while localizing itself. Lepej and Rakun

[38] analyzed the performance of two SLAM approaches

in an agricultural field and tested their feasibility for com-

plex agricultural tasks. Their experiments showed that image

registration based techniques performed better than Hector

mapping. It is to be mentioned that SLAM is an approach

that combines localization with continuous and simultaneous

mapping to optimize the locomotion of robot assembly which

makes it befitting for agricultural environments [37].

2) Sensor Fusion: With the development of precise sensors

and machine vision-based technologies, it has been observed

that standalone sensor systems are seldom used as a local-

ization tool, rather multiple forms of sensors are combined to

obtain higher accuracy. The combination of data from different

sensors in order to increase the accuracy of localization

is called sensor fusion. For instance, Bietresato et al. [39]

developed a mobile robot to monitor the health and volume

of plants using a combination of GPS and sonar sensors to

estimate the position. Particle Filter (PF) and Kalman Filter

(KF) are two localization algorithms extensively used in fusion

of sensor data for agricultural robot localization. Both the algo-

rithms have pros and cons with randomly varying performance

depending on the nature of agricultural task. For instance, PF

outperforms KF when navigating in an apple orchard rows

[40]. There are several other localization algorithms for sensor

fusion in agricultural environments, the accuracies of which

are compared time and again [41] but it is highly dependent

on real world conditions. Sensor fusion is extremely useful

to counter for the limitations of one form of sensor with

another type of sensor e.g., since vision-based systems have

high accuracy but struggle in variable light conditions, Wang et

al. [42] fused odometry and vision system’s data to localize the

robot in outdoor environments. Frequently, IMU data has been

noted to be fused with other sensor systems in agricultural

robots to improve localization [18], [43].

3) AI and Computer Vision: Recent advancements in com-

puter science and artificial intelligence have opened huge

prospects in mobile robotics. However, the field of application

of AI for self-localization in agricultural robots is still in the

early stages of development. AI tools are extensively being

researched upon to optimize the mapping and self-localization

specially in outdoor environments. Weinzaepfel et al [44]

developed a convolutional neural network (CNN) in which the

pose of mobile robot is estimated using only a single RGB

image. Given a reference image, the model can form a dense

set of 2D to 2D matches, giving a solvable Perspective-n-

Point (PnP) problem. Similarly, Cattaneo et al. [45] developed

a deep neural network which learned to localize the robot

by matching prior PCD data with real time LIDAR data. All

these techniques can significantly revolutionize the robotics

domain of precision agriculture. From the literature, it has

been observed that the frequency of articles focusing on AI

based localization of agricultural robot has grown significantly
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in recent years.

III. AUTONOMOUS NAVIGATION

With the timely availability of localization data, an agri-

cultural robot can plan and execute its motion within the

work environment. The objective is to implement an optimal

navigation algorithm that can find the most suitable path from

source to destination. In the area of agriculture mobile robots,

navigation and control is the most researched field [46]. Patle

et al. [47] performed an organized review of all the navigation

strategies and algorithms, the following three conclusions from

their study are concerning for navigation of agricultural robots:

the research on dynamic environments is very few compared to

static environments, research on navigation to a moving goal

in dynamic environment is very limited, and less literature is

available for multiple robotic systems in an environment as

compared to a single robot.

Agricultural environments are characterized by irregular-

ity of terrain and inconsistent surroundings making it a re-

quirement for the autonomous robot to timely adapt to the

environmental and kinematic changes without the need for

re-calibration [48]. The literature on agricultural navigation

dates back to 1990s where several attempts were made to

introduce autonomous guidance systems in tractors e.g. in [49]

a control and guidance system was installed in the tractor

which followed orchard rows and found the trajectory by es-

tablishing a relative relation between the tractor and rows and

then calculating the lateral and direction error. However, with

the progress in technology and availability of computational

resources, the research has surged in advanced navigational

sensors and algorithms [50]. As of 2021, visual navigation

is the most significant, feasible and researched solution for

agricultural robots [51].

