
Where to Put A Rower: A Novel and Practical
Solution to Dragon Boat Partition Problem

Brett Regnier
University of Lethbridge

Lethbridge, Alberta Canada, T1K 3M4

brett.regnier@uleth.ca

John Zhang
University of Lethbridge

Lethbridge, Alberta Canada, T1K 3M4

john.zhang@uleth.ca

Abstract—We present a novel and practical approach to the
Dragon Boat Partition Problem (DBP), in which we need to assign
rowers to the opposite sides of a dragon boat, such that certain
requirements are satisfied. An example of the requirements is that
weights on the right side and left side are balanced. While DBP
is essentially an integer partition problem, it has its own unique
characteristics. Our approach is greedy and heuristic and tackles
DBP effectively, showing its practicality in real applications. The
performance of our proposed approach is demonstrated through
a set of simulated experiments and various related issued are
discussed.

I. INTRODUCTION

Throughout the world there are hard problems, many of

which require great thought and enormous computations, given

state of the art in the current computational techniques. It is

safe to say that almost all the non-trivial problems, including

satisfiability, independent Set, etc. [2], fall into the category.

The goal of optimization, according to Pedregal et al. [12],

is to find an optimal solution to a problem, by satisfying two

important criteria for optimality: (1) the computational cost

must be minimized; and (2) constraints must be explicitly

enforced. The optimization problem we will be focusing on

in this work is the Dragon Boat Partition problem (DBP, for

short), a variant of the integer partition problem [2].

Before we discuss DBP, we first introduce the integer

partition problem. Given a set of n positive integers, we try to

find a partition of the set into two subsets such that the sum

of the numbers in one subset is equal to the one of the other

[4]. Formally, given S ⊂ Z
+, find a partition S1 ⊂ S, and

S2 ⊂ S where S1 ∩ S2 = ∅, such that the difference known

as discrepancy,

E(A) =
∑

s∈S1

s−
∑

s∈S2

s (1)

is minimized [10]. A perfect partition is defined as E = 0
for when

∑
s∈S s is even, and E = 1 for when

∑
s∈S s

is odd. Despite its simple appearance, the partition problem

is deceptively hard. The problem on a small set, such as

equally spitting S = {1, 2, 3, 4, 5} into two subsets, is trivial;

However, splitting a set with, say, one hundred elements,

starts to become hard to achieve efficiently, since essentially

we need to check every n! possible combinations, where n

is the number of the integers in the set [4]. It has been

shown that the partition problem is NP-hard and its deci-

sion version, i.e., whether such a partition exists, is NP-

complete [2], [12]. Therefore, the use of fast approximate

algorithms is needed, such as the greedy heuristic [4], [10]

or the Karmarker and Karp’s differencing method [10]. The

partition problem has a number of real-world applications,

such as multiprocessor scheduling, state asset partitioning,

VLSI circuit size minimization, minimizing the delay for

public-key cryptography [4], [10]. The DBP problem is just

one of them. We will discuss the related work in Section V.

It should be noted that the DBP problem further requires that

the number of rowers on the left side be equal to the number

of rowers on the right and also the number of rowers on the

front half be equal to the number of rowers on the back half

(as shown below).

A dragon boat is a long slender boat with 22 seating

arrangements as shown in Figure 1. A boat is filled with a team

of 22 members, with a drummer, who sets the pace and sits

at the front of the boat facing the team, and a steersman, who

directs the boat and sit at the back of the boat. The remaining

are the 20 rowers that paddle, sitting side by side down the

boat [5]. While the selection of the drummer and steersman

is relatively easy, mainly depending on their special skills,

configuring boat rowers such that some constraints, as shown

below, are satisfied is hard. At present a practice of ad-hoc

decisions by a leader based on rowers’ physical features is

employed.

Before the boat rowers get into the boat, they must first

be approximately partitioned. Having a balanced dragon boat,

i.e., both sides have roughly equal weights and the weight

difference between the front half and back half is within

certain range, ensures that the boat is parallel with the water,

allowing maximum surface area and water flow around the

boat and increasing boating efficiency and speed [14]. For

example, if the back half is heavier it would cause the front

half to lift and the back half to sink deeper into the water,

effectively slowing down the boat.

