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Abstract—Modern cyber-physical systems can be defined as
distributed systems for processing data from various sensors,
while the distribution is provided by a data transmission network.
With the complexity of the hardware base, the components
of such a system can be executed on minicomputers running
the Linux operating system, and solve problems of routing
packets and processing them in order to determine software-
defined routes. Accordingly, such systems are subject to attacks
from outside, which can lead to anomalies in the operation of
network subsystems. Therefore, it is necessary to have systems
for detecting anomalies in real time, and such tools must be
lightweight since the performance of minicomputers is limited.
In this paper, we consider a solution for processing network
packets at the second OSI level and building detectors based on
Markov chains of variable order as well as traffic classification
using self-organized Kohonen maps. These solutions are based
on well known fundamental works by Russian and Finnish
mathematicians and computer scientists, their modern practical
applications, so we describe all the used concepts. We present all
necessary architectural solutions and algorithms. As a result,
we offer a free software solution for Linux as the basis for
implementing effective intelligent firewalls. The solution inside
is based on a Netfilter hook and packet mmap.

I. INTRODUCTION

Firewall software can be considered a collection of compo-

nents located between two networks, that filters traffic between

them according to some security policies and rules [1]. The

Gartner company defines the concept of next-generation fire-
walls (NGFWs) as deep-packet inspection firewalls that move

beyond simple port/protocol examination and blocking to add

application-level inspection, intrusion prevention, and bringing

intelligence from outside the firewall [2]. Accordingly, today

we are usually talking not about separately operating firewalls,

but about integral intrusion detection systems. A review on this

topic is presented, for example, in [3]. It can be stated that such

systems are subdivided into those constructed on the basis of

signature analysis and those based on the analysis of network

traffic anomalies. In this case, some sharp difference in the

behavior of the analyzed system from an expected pattern is

considered an anomaly.

From our point of view, the analysis of anomalies could

be more promising, since, in addition to simply calculating

signatures for traffic, it is also necessary to control its variable

nature with respect to acceptable behavior.

Having experience in the development of network informa-

tion systems for Linux, as well as dealing with the reliability

of cyber-physical systems according to their formalized de-

scriptions [4], taking into account that insufficient attention

is paid today to the mathematics and internal architecture of

solutions for anomaly detection systems, we set ourselves the

goal of writing this article.

To access traffic and implement basic firewall functionality,

we consider the corresponding Linux subsystem such as

Netfilter [5] that provides all the necessary means. However,

in order to analyze traffic in real-time, it is necessary to ensure

its fast transmission to user space and the use of queues.

Such architectural issues need to be modeled on appropriate

diagrams before implementation.

For effective analysis of anomalies in traffic, it is necessary

to get its representation in the form of a vector or formal

system. Today there is a lot of works that use Markov chains

for traffic analysis [6]–[8]. In the current work, we follow

these approaches and use TCP flags to represent an traffic

image, with all the mathematics and implementation issues

discussed. However, in order to effectively rebuild adequate

models, it is also necessary to apply additional means, in

particular, the variational order and probabilistic suffix trees

[9], which are discussed in detail in this work. An alternative

to considering automata models for processed traffic could

be the use of machine learning methods. However, for the

sake of greater efficiency, we propose to use a certain set

of statistical metrics that can be easily calculated for traffic

in a normal environment, and then cluster current captured

traffic and calculate a possible anomaly based on this. As for

a method of clustering and finding the nearest vector to a given

representation, we propose the usage of the concept of self-

organizing maps. This bio-inspired formalism was introduced

in 1982 [10] and there are still not many works in this area,

which makes it interesting to study and apply in a real project.

The overall architecture and live demo of discussed software

were presented at ICIN-2022 conference [11]. Some initial

ideas were registered in a public software register [12].
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The present article has the following structure. The writing

starts on preliminaries. In Section II, we review all required

information on TCP connections. In Section III, we review

necessary mathematical methods, in particular, the ordinary

Markov chains, variable-order Markov chains, probabilistic

suffix trees, and Kohonen self-organized maps. Then we move

to the discussion of implementation-related issues. In Section

IV, we review the Netfilter framework. In Section V, we

describe all the necessary algorithms to make the firewall

operational. Finally, we examine some related work in Section

VI, turn to the evaluation in Section VII and conclude in

Section VIII.