A. Navigation Strategies and Methods

A robot comprises of two subsystems when looking from

the perspective of navigation: the physical control systems

such as the steering mechanisms and the computational system

consisting the algorithms and models responsible for planning

the locomotion [52]. Also, the computational subsystem is

responsible for controlling both the kinematics and dynamics

of the robot involved in navigation. Ortiz and Olivares [53]

described the kinematic and dynamic model used in the

development of a vision based navigation system for their agri-

cultural robot. Their robot was able to navigate autonomously

through speed control and path tracking by calculating the

deviation between a reference straight line and the available

path. A very similar approach is used in [54] where the authors

performed kinematic and dynamic modeling and simulation of

their robot in which the navigation is performed by minimizing

the camera offset with respect to a crop field track using

the nonlinear model predictive control (NMPC). Gao et al.

[55] developed a path planning algorithm for spraying in

orchards having an accuracy of 97.5%. They proposed to

use an RGB-D camera on their robot to acquire color depth

images. A segmentation model was used to detect the row

spacing and canopy height from the color depth image and

form a region of interest (ROI), the path is then planned

as a function of the spraying path to the midpoint of ROI.

In a similar experimentation, Ahmadi et al. [56] performed

row navigation for crop monitoring through simple camera

stream. The robot’s movement is controlled with the purpose

of keeping the row representing arrow close to the centre of the

image. However, in such an approach, the navigation method

has been generalized for fields containing strictly parallel rows

separated by a specific distance and the concept has not been

verified for complexities such as varying distance between

rows.

Moreover, Li et al. [51] mounted a stereo vision camera

on their robot and employed a novel AI approach. In their

setup, deep convolutional neural network was used to train

a model with set of images collected in the agricultural

field and an improved version of Hough transform method

then extracted a visual navigation path. Robot’s posture was

adjusted based on the correlation between the prior image and

actual scene. Aghi et al. [57] used a very similar approach as a

backup algorithm for their agricultural robot in which machine

learning algorithm was trained on previous image dataset to

use for visual navigation.

From all the available literature, it can be clearly seen that

over the years the research trend has moved towards AI based

navigation as it leads to better efficiency, accuracy and safety

of the equipment as well as the crop.

B. Path Planning - Obstacles Avoidance and Algorithms

The path planning of a mobile robot can be divided into

global and local planning. Global path planning is responsible

for finding the optimal path to target through prior infor-

mation of environment, whereas local planning, responsible

for activities like obstacle avoidance, has little or no prior

information of environment and must adapt readily. Local

path planning has to be optimized for agricultural robotics

because of the challenging dynamic environment [52]. Nguyen

and Le [58] developed a path planning algorithm highly

optimized for obstacle avoidance in applications of agriculture.

The algorithm is independent of global information and the

authors guarantee shorter path length and reliability. For a

better local planning, Aksamentov et al. [59] have used a

convolutional neural network to distinguish between vegetative

and non-vegetative obstacles, classify them as passable or

non-passable and then navigate accordingly. Similarly, Ball

et al. [60] developed a system of visually aided guidance

and navigation having novelty based obstacle detection. In

this novelty-based detection, prior PCD mapping and global

information is matched with the real time data and obstacle is

detected through novel image regions.

Gao et al. [61] provide a hierarchy of the path planning

search algorithms used in the wheeled agricultural robots.

Dijkstra’s algorithm is the most used algorithm in static

environments but has low efficiency as it traverses all points.

A* and D* are more optimized for static and dynamic environ-

ments respectively but are computationally expensive. Finally,
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authors suggest that the latest and immature Theta* and Phi*

algorithms are most suitable for agriculture as they are not

so complex, consume less computational resource and greatly

reduce error. In short, the research on optimal algorithms for

navigation is ongoing and is expected to continue with a

higher pace in future. Currently, the cost-map based approach

is most widely used in local and global path planning and is

also used in [60]. A cost grid representation is formed of the

environment where the obstacles have the highest values, and

the algorithm tries to find the path that sums up to the least

cost.