To find an approximate optimal partitioning, multiple con-

straints must be considered. There are certain positions in the

boat that each rower prefers to be in and/or is especially good

at. After rowers are placed in their preferred position, the next

step is to position the rowers by their dominant hand such

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 238 --

Fig. 1. Abstract view of a dragon boat

that the weight difference between the left side and right side

is minimized. Then the rowers at the front and back halves

are determined where the difference between the front half

and back half must be close to 30lbs, with the front half

being heavier. Lastly, the heaviest members of the team should

be positioned in the center of the boat and the weights are

gradient outwards towards the front and back [14]. While

the DBP problem is not proposed by us, to our knowledge

this is the first work that takes this problem seriously from a

computational viewpoint.

II. THE DRAGON BOAT PARTITION PROBLEM STATEMENT

The Dragon Boat Partition problem (DBP, for short) is a

variant of the partition problem. If we only require that the

left-hand side and right-hand side have equal weight, then

we reduce the partition problem to the DBP problem through

restriction and this reduction takes obviously polynomial time.

Since the partition problem is NP-hard, so is the DBP problem.

The objective of the DBP problem is to partition the rowers

for a dragon boat with four constraints. (1) Each rower must be

placed based on their dominant hand; (2) The total weight of

the rowers on the left-hand side must be approximately equal

to the total weight of those on the right-hand side; (3) The

total weight of the rowers on the front half of the boat must

be approximately heavier by a certain threshold (in practice,

30lbs is selected) than the total weight of those on the back

half of the boat; and (4) The number of rowers on the left

side should be the equal to the number of the right side and

so should the number of rowers on the front half be equal to

the number of the back site.

We define the left-handedness as a rower’s ability to row

effectively with their left hand and refer to them as left rowers,

and similarly for the right-handedness (right rowers). A rower

may also have the ability to row both left-handed and right-

handed and we refer to them as ambidextrous rowers. The

left-handedness is denoted as a Boolean value pl ∈ {0, 1}
and similarly pr ∈ {0, 1} denotes the right-handedness. As

such, if a rower has a pl = 1 and pr = 1, then they are

an ambidextrous rower. Finally, a rower’s weight is a positive

integer number in pounds (lbs) denoted by pw ∈ Z
+.

The DBP problem can now be formally defined as follows.

Assume that there is a set P representing boat rowers, where

rower p ∈ P is a 3-tuple (pw, pl, pr). We assume that |P | is

even.

Let L ⊂ P where |L| = |P |/2 and ∀p ∈ L, pl = 1 denote

the left group, and let R ⊂ P where |R| = |P |/2 and ∀p ∈
R, pr = 1 denote the right group. It should be noted that an

ambidextrous rower can be either in L or R, since its pl = 1
and pr = 1. Similarly, let F ⊂ P , where |F | = |P |/2, denote

the front group, and B ⊂ P , where |B| = |P |/2, denote the

back group.

Let Lw =
∑

pw ∀p ∈ L be the total weight of the rowers in

the left-group, Rw =
∑

pw ∀p ∈ R of the rowers in the right-

group, Fw =
∑

pw ∀p ∈ F of the rowers the front-group, and

Bw =
∑

pw ∀p ∈ B of the rowers in the back-group.

Let Vlr and Vfb represent the left-right and front-back

optimal discrepancy relaxation values, respectively. Wlr =
|Lw − Rw| is the left-right weight discrepancy and Wfb =
Fw−Bw is the front-back weight discrepancy. The reason we

do not use an absolute value for Wfb is that Fw is bigger than

Bw, i.e., Wfb > 0, as discussed before.

We use W ∗
lr to denote the optimal weight discrepancy

between the left and right and W ∗
fb the optimal weight

discrepancy between the front and back. Note the difference

between Vlr and W ∗
lr and the difference between Vfb and W ∗

fb.

It is desirable that Wlr and Wfb be as close to W ∗
lr and W ∗

fb,

respectively, as possible. Typically W ∗
lr = 0 while W ∗

fb = 30
with the front heavier. It is obvious that the rowers on the left

side are disconnected from the right side group but can be in

either the front half or back half, depending on the seat they

are assigned to. The same applies to the right side as well.