II. PRELIMINARIES IN TCP CONNECTIONS

The state of a TCP connection is characterized by a set of

flags (SYN, ACK, PSH, FIN, RST, URG) located in the TCP

segment header [13]. The process of starting a normal TCP

session referred to a “handshake” [14], which consists of three

steps in general.

1) A client that intends to establish a connection sends a

segment with a sequence number and the SYN flag to a

server.

• The server receives the segment, remembers the

sequence number and tries to create a socket (buffers

and memory control structures) to serve the new

client.

• If successful, the server sends to the client a segment

with a sequence number and the SYN and ACK

flags, and enters the SYN-RECEIVED state.

• If unsuccessful, the server sends a segment with the

RST flag to the client.

2) If the client receives a segment with the SYN flag, then it

remembers the sequence number and sends the segment

with the ACK flag.

• If it receives the ACK flag at the same time (which it

usually does), then it goes into the ESTABLISHED

state.

• If the client receives a segment with the RST flag,

then it stops trying to connect.

• If the client does not receive a response within

some seconds, then it repeats the connection process

again.

3) If the server in the SYN-RECEIVED state receives a

segment with the ACK flag, then it transitions to the

ESTABLISHED state. Otherwise, after a timeout, it

closes the socket and enters the CLOSED state.

Completing a connection can be considered in three steps:

1) The client sends the FIN and ACK flags to the server to

terminate the connection.

2) The server sends the ACK, FIN response flags to the

client, indicating that the connection is closed.

3) After receiving these flags, the client closes the connec-

tion and sends ACK to the server in confirmation that

the connection is closed.

The general connection establishment and disconnection

scheme is depicted in Fig. 1.

Fig. 1. A TCP connection establishment and termination scheme

Thus, any deviation from the sequence of TCP flag states

indicates some abnormal behavior. For example, the so-called

“Stealth FIN scan” [15] is a type of TCP scan or traffic forgery.

An attacker tries to close a non-existent server connection.

This is an uncertain situation, but protocol stack implemen-

tations sometimes produce different results depending on

whether the service is available. As a result, the attacker can

gain access to the system.

Since we are dealing with states and transitions when

describing how connections work, we can talk about modeling

traffic behavior using probabilistic finite state machines [16].

In this case, a greater modeling ability is achieved than when

using trivial frequency methods. Raw data is viewed as a

stream of discrete events, such as TCP connection states. The

goal is to get an automaton that simulates the specified se-

quence of events. Such an automaton can be a characteristic of

many passed sequences. By the construction, the probability of

the next symbol, element or signal depends on some previous

elements. However, it often depends on only a small number

of the previous ones. This suggests the idea of modeling them

using Markov chains. Figures 2 and 3 show examples of such

first-order chains for the HTTP and SSH protocols from [17].

We can state that the switching of the TCP flags for different

activities differs quite significantly. Therefore, such transition

systems and accumulated probabilities can be used as a traffic

representation for further assessment of the acceptable or

unacceptable state of the network system.
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Fig. 2. A Markov chain for HTTP [17]

Fig. 3. A Markov chain for SSH [17]

III. PRELIMINARIES IN RELATED MATHEMATICS

A. Markov chains

1) Ordinary Markov chains: A Markov chain is a sequence

of random events with a finite or countable number of out-

comes, characterized by the property that, loosely speaking,

when we fix the present, the future becomes independent of

the past. It is named after the Russian mathematician A.A.

Markov [18]. In his book written in old Russian alphabet, he

proposed to calculate probabilities between the appearance of

letters in a famous poem by A.S. Pushkin using it as big data.