In efforts to develop optimized navigation algorithms for

agricultural robotics, Mingjun et al. [62] performed ex-

periments to compare the traditional local map based and

CRFNFP (Conditional Random Fields based near-to-far per-

ception framework) based navigation system and concluded

that CRFNFP enhances the robot’s ability to navigate through

long range crop fields with efficient paths. Santos et al. [63]

took an interesting approach for path planning in huge crop

fields. They took satellite images of vineyards and trained

their model to detect a vineyard from an image and extract

Occupational Grid Map. A topological map is then created

with delimited places and then a simple A* search algorithm

is used to find the optimal paths in the map avoiding the

delimited nodes.

C. Coverage Path Planning

Coverage path planning is considered one of the most

important aspects of navigation and entails that an agricul-

ture robot should cover the whole area with a continuous

and sequential operation and without overlapping paths [64].

Hameed et al. [65] numerically developed 3D side to side

coverage path planning approach and guaranteed that this

approach can cover the entire agricultural field with no over-

laps or skips even in rough terrains. Also, one important

objective of coverage path planning is to deal with complex

agricultural fields at a reduced operation time and increased

efficiency [52]. Davoodi et al. [66] studied the feasibility

of a group of agricultural robots for coverage planning and

monitoring. The field was segmented based on a distributed

density function and the robots were deployed to maximize

operations at areas of interest. They validated and verified

their work using simulation tools. Conesa-Muñoz et al. [67]

developed a mathematical model for path planning of multiple

robots for weed control. They used combinatorial optimization

problem to cover the entire area with optimal transitions

given that the field can be split into parallel tracks. All in

all, navigation is the key to the robotics field in precision

agriculture, with optimal path planning reducing work time,

total distance travelled [68], reduced fuel consumption and

less environmental impact [69].

IV. ACTIVITY PLANNING AND TASK EXECUTION

Once the robot has reached its target location after localiza-

tion and navigation, it can continue with its main agricultural

task like weeding, pruning, harvesting, monitoring etc. It

includes the detection of parameters that are specific for the

task and then using an end effector or specialized structure to

execute the task. For example, in a robotic pruner for apple

trees [13], the robot must reach the target tree, detect the

tree structure, localize the pruning point and then perform the

cut sequence using end effector. Considering the harvesting

operation of apples, the activity planning and task execution

can be subdivided into scanning, approaching, detaching and

storing. Fig. 2 [70] provides an overview of the sequence of

steps for apple harvesting.

Fig. 2. Sequence of the steps for task (harvesting planning and execution)
[70]

In view of this hierarchy of steps, a perfect coordination

between the robot platform, detection sensors/systems and

grasping mechanisms is required, which is a challenge for

agriculture robots [70]. Handling agricultural products is ex-

tremely complicated because of their sensitivity to environ-

mental and physical conditions, so they require gentle and

accurate operations [21]. Additionally, detection and precisely

reaching the correct position is the most difficult part in

agricultural robotics and therefore is still performed manually

[71] and significantly adds to the cost. Automation in this sub-

operation is the essence of agricultural robotics.
The concept of automated industrial tasks is old, however

the technology lagged because of the unavailability of sensors

and systems. Li et al. [72] in their review signified the

dependence of automated agricultural tasks on machine vision

based systems. Now that, abundant vision hardware [28] and

sophisticated software tools are available, the literature on

performing agricultural tasks through feature detection and

localization of fruits/plants etc. is maturing speedily. Gongal

et al. [73] have provided a comprehensive review of the

vision systems (B/W, color, spectral, thermal), features (color,

geometric, texture, integration of features) and classification

methods (K means clustering, KNN clustering, Bayesian clas-

sifier, neural network, support vector machine) used for fruit

detection and localization. After successful detection, the lo-

calization of fruit is done by 3D reconstruction of environment

using laser rangers, depth cameras, or stereo vision. In [73],

their data suggests that detection through integration of several

features, classification through support vector machine and

localization through laser range finder can help achieve higher
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accuracies. Overall, AI and image processing techniques are

solely the key methods to successful localization of the target

subject (fruit, weed etc). However, vision systems are highly

dependent on lighting conditions and is the biggest challenge

for object detection in agricultural environments.

The end effectors for agricultural tasks are completely

different from industrial ones and must be designed and

optimized according to the application [74]. The challenges

for end-effectors are:

• There is high variability in the shapes and sizes of end

products e.g., fruits, branches, plants etc

• The fruits and other vegetation are much softer and can

be damaged easily by gripper.