The same concept applies to the front half and back half, as

any rower assigned to the front half cannot exist in the back

half and vise versa, but can be in either the left-side or the

right-side.

A. Rules

In the DBP problem, we have the following rules to follow,

when assigning rowers to the boat.

1) Handedness Rule: There cannot be any left-rowers on

the right-side, nor any right-rowers on the left-side.

2) Left-Right Balance Rule: The left-right discrepancy

must be close to the left-right optimal weight within

the range of the left-right relaxation.

3) Front-Back Balance Rule: The front-back discrepancy be

as close to the front-back optimal weight (with the front

heavier) within the range of the front-back relaxation.

4) Weight Gradient Rule: The rowing participants should

be graded by heaviest to lightest from the center of the

board outward.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 239 --

Our proposed approach, as presented in Section III, ter-

minates when the first three rules are fulfilled. We do not

enforce the last rule in our algorithm, since once the first three

constraints are satisfied, it is just a sorting procedure that is

applied the participants on the left side and right side. But we

include it here for the sake of completeness and include it in

our proposed algorithm in Section III.

Now the DBP problem seeks a partition where |L| = |R|,
|F | = |B|, L ∩ R = ∅, F ∩ B = ∅, L ∩ (F ∪ B) = L,

R∩(F∪B) = R, (F∩L)∪(F∩R) = F , (B∩L)+(B∩R) = B
in which Wlr is close to W ∗

lr, such that W ∗
lr − Vlr ≤ Wlr ≤

W ∗
lr + Vlr, and Wfb is close to W ∗

fb, such that Bw < Fw and

W ∗
fb − Vfb ≤ Wfb ≤ W ∗

fb + Vfb, where typically W ∗
lr = 0

and W ∗
fb = 30.

B. Assumptions

Usually dragon boat teams have 22 participants in total,

consisting of 20 rowers, one (1) steersman, and one (1)

drummer [5]. We do not take into consideration benched

rowers in our approaches. Therefore we assume that the rowers

provided is the complete list and will be the only data to

be manipulated. We make a rough estimate of human-like

characteristics and attributes of a rower. Therefore, we assume

that each rower weighs between 110lbs to 270lbs, rounded to

an integer number. We also assume that most of the rowers

are able to row on either side. It is easy to see that having

many rowers that are only able to row left or right makes the

problem trivial to approximate. Furthermore, we assume that a

rower’s height does not affect the partition process. Lastly, we

assume that no rowers have a preferred position to be assigned

to.

C. Input Features

An instance of the DBP problem can be represented and

organized into a 3-dimensional array. The first dimension

denotes the weight of an individual rower while the second and

third dimension denote their handedness, as shown in Table

I. Note that an ambidextrous rower has both left = 1 and

right = 1.

TABLE I INPUT FEATURES OF AN INSTANCE OF THE DBP
PROBLEM.

Feature Data type Description
Weight Integer The weight of the participant

Left Boolean The ability to row left handed
Right Boolean The ability to row right handed

III. A NOVEL AND PRACTICAL APPROACH TO DBP

A. Our Proposed Heuristic Algorithm

With the appropriate notation in hand, we now present a

simple but practical heuristic approach to the DBP problem.

Some initial attempts of the proposed approach can be found

in our work [3].

Our algorithm follows a series of optimizing operations,

in which if it fails to find a suitable action given the current

assignment, i.e., the arrangement of the rowers on the left/right

sides and on the front/back halves, it will begin by searching

with a wider range of discrepancy by relaxing the search size

sz, which is defined as how far from the optimal weight

difference the algorithm will accept. This will repeat until a

suitable assignment is found. Upon sz reaching the szm, the

maximum search size, our algorithm will try to revert to the

best-known previous assignment and stop. Note that szm is a

user controlled parameter. Sometimes a call to the reverting

phase is necessary to revert to a previous best assignment.

It is obvious that the weight discrepancy between the left

side (the front half) and the right side (the back half) is due

to the fact that one side is heavier while the other is lighter.