A sequence of discrete random variables {Xn}N≥0 is called

a simple discrete-time Markov (or Markovian) chain if

P(Xn+1 = in+1|Xn = in,Xn−1 = in−1, . . . ,X0 = i0) =

P(Xn+1 = in+1|Xn = in)

Matrix Pi j where Pi j ≡ P(Xn+1 = j|Xn = i) is called the

matrix of probabilities of system transitions from state i to state

j at the n-th step, and the vector p = p(p1, p2, . . .)
T , where

pi ≡ P(X0 = i) is called the initial distribution of the Markov

chain. The matrix of transition probabilities is stochastic, that

is ∑ j Pi j (n) = 1,∀n ∈ N [19].

Thus, in the simplest case, the conditional distribution of

the subsequent state of the Markov chain depends only on the

current state and independent of all previous states (in contrast

to the Markov chains of higher orders). As the chain order

increases, the number of states of the corresponding automaton

behaves as O(SL), where S is the size of the alphabet of

characters and L is the order of the chain. Such models have

proved popular for economic analysis [20].

2) Markov chains of variable order: If we would like to

take into account transitions not only just from previous state

but from a set of previous states, we should use variable order

Markov chains and the concept of probabilistic suffix trees.

Let A = {0, 1, . . . , N −1} be the state space of cardinality

2 ≤ N < ∞, xk
1 = (x1, . . . , xk), xk

1 ∈ Ak – a sequence of charac-

ters (string) of k elements, x j
i = (xi,xi+1, . . . ,x j) – a fragment

of string xk
1 with the number of elements

∣∣∣x j
i

∣∣∣= j− i+1, 1 ≤ i,
j ≤ k, i≤ j, (Xt ∈ A)t∈Z – a homogeneous Markov chain of the

s-th order with the probability matrix of one-step transitions

P =
(

pxs
1, xs+1

)
,

pxs
1, xs+1

= P(Xt+1 = xs+1|Xt = xs, . . . ,Xt+s−1 = x1)

A Markov chain (Xt)t∈Z is called a Markov chain of variable

order s if its probabilities of one-step transitions have the form:

pxs
1, xs+1

= qxs
s−l+1, xs+1

0 ≤ qxs
s−l+1, xs+1

≤ 1, l = l (xs
1), xs+1

1 ∈ As+1, l ∈ {0,1, . . . ,s}

l (xs
1) = min{k : P(Xt+1 = xs+1|Xt = xs, . . . ,Xt+s−1 = x1) =

P(Xt+1 = xs+1|Xs = xs, . . . ,Xt+k−1 = xs−k+1)}
The last relation means that the probability of a transition

to a state Xs+1 does not depend on all s previous states,

but only on l (xs
1) states. In addition, the publication [21]

defines a context function c(xs
1) = xs

s−l+1 that maps a chain

of l significant states or a context to a chain of previous

states (denotes that only some values from the infinite history

are relevant). l(.) = |c(.)| is the context-length. Other related

models may have a set of parameters to describe a conditional

order [22].

The context function c(.) and function l(.) can be conve-

niently represented in the form of a rooted tree, which is called

a probabilistic suffix tree (PST) [23] or a context tree [21].

Each node in such a tree can have at most N descendants since

each node (except for the root) corresponds to an element

from the state space A. Each value of the context function

corresponds to a branch of the tree. Note that if each vertex

of the context tree that is not a leaf has exactly N descendants,

then such a context tree corresponds to a fully connected

Markov chain of the s-th order. Such a context tree is called

a maximal context tree [21].

To work with Markov chains, it is necessary to determine

what the states will be, as well as how they are encoded. The
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states of a TCP connection are characterized by a set of flags

in the TCP packet header: SYN, ACK, PSH, FIN, RST, URG.

From here we can define a set of states: S = {Si}, where

Si = SY N + ACK ·2 + PSH ·4 + RST ·8 +

URG ·16 + FIN ·32

3) PST Construction Algorithm: For a subsequence of

characters s, P(s) is the relative number of occurrences of s in

this sequence, P(σ |s) is the relative number of occurrences of

σ in the string after s. That is, if m is the length of the string

r, and L is the maximum length of s, then, defining χ j(s) as

1, when r j−|s|+1...r j = s and 0 otherwise, we have [24]:

P(s) =
1

m−L+1

m−1

∑
j=L

χ j (s)

P(σ | s) =
∑m−1

j=L χ j+1 (sσ)

∑m−1
j=L χ j+1 (s)

If there are m′ strings of length l ≥ L+1 in total, then

P(s) =
1

m′ (l −L+1)

m′

∑
i=1

m−1

∑
j=L

χ j (s)

P(s) =
∑m′

i=1 ∑m−1
j=L χ j+1 (sσ)

∑m′
i=1 ∑m−1

j=L χ j (s)

The operation of the PST construction algorithm depends

on the following parameters: L is the maximum length of

state labels, n is the upper limit of the number of states.