• Pruning and cutting end effectors require accuracy to not

damage nearby plants.

• The product may not be stable in a dynamic environment.

Eizicovits et al. [75] proposed a method to grasp objects of

variable shapes and sizes which can be extended to agricultural

environment. In their method, 3D PCD is used to form grasp

pose maps, such that agent perception capabilities are estab-

lished enabling the grasping of objects from precise locations.

Liu et al. [76] constructed models of end effector for vacuum

sucking and pulling tomatoes. They proposed that the studies

should be extended to incorporate the permissible extent of

tensile forces and suction into the operation of end effector.

In addition to conventional single arm manipulators, fol-

lowing alterations [77] have been observed in literature for

agricultural tasks:

a) Multi Arm Manipulators: They are primarily used to

reduce operation time. Lytridis et al. [78] have listed

all the relevant literature where multi arm manipulators

are used in agricultural tasks (mainly harvesting). It has

huge prospects such as approaching and grasping can be

done with one arm and cutting with the other arm. Also

such manipulators are extremely useful in environments

where there is a need of moving away obstacles (leaves

etc.) with one arm and grasping with the other.

b) Soft Manipulators: Their primary purpose is linked

with the safety of agricultural product and nearby ob-

jects. These manipulators are inspired by the aspects of

human hand such that the end products like fruits are

not crushed when grasped by the gripper [79], [80].

c) Parallel Manipulators: A single end effector is attached

to robot assembly through several arms. They have

been extensively used in agricultural tasks [81]–[83].

Although extremely complex, they offer high accuracy,

speed and payload capacity.

d) Redundant Manipulators: These manipulators have

high degree of freedom (DOF) to avoid any joint lim-

itations when reaching a target. They have abundant

applications in agriculture [84]–[86]. where they need to

avoid dense obstacles (leaves, branches etc.) in complex

environments.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Mobile Robots are now finding large scale applications

in agricultural sector, thanks to the advancements in sensor

systems and software. This research field is important as it

not only contributes towards reducing costs, labor shortages

and work time as well as preserves environment by reducing

waste, pollution and fuel consumption. This paper followed

through the series of sub tasks that a robot goes through to

perform a main agricultural task such as harvesting, pruning,

monitoring etc and provided sufficient knowledge on these

aspects through reviewing the current available literature.

Localization and pose estimation is an essential prerequisite

and extremely challenging because of the unstructured nature

of agricultural environments. Several sensor systems and a

number of algorithms are available that are capable of highly

accurate localization. However the challenges of dynamic envi-

ronment and inconsistencies have raised the need of improved

localization methods and thus extensive research is being

carried out to come up with agriculture specific localization

methods. Current research focus is the fusion of tested AI tech-

niques with more precise 3D reconstruction (through LIDARS,

depth cameras etc.). In future work, researchers are focusing

on coming up with advanced AI methods such as semantic

segmentation of tress, fruits etc and then incorporating this

data into forming maps. The resulting SLAM approach with

dense maps is expected to have highly improved localization.

Abundant literature is available on the navigation and path

planning phase. Most of the agricultural robots navigate by

detection of rows in crop fields and are incapable of planning

paths through complex areas. That is why, the recent focus

has been to use AI with vision systems to execute intelligent

path planning and optimize obstacle detection. Currently, the

systems detect neglect-able obstacles such as grass, leaves and

branches that needs to be solved in order to further shorten the

travelling paths. Also, some applications (seeding, monitoring

etc) require full farm area coverage that is a potential area for

algorithms’ improvement.

The final and most important steps of object recognition

(e.g., fruit detection) and task execution requires complete

and perfectly synchronized system integration. The parameter

detection phase is done through vision systems and machine

learning but faces a huge challenge of light variability in

environment. Research on end manipulators is also needed to

come up with human-hand like tendencies to deal the product

appropriately no matter the softness, shape or size. Various

configurations of end effectors and manipulators are discussed

that are developed for agricultural specific tasks but these are

still far from natural levels. Finally, a stronger relation should

be developed between the cost, time and labor savings as an

incentive of agricultural robots for precision agriculture.
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