In the following description of our algorithm, we denote the

heavier side as HS and denote lighter side as LS, both of which

fail one of the rules as discussed in Section II,

B. Algorithm

1 /* Heuristic Algorithm */

2 Step 1: Cleaning Phase

3 while a rower P1 breaking Handedness rule {

4 Find a rower P2 with opposite handed capability

5 or with either-handed capability.

6 Swap (P1, P2)

7 }

8 Calculate Wlr

9 Calculate Wfb

10 sz = 0

11

12 Step 2: Left-Right Partitioning Phase

13 while Wlr ≤ W∗
lr − Vlr or Wlr ≥ W∗

lr + Vlr {

14 /* find the best discrepancy change */

15 bestdiff = 0

16 find next lightest ambidextrous rower on {LS} as Px {

17 find next heaviest ambidextrous rower on {HS} as Py {

18 diff = Py
w - Px

w
19 if |Wlr − 2 ∗ diff | < |Wlr − 2 ∗ bestdiff | {

20 bestdiff = diff

21 if bestdiff == |W∗
lr − Wlr| + sz

22 goto checkswap

23 }

24 }

25 }

26

27 checkswap:

28 if (Px, Py) in SwapMemory {

29 /* if the same pair has been swapped repeatedly, increase

30 the search size. */

31 sz++

32 if sz == szm {

33 /* No perfect discrepancy can be found.

34 Recall to last best assignment. */

35 start Reverting Phase

36 start Front-Back Partitioning Phase

37 }

38 } else {

39 swap PxandPy /* swap function also adjusts

40 Wlr and Wfb. */

41 save (Px, Py) to SwapMemory

42 Wlr = abs(Wlr − 2 ∗ currdiff)

43 }

44 }

45

46 if Wfb! = W∗
fb {

47 start Front-Back Partitioning Phase

48 }

49 }

50

51 /* When balancing the front half and back half, a

52 left- (right-) rower can be swapped with a

53 left- (right-) rower in order to maintain

54 the balance between the left side and right

55 side. We call such a pair a valid pair. */

56 Step 3: Front-Back Partitioning Phase

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 240 --

57 while Wfb < W∗
fb − Vfb or Wfb > W∗

fb + Vfb {

58 /* find the best discrepancy change */

59 bestdiff = 0

60 if Wfb < W∗
fb − Vfb {

61 {LS} = front half

62 {HS} = back half

63 else /* Wfb > W∗
fb + Vfb */ {

64 {LS} = back half

65 {HS} = front half

66 }

67 find next lightest rower on {LS} as Px {

68 find next heaviest rower on {HS} as Py {

69 if (Px, Py) is valid {

70 diff = Pˆy_w - Pˆx_w

71 if Wfb - 2 * diff ≤ Wfb - 2 * bestdiff {

72 bestdiff = diff

73 /* stop front-back partition phase, if the current

swap will result

74 in a perfect discrepancy between the front and

the back. */

75 if bestdiff == abs(W∗
fb − Wfb) + sz

76 goto checkswap

77 }

78 }

79 }

80 }

81

82 checkswap:

83 if (Px, Py) in SwapMemory {

84 /* If the same pair has been swapped repeatedly, increase

85 the search size. */

86 sz++

87 if sz == szm {

88 /* No perfect discrepancy can be found.

89 Recall to last best assignment. */

90 start Reverting Phase

91 /* After reverting to best known phase

92 begin the next phase. */

93 start Weight Gradient Partitioning Phase

94 }

95 } else {

96 swap PxandPy /* swap function also adjusts Wfb */

97 save (Px, Py) to SwapMemory

98 Wfb = Wfb − 2 ∗ bestdiff // Wfb > 0

99 }

100

101 if Wfb! = W∗fb
102 Weight Gradient Partitioning Phase or Stop

103 }

104

105 Step 4: Weight Gradient Partitioning Phase (optional)

106 Call QuickSort with front-left group

107 Call QuickSort with front-right group

108 Call QuickSort with back-left group and Reverse

109 Call QuickSort with back-right group and Reverse

110

111 Step 5: Reverting Phase (if needed)

112 while SwapMemory is not empty {

113 Pop most recent pair (Py, Px)

114 Swap (Px, Py)

115 }

Algorithm 1. Dragon Boat Heuristic Partitioning Algorithm.