The algorithm starts from a tree with one root ε . Then the

following nodes are added to the tree, which, in our opinion,

should belong to it. Thus, a node labeled s becomes a leaf

of the tree if the empirical probability P(s) is not negligible,

and for some symbol s the empirical probability P(σ |s) differs

significantly from the empirical probability P(σ |su f f ix(s)) of

getting it after the suffix s, that is, s is the defining context

for σ [25]. The algorithm terminates its work if there is no

longer a leaf for which the above conditions are true or the

limit on the maximum tree depth L is reached.

The algorithm also uses an auxiliary set of values: ε0, ε1,

ε2, ε3, and γmin, they are functions of ε , σ , n, L, and |s|.
The algorithm:

1) Initialize T ′ with one node ε and set S′: S
′
=

{σ | σ ∈ S, P(σ)≥ (1− ε1) · ε0}.

2) Until S’ is not empty, execute: select any s ∈ S′ and

• remove s from S’;

• if there is σ ∈ S such that P(σ |s) ≥ (1+ ε2) · γmin

and at the same time
P(σ | s )

P(σ | su f f ix( s ) ) ≥ 1+3ε2, then

add a node labeled s to the tree;

• if s < L, then for each σ ′ ∈ S: add the string σ ′ to

S′.
The peculiarity of this task is the need for adaptive modi-

fication of the suffix tree. To provide the model with certain

adaptability, an algorithm is proposed for changing the empir-

ical probabilities so that the contribution of the earlier ones

decreases with each step. Then later examples will be taken

into account with large weights, and it will be possible to

simulate the “forgetting” of the earlier examples [26].

It is necessary to carry out this operation for some sequence

q0...qN , modify the probabilities of only those nodes that are

descendants of nodes with labels qi and the tree root on the

path of searching for a given string sequence from the tree

root. Let us set a certain learning coefficient α . Then the

probabilities of tree nodes can be modified as follows:

P′ (qi) = P(qi)+α ·P(qi)

where P′ (qi) is the new value of the probability of the node

labeled qi, P(qi) is the current value of the probability. Next,

one should modify the probability for other neighboring nodes

using the following formula:

P′ (s) = P(s)− α ·P(s)
|Σ|−1

where P′ (s) is the new value of the probability of the node

with the label s, P(s) is the current value of the probability,

|Σ| is the cardinality of the alphabet of labels(states).

The calculation of probabilities according to such rules

makes it possible to reduce the influence of earlier examples

and at the same time, take into account more recent ones with

greater weight. The value of the coefficient α controls the

speed of forgetting: large values will lead to fast forgetting,

while values close to zero will lead to slow forgetting.

4) Calculation of anomalous sequence of TCP connection
states: Having built a PST tree for examples of TCP con-

nections (that is, having trained the system), it is easy to

use it to determine the probability of a sequence of TCP

connection states now in the anomaly detection mode. Having

obtained the value of a given probability, and taking its natural

logarithm with the opposite sign, we obtain the value of

anomaly for a given sequence. Consider an algorithm for

finding the probability of generating a certain sequence of TCP

connection states.

Let there be some sequence q0...qN−1 of TCP connection

states. First, we need to initialize the context c {c0, ..,cL−1}
with a length equal to the depth L of the PST tree. For the

algorithm to work, the index i is also required as the current

index in the sequence q, and some index j as the index of the

last added state to the context c. Node is the current node of

the tree (initial value is the root of the tree), p is the transition

probability, P is the sought-for probability of generating row

q.

The algorithm which is based on [21], [24], [26]:

1) i: = 0, j: = 0, P: = 1;

2) While i �= N:

a) if j �= L, then c j = qi, j := j+1; otherwise, shift the

entire sequence of states back one position, cL−1 :=
qi;

b) p := the probability of going from the Node to a

child node whose label is c j;

c) P := P∗ p;
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d) if Node has a descendant of Node′ whose label

is c j, then Node := Node′, otherwise Node := the

root of the tree;

e) i := i+1.

Of course, it is not always possible to know the state of

the traffic. For example, current trends in high-load systems

are the session rejection and work through UDP [27], so we

need to take into account different methods for general passing

traffic by classifying it.

B. SOM or Kohonen maps

A self-organizing Kohonen map (SOM) [28], [29] is an

unsupervised competitive neural network that performs the

tasks of visualization and clustering. The concept of SOM was

proposed by a Finnish scientist Teuvo Kohonen as a result of

ideas based on the fact that areas in the human brain are found

that perform specific functions. All this refers to bio-inspired

AI and attempts to find a single algorithm for the functioning

of the brain [30]. Neurons in such areas (maps revealed in

the EEG process) perform similar actions, which gives reason

to think not only about training artificial models of neurons

to respond to input signals, but also to take into account the

topology of the network, that is, the location of neurons. As

a result, Kohonen decided to create his own model, where, in

addition to adjusting the weight of the neuron most suitable

for the signal, the weights of the nearest (according to the

given topology) neurons are adjusted. It can also be said that,

mathematically, as a result of network training, the dimension

of a large data set with non-linear connections is narrowed

down to a dimension that allows describing the topology:

SOM : X ×W → N (Y )

where X = {x}k, x ∈ R
n is the sequence of k input vectors

each of size n, N (Y ) is the topological space for so-called

generalized medians [29, p. 107] of the set Y = {y}|N |, y ∈
R

n, W is the set of internal weights of the map of the same

cardinality as Y.

Initially, the dimension of the input data is known, according

to which the initial version of the map is built in some way.

In the process of training, the map approaches the input

data and reveals the generalized medians. We can assume

that the weights of the networks here are weights in the

physical sense, bending the location plane like a hammock and

affecting neighboring neurons. The cyclic learning process,

which iterates through the input data, ends when the map

reaches some admissible error, or after the specified number

of iterations has been completed. The training of SOM can be

divided into the following stages:

• Initialization of the layer, that is, the initial setting of the

vectors of weights for the nodes in the map.

• Loop:

1) Selecting the next observation (a vector from a set

of input data x).

2) Finding the best matching unit (BMU, or winner)

for it as the node on the map whose weight vector

is the least different from the observation(according

to a metric, most often Euclidean).

3) Determination of the number of BMU neighbors

in N within the radius R and then training (by

changing the weight coefficients in W ) the BMU

vector and its neighbors in order to bring them

closer to the observation.

4) Modifying the learning rate.

5) Determination of the error for the SOM.

In this case, to modify the weight coefficients wi, the

following formula is used:

wi (t +1) = wi (t)+G · (xi −wi (t))

where t denotes the number of the training epoch, G is the

training coefficient (initial value 0.2 - 0.9), x is an image.

The coefficients of all neurons, the centers of which inside

the circle of radius R, are modified the more, the closer the

neuron is to the BMU neuron:

G = e
− (d0−d)2

γ2

where d0 is the distance from the winner neuron to the image,

d is the distance between the current neuron with a center

inside a circle of radius R and the image, γ is a parameter.

With regard to the problem of classifying traffic flows, an

“image” can be a certain set of statistical data characterizing

the traffic flow, that is, a certain vector of dimension n.

During the work, in real time, we have to calculate some

metrics for the traffic and use such metric for the clustering

and anomaly detection. So, SOM can be used to obtain the

generalized medians of the traffic for further classification (for

such classification we do not use the content of the traffic!),

and we represent all traffic by vectors of integers X = {x},

x ∈ Z
10. In this work, we use a tuple

X = (Savg,Nsp,Nl p,Ntcp,Nud p,Nicmp,Nf ,Nsrc,Ndst p,Nin)

of the following elements selected after series of internal tests:

• Savg – average packet size;

• Nsp – number of small packets;

• Nl p – number of large packets;

• Ntcp – number of TCP connections;

• Nud p – number of UDP packets;

• Nicmp – number of ICMP packets;

• Nf – number of fragments;

• Nsrc – number of different IP sources;

• Ndst p – number of different destination ports;

• Nin – number of inactive TCP connections.