The above is a step-wise view of our algorithm. Each

step/phase is implemented as a procedure. Some discussions

are in order. A misplaced rower is the one who is a left rower

is on the right side or vise versa. SwapMemory is a stack

data structure that stores each swap’s assignment, action, and

weights. When it is called upon to revert, the most recent saved

memory is the first to be removed and reverted to if necessary.

Note that swap function adjusts Wlr and Wfb necessarily.

Cleaning Phase has only one objective, to satisfy the Hand-

edness Rule in Section II. This phase finds any misplaced

rower on one side and swaps them with a rower on the other

side. If there is no such rower, the offending rower will simply

be swapped with an ambidextrous one. This phase continues

until there are no more misplaced rowers. We assume that

there is at most an equal number of left rowers to the number

of seats on the left side, and so is there the number of right

rowers to the number of seats on the right side. Thus, there

are at most n/2 left rowers, and at most n/2 right rowers. But

in order to make the problem more interesting, the number of

the ambidextrous is much more than the number of either left

rowers or right rowers.

After the Cleaning Phase, the Left-Right Partition Phase can

now ignore the issues related to handedness of rowers the left

rowers, as they are on their proper respective sides. During

this phase, the only eligible rowers for swapping positions are

ambidextrous rowers. If there are no ambidextrous rowers to

swap, then this phase will move to the next phase. Otherwise,

our algorithm searches for an eligible swap that will minimize

the left-right discrepancy.

The algorithm achieves this by first deciding the desirable

discrepancy. Next, it performs, in the worst case, a O(n2)
search to find two rowers whose swapping minimizes

the left-right discrepancy. The algorithm will retrieve the

lightest rower on the LS and retrieve the heaviest rower

on the HS. In detail, when a new pair (P y , P x), where

P y
w ≥ P x

w, is found, we need to check whether the

difference between them is better than the previous best

one. Suppose that at this moment the total weight of LS

is wls and the total weight of HS is whs. Then it is easy to see-

https://www.overleaf.com/project/61a1152dd8a7f969b930c6c7

that Wlr = whs − wls. To check whether the difference

is better, we need to calculate the current discrepancy

as (whs − P y
w + P x

w) − (wls + P y
w − P x

w) =
whs−wls−2∗(P y

w−P x
w), which is equal to Wlr−2∗diff .

If the current difference results in a better discrepancy it is

selected. Otherwise, the searching process repeats until each

rower has been checked. If there is no swap that results in

a perfect discrepancy then the best minimized discrepancy

seen so far is selected. Each swap and current assignment is

stored in the swap memory. If it is found that the swapping

that results in the best discrepancy has occurred before, then

the search size is incremented and the search is performed

again which could result in a larger acceptable difference

range. This repeats until a perfect or near-perfect left-right

partition is found before proceeding to the front-back partition

phase. Otherwise, the algorithm continues into the reversion

phase, and restores the last best known assignment, and then

continues to the next phase.

Note that each swap performed is stored in the swap

memory in a situation where no acceptable solution can be

found. At this moment the past must be recalled and reapplied.

This occurs where the algorithm is not able to find a perfect

partition, i.e. E = 0 or E = 1. The reverting phase will be

discussed shortly.

The Front-Back Partition Phase follows directly after the

Left-Right Partition Phase and is very similar. The strategy of

selecting which two rowers to swap is the same, except the

groups used are the front and back halves. The only real dif-

ference in these two phases is that in the Front-Back Partition

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 241 --

Phase rowers must remain on the left-side or right-side they

were assigned in the previous phase. Thus, any swap involving

rowers not on the same side then they can heavily affect the

left-right balance rule. Therefore, only rowers positioned in

the front-left and back-left can be swapped, and the same

applies to the front-right and back-right. In addition, the same

argument in the Left-Right Partitioning Phase applies to the

discrepancy calculations in this phase, though there is still

some difference. In Front-Back Partition Phase, we need the

front half to be always heavier than the back half. This is

different from the balancing between the left side and right

side, where we do not mind which side is heavier as long as

the discrepancy between them is within an acceptable range.