As applied to our anomaly detection problem, the input

vectors X are also complemented by the target anomaly value

Xa = X ∪Alevel ∈R for a given traffic representation, which is

set during training. That is, the analyst decides which traffic

is anomalous and which is not and ensures the generation

of a set of vectors Xa by, for example, working in the

network or running traffic generation scripts. Accordingly, the

Alevel values, which are taken from the generalized medians
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Ya =Y ∪Alevel after the network has been trained on the input

data Xa, will be the most typical anomaly values for the

traffic. Having calculated the metrics for any current traffic

in real time, we can find the vector y ∈ Y closest to it, take

the corresponding Alevel value and thus determine the current

anomaly value.

To visualize traffic representations (see, for example, the

literature [31], [32] for examples of visualizations of Koho-

nen maps for different domain areas), one can draw a two-

dimensional table, each cell of which will be the generalized

median of Ya after the network has been trained. The anomaly

value can be used as the color of the corresponding cell.

IV. PRELIMINARIES IN NETFILTER

Netfilter [5] is one of important frameworks within the

Linux kernel that allows advanced users to pass or filter

network packets based on their headers and data. For users,

rules for handling packets of special interface, direction and

protocol can be obtained using the iptables command-line

tool [33]. For kernel developers, Netfilter offers an API for

defining so-called hooks (a code that runs to process some

data at some time) in the form of a special kind of C-function

of a kernel module. It will be called (see Fig. 4) when each

packet passes through the Linux network subsystem according

to a given direction (input, output, forwarding), IP protocol

(IPv4, IPv6) and priority, which allows developers to insert

own handlers both before and after NAT. Such a function has

access to the raw data of passing network packets (of MTU

size like 1496 bytes) in the form of frames of the second-level

of the ISO/OSI model [34], represented by struct sk buff [35].

The WFP framework [36] which was later offered for modern

Windows versions, works in a similar way.

Fig. 4. A call stack for a Netfilter hook

Each such MTU-sized frame is embedded in each other

representing a “matryoshka” and containing protocol head-

ers (Fig. 5). The header data can be extracted using the

corresponding functions in the form of C structures for the

necessary protocols. Inside a lower layer header exists an

upper layer header with a protocol number, and using this

information, one can further convert the header data to the

corresponding structure. Thus, by registering a hook function

and analyzing the headers (and possibly data), one can decide

what to do next with this frame: to skip it for further processing

or drop it at this level.

The approach is demonstrated in the following listing, which

is implemented in a separate kernel module (we use Linux

kernel 5.2.11):

#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/ip.h>
static struct nf_hook_ops nf_ops_out;

//module starting point
int init_module(void) {
//hook function
nf_ops_out.hook = main_hook;
//for IPv4 traffic
nf_ops_out.pf = PF_INET;
//for input traffic
nf_ops_out.hooknum = NF_INET_LOCAL_IN;
//first priority among other hooks
nf_ops_out.priority = NF_IP_PRI_FIRST;
//register in the kernel
nf_register_net_hook(&init_net,
&nf_ops_out);
return 0;
}

//a hook function
unsigned int main_hook(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *state) {

//if needed, check an interface
//of interest
//for example, input state->in->name

//obtain an IP header
struct iphdr *ip_header;
ip_header = (struct iphdr*)
skb_network_header(skb);

//process skb packet data and/
//or its headers
//(directly here, or transfer to
//user space)
//possible update the classifier later

//make a decision for a packet(frame)
//using the previously built classifier
if (...) {
//accept this frame
return NF_ACCEPT;
} else {
//or drop this frame
return NF_DROP;
}
}
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Fig. 5. A frame to process by Netfilter

Fig. 6. Proposed architecture [11]

V. IMPLEMENTATION OF OUR SOLUTION

A. System architecture

For effective implementation and fulfillment of the set

goals, our solution has a ”kernel module ↔ application“

architecture. The kernel module collects interesting network

packets and applies firewall rules, while the application in

user space is a multi-threaded application that implements the

graphical interface, and the logic of training and operation of

detectors for packets received from the kernel. This solution is

a compromise and it gets rid of potential errors would leading

to a crash of the entire system when implementing all logic

in kernel space and performance losses if we implemented

everything in user space and used tcpdump [37] to get traffic

and iptables for firewall rules. We propose the architectural

diagram of the developed system, which is shown in Fig. 6.

In the kernel module, traffic packets are intercepted using

the Netfilter library extension implemented as discussed hook

functions. Then, header data of the network and transport

layers is extracted from each frame, which is then compared

with the list of firewall rules, and depending on the rule, it

is dropped or passed to the destination address. Also, copies

of all frames are sent to the anomaly detection system (ADS)

through a special character device driver (kernel ↔ user space

memory map). The latter system ”mines“ firewall rules using

two detectors, the mathematics behind which was discussed

earlier.

B. Efficient transfer kernel-userspace

Some known approaches to fast transfer captured network

frames from the kernel space to user space are described

in [38]. We follow the packet mmap technique [39]. The

architecture for intercepting and processing the frames of

traffic is presented in Fig. 7. In our case, we set up a memory

map so that copying the frame data to further process is done

with a simple memcpy call. A frame comes from the Linux

kernel to our kernel module where we have installed the hook

function for it. In the function we check the next free space in

our ring buffer and we copy the frame content into it. On the

other hand, at the level of user space, we have some threads to

process new frames from the ring buffer. So, we have a kernel
data reader thread who checks its last read index and if there

are some new frames then it pushes them to a queue and fires

a special conditional variable. There is another thread packet
receiver who checks this variable and pops all new frames

and passes them to anomaly detectors. The usage of the ring
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Fig. 7. Transferring and processing packet data [11]

buffer and queues in our architecture guarantees that if the

packet receiver was not able to receive new packets, the buffer

will not overrun and the hook function will just overwrite old

packets into new packets in the buffer.

C. Implementation of the kernel module and ADS

Figure 8 shows a state diagram of the kernel module (can

be run at the logical place of the last ’if’ in the Netfilter

code listing). It should be noted that since we are dealing

with packets at the second level of the OSI model, then

we are dealing with a large number of frames, but not pure

TCP connection data (they are available at the next level). To

establish that packets belong to the same TCP connection, we

use TCP flags and data on input-output ports and addresses,

which allows us to build a table of connections in the rb tree

structure.

In ADS, packets are loaded from the mmap device, then

data from the network and transport layers of the OSI model is

extracted from each packet. Later, this data is analyzed by two

subsystems: TCP anomaly detection subsystem, based on the

variable-order Markov chain model, and a traffic flow anomaly

detection subsystem based on the Kohonen self-organizing

map model. These subsystems, in case of detecting suspicious

activity, generate new rules for the firewall and send them to

the kernel module using a netlink socket.

D. Implementation of anomaly detection using Markov chains

At initial initialization, Markov Detector builds a suffix

tree based on various examples of TCP protocol operation

Fig. 8. Operation of the kernel module

(sequence of connections), trained using some user interface.

Then, according to the sequence of states of each connection,

the anomaly score or logarithmic value of the probability of

occurrence of this sequence is calculated according to the suf-
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fix tree, after which, when the anomaly threshold is exceeded,

a new firewall rule can be generated. The operational scheme

is depicted in Fig. 9.

Fig. 9. A simplified scheme of the Markov Detector

E. Implementation of anomaly detection using Kohonen maps

At the initial initialization of Kohonen Detector, the SOM

layer is trained based on examples of abnormal and normal

traffic in the network. Then, traffic flow statistics are collected

for F packets, after which the abnormality of this flow is

determined using discussed techniques. When the specified

anomaly threshold is exceeded, a new firewall rule can be

generated. The operational scheme is depicted in Fig. 10.