This difference is reflected in the algorithm shown above.

Note that this phase also saves each swap into memory and

can move into the Reverting Phase in a situation where no

acceptable assignment is found. The phase ends after reverting

or if a perfect assignment is achieved. Finally, when this phase

ends the algorithm moves into Weight Gradient Phase, which

simply runs the Quicksort algorithm [13] on each of the four

groups. In particular, the front-left and front-right rowers are

sorted from the lightest to the heaviest, while the back-left and

back-right are sorted in from the heaviest to the lightest.

The reverting phase uses a simple arrangment of memory,

where the assignments and actions of all swaps performed to

reach moment are saved. When the Reverting Phase occurs it

recalls each previous swap, in the reverse order, until the best

assignment for the given calling phase is found.

IV. SIMULATION AND EXPERIMENTS

Given that there is limited available resource, to our knowl-

edge, for the Dragon Boat Partition Problem, we simulate and

experiment our proposed algorithm on generated datasets. The

algorithm we have designed is largely inspired by the rules and

preferences by Stickels [14]. There are different online sources

that set up different preferences for the problem [1], [14]. For

instance, in [1], it is preferred to have the same weight for

the front half and back half, in contrast to the scenario with

a heavier front side [14]. For consistency, we have used the

rules and preferences by Stickels [14] as our original source.

A. Dataset Generation

To generate a dragon boat environment we first need to

determine the number of rowers. We always assume the drum-

mer and steer are ignored and only consider the number of

left, right, and ambidextrous rowers. Two rowers are randomly

generated at the same time, as a way to keep the left-right

weight steady. To ensure to have the required numbers of left

rowers and right rowers we generate left and right rowers first,

and then generate either-handed rowers to fill in the rest of the

positions available. In addition, any rowers appended to the left

and right groups will be added to the front and back groups

with respect to their position in the boat.

After the rowers’ data of the entire boat have been gener-

ated, we try to balance out the left-right weight, by repeatedly

adding small to moderate amount of weight to a randomly

selected rower, on the side that is causing imbalance, until

the left-right discrepancy is equal to the optimal weight

discrepancy. By this point, we have completed two of the

three rules required of a dragon boat environment, namely,

that only left rowers can be on the left side and right rowers

on the right-side, and the left-right discrepancy is equal to the

optimal weight.

Next, we move into balancing the weights on the front and

back halves. Since the front-half and back-half groups are

coupled to the rowers on the left side as well as on the right

side, changes made to the left-side and right-side groups will

heavily affect the front half and the back half groups and vise

versa. On the other hand, any changes to balance the front-

back weight will also affect the left-right weight balances as

well. We proceed with a similar fashion with the left-right

balance, where we add small to moderate amount of weight

to a randomly selected rower on the side that is causing the

imbalance, until the front-back balance reaches the desired

goal. This process has an extra stipulation that any changes

made to the front-back weight must be equally distributed in

the left-side and right-side weights.

In our experiments we skip the Weight Gradient Partition

phase, as it does not affect the overall balancing process of

assigning rowers and will not add any other complexity to

our implementation. Now, our experiment involves randomly

generating 10,000 perfect dragon boat environments (i.e.,

10,000 datasets) according to the aforementioned approach and

then shuffling the rowers in each environment. This is followed

by finding an approximation, using our proposed algorithm

as discussed in Section III, of the optimal solutions for each

generated environment per parameter combination.

We have a total of three (3) difference versions of our testing

environment - the left-right test where only the cleaning and

the left-right phase are considered, the front-back test involv-

ing only the cleaning and the front-back phase, and lastly, the

full test where the three phases are involved. Our approach has

three (3) important variables - left-right relaxation Vlr, front-

back relaxation Vfb, and the maximum search size szm. Each

of them significantly affects, as shown shortly, the ability of

our algorithm to find an approximation of rower assignment.

It is easy to see that increasing the relaxation values would

result in non-perfect discrepancies to be accepted. Moreover,

in the full test Vlr and Vfb will be increased at the same

time. It is noted that in our experiments, accuracy of our

proposed algorithm is simply defined to be the percentage

of the resultant assignments for a randomly generated dragon

boat environment for which the corresponding discrepancy

is equal to the goal weight or falls within the specified

relaxations.