Also, these subsystems are adaptive: they are capable of

additional training and marking a false alarm.

VI. RELATED WORK

Classical intrusion detection systems like Bro [40] and

STAT [41] based on signature methods (rules, policies and

signatures in the form of transition systems encoded in special

languages) have been known for a long time. The newest

systems, in turn, use machine learning methods [42], including

genetic algorithms and deep learning networks. However,

there are some performance issues [43] when using such

methods. Therefore, most lightweight systems use, like ours,

Fig. 10. A simplified scheme of the Kohonen Detector

counting statistics and clustering traffic views. The question

remains, which parameters to use for traffic representation and

statistics calculation. Prospective studies also consider fractal

dimensions for this [44].

A general study on network anomaly detection techniques

is published by the Hawkins team [45] and a benchmark for

such detectors was proposed [46].

VII. EVALUATION

Fig. 11. A Kohonen map visualization build based on real traffic

As a result of the work, demo software was implemented

by us in the form of a kernel module and a QT desktop

application for identifying the detection state in real time.

Here we comprise a graph of anomaly changes over time,

anomaly logging and visualization of the Kohonen map. Let
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us dwell on it in more detail (Fig. 11). In this figure, we see its

representation in the form of a two-dimensional matrix, where

each cell corresponds to some resulting blurring of the input

vectors after network training (by clicking on the cell, the user

can also see the state of this vector). The darker the cell, the

greater the value of the corresponding target anomaly value

for these values. Such values also appear as blurring of the

target values given during network training (Fig. 12).

Fig. 12. The user should specify the desired anomaly level for the current
traffic during training

The user turns on the learning mode, sets the expected

value of the anomaly and starts generating traffic in real

time (programmatically or working on the Internet using a

browser and other software). At the same time, our software

calculates secondary characteristics for it and generates a

vector representation of this traffic, and then saves it to the

database along with a given anomaly value. It is recommended

to further review these records and correct them by removing

irrelevant ones (recorded during pauses, for example). After

recording all possible modes of interest and training the

network according to Section III, we get a network with its

visualization presented. Further, when the anomaly detection

system is running in real time, the program calculates the

characteristics of the current traffic, searches for the nearest

vector, and obtains the anomaly value. In this case, in Fig. 11,

one can see the square in the bottom row, which shows the

current vector at the moment (it is constantly moving). Thus,

we can observe how close the current traffic is to anomalous.

Note, the size of the Kohonen map obviously depends on

the number of different modes of operation being recorded,

since trying to fit too different vectors into a small field will

result in all of them blurring and detection will suffer.

We also consider issues related to TCP connections and

protocols on which Markov chains are built. Fig. 13 shows a

graph of the system when surfing classic websites, as one can

see, there are no false positive detections. Everything changes

when we start visiting modern sites with a lot of JavaScript

code and connections from it when scrolling the page, dynamic

menus and so on. Here, false positive anomalies begin to

appear (Fig. 14). However, when running port scan scripts,

anomalies will be detected correctly and tangibly clearly (Fig.

15).

Fig. 13. Work of the Markov-based detector during normal Internet surfing

Fig. 14. False positives of the Markov-based detector during modern web
applications

VIII. CONCLUSION

As a result of this study, we presented a software ar-

chitecture for building an intelligent firewall that analyzes

anomalies in network traffic. Within the framework of this

work, we primarily focused on its software feasibility. As a

result, we have a working system for demonstrating methods

of processing traffic and analyzing it, using the presented

mathematical methods on real examples with big data. This

stand is primarily intended for teaching. Nevertheless, there

are proven good results of its work on the generated raw-

packets of network traffic using the available port scanning

algorithms in our local network.

Fig. 15. Real-time identification of port scans

We posted all the current source codes on GitHub [47] in

the hope that this will help readers in the initial steps to make a

more advanced solution. The code is compilable for x86/ARM

and could be run on Raspberry Pi. Currently, we are interested

in formal models of such things, as well as the implementation

of detectors based on modern approaches, and it would be

especially interesting to try custom models of brain-inspired

detectors like those we discussed in the work [48].
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