B. Balance between Left and Right

In Table II on column Vlr = 0 we can see that decreasing

szm results in a significant impact on finding perfect discrep-

ancies and in turn affects the accuracy. However, increasing

szm eventually hits an upper limit and lacks improvement,

as we observe in rows for szm = 150 and szm = 200,

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 242 --

respectively. This is because szm will eventually be equal or

greater than the largest weight difference among the rowers,

which allows no more margin of error between the lightest

rower and heaviest rower. Thus a maximum search size greater

than or equal to the largest weight difference cannot push

our algorithm for further improvements. We also observe

that by increasing Vlr and Vfb we approximate more often

within the optimal weight limit with relaxation. Continuing to

increase the relaxation values eventually leads to almost any

action, resulting in a ”close enough” approximation, which

could require no action at all. Thus, we only consider small

relaxation values of 0, 1, 2, and 5.

TABLE II

PERCENTAGE OF PERFECT DISCREPANCY APPROXIMATE W ∗
lr .

Vlr = 0 Vlr = 1 Vlr = 2 Vlr = 5
szm = 0 52.03% 84.87% 83.99% 97.11%
szm = 10 77.38% 94.09% 94.57% 99.02%
szm = 50 95.77% 99.34% 99.53% 99.93%
szm = 100 97.02% 99.59% 99.62% 99.97%
szm = 150 97.20% 99.53% 99.56% 99.94%
szm = 200 97.03% 99.57% 99.65% 99.95%

We note that by increasing the search value sz we in turn

will naturally increase the amount of time required to search

for an approximation. This is expected. As shown in Table III

we observe that even with a larger szm, the average elapsed

time per episode is quite minimal and appears to stagnate at

szm = 150. On the other hand, by increasing Vlr, we will

naturally lower the time to find an approximate assignment,

since a larger error margin is accepted.

TABLE III

AVERAGE ELAPSED TIME IN MILLISECONDS TO APPROXIMATE W ∗
lr .

Vlr = 0 Vlr = 1 Vlr = 2 Vlr = 5
szm = 0 0.37ms 0.22ms 0.22ms 0.16ms
szm = 10 1.61ms 0.45ms 0.46ms 0.18ms
szm = 50 4.41ms 0.84ms 0.77ms 0.23ms
szm = 100 5.93ms 0.95ms 1.00ms 0.23ms
szm = 150 6.68ms 1.15ms 1.06ms 0.27ms
szm = 200 7.28ms 1.08ms 1.09ms 0.25ms

While we can see that the executing times increase steadily

until szm = 100, where it plateaus, we can see it takes more

time. We conjecture that the differences in time for szm =
100, szm = 150, and szm = 200 can be attributed to the

fluctuations in hardware. However, the more important point,

as shown in Table IV, that we need to discuss is the average

steps taken to complete an assignment.
As shown in Table IV, the average number of steps required

to approximate an instance of DBP is heavily affected by

the maximum search size szm. This reflects in perfect and

imperfect discrepancies. We also need to look at the best-case

and worst-case scenarios. We only observe the search size that

offers the best accuracy while keeping the least amount of

relaxation. We have found that in the worst case over all of

our instances for the left-right partitioning phase is 213 steps

and the best case is 1 step.

TABLE IV

AVERAGE STEPS (SP) TAKEN TO APPROXIMATE W ∗
lr .

Vlr = 0 Vlr = 1 Vlr = 2 Vlr = 5
szm = 0 5.21sp 4.28sp 4.30sp 3.65sp
szm = 10 8.59sp 4.93sp 4.91sp 3.79sp
szm = 50 11.67sp 5.43sp 5.31sp 3.82sp
szm = 100 12.04sp 5.37sp 5.43sp 3.81sp
szm = 150 12.42sp 5.44sp 5.41sp 3.82sp
szm = 200 12.72sp 5.35sp 5.48sp 3.83sp

C. Balance between Front and Back

Next we consider the front-back partitioning phase sepa-

rately. We observe that the results in general are similar to the

left and right partitioning phase, with a slight improvement, as

shown in Table V. We believe that this is due to the reduced

number of constraints placed upon this phase. Particularly the

Handedness Rule is not required in this phase as only rowers

can be swapped between the front and back on their respective

left or right side.

TABLE V

PERCENTAGE OF PERFECT DISCREPANCY APPROXIMATE W ∗
fb .

Vfb = 0 Vfb = 1 Vfb = 2 Vfb = 5
szm = 0 60.44% 78.34% 87.94% 97.79%
szm = 10 82.17% 92.45% 96.72% 99.50%
szm = 50 99.02% 99.66% 99.92% 99.99%
szm = 100 99.76% 99.95% 100.00% 100.00%
szm = 150 99.79% 99.94% 100.00% 100.00%
szm = 200 99.81% 99.98% 100.00% 100.00%

As the front-back partitioning phase is expected to have

a goal weight of W ∗
fb = 30, we observe a slight increase in

accuracy. We are convinced that the performance improvement

is due to the less number of constraints, as the number of

eligible rowers is half of the number of rowers for both the

left and right sides during the front-back partitioning phase.

TABLE VI

AVERAGE ELAPSED TIME IN MILLISECONDS TO APPROXIMATE W ∗
fb .

Vfb = 0 Vfb = 1 Vfb = 2 Vfb = 5
szm = 0 0.32ms 0.26ms 0.22ms 0.16ms
szm = 10 1.33ms 0.68ms 0.41ms 0.18ms
szm = 50 3.17ms 1.28ms 0.58ms 0.20ms
szm = 100 3.58ms 1.28ms 0.59ms 0.20ms
szm = 150 3.46ms 1.38ms 0.57ms 0.20ms
szm = 200 3.82ms 1.23ms 0.56ms 0.21ms

With a larger pool of eligible swappable rowers the perfor-

mance has significantly improved. Additionally, as shown in

Table VI and Table VII, there is a large decrease in average

steps per instance. Lastly, we have found in the worst-case

instance the algorithm would take 149 steps, whilst in best case

instance only one (1) step would be required. As both phases

are shown to perform well, we suspect that there will be a

significant drop on perfect partition accuracy, and a significant

increase in time and steps to the same rate as the left-right

partitioning phase when both phases are in tandem.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 243 --

TABLE VII

AVERAGE STEPS (SP) TAKEN TO APPROXIMATE W ∗
fb .

Vfb = 0 Vfb = 1 Vfb = 2 Vfb = 5
szm = 0 2.75sp 2.28sp 1.93sp 1.47sp
szm = 10 5.42sp 3.35sp 2.42sp 1.54sp
szm = 50 7.38sp 3.99sp 2.63sp 1.57sp
szm = 100 7.60sp 3.89sp 2.64sp 1.58sp
szm = 150 7.44sp 3.99sp 2.60sp 1.58sp
szm = 200 7.74sp 3.90sp 2.62sp 1.57sp

D. Combining Left-Right and Front-Back Balance

Let us see if our findings match our intuition when we

combine the left-right and front-back partitioning together,

which we refer to as the full test. We first examine the data

involving the accuracy for the full boat in Table VIII. As is

shown, the full-test’s accuracy is heavily affected by the ability

to find a perfect partition during the left-right phase as seen in

the previous discussions. This is followed by investigating the

number of average steps taken. We can see that it is heavily

affected by the left-right phase as well. Lastly, we observe that

it is obvious to have a higher average from both phases.

TABLE VIII

PERCENTAGE OF PERFECT DISCREPANCY APPROXIMATE W ∗
lr,fb .

Vlr,fb = 0 Vlr,fb = 1 Vlr,fb = 2 Vlr,fb = 5
szm = 0 39.54% 63.32% 77.07% 94.05%
szm = 10 68.67% 84.20% 92.44% 98.61%
szm = 50 96.11% 98.29% 99.50% 99.90%
szm = 100 97.46% 99.14% 99.71% 99.91%
szm = 150 97.68% 99.10% 99.67% 99.97%
szm = 200 97.67% 99.07% 99.70% 99.96%

While there is a small increase in the accuracy in the full

environment experiments over the left-right one, we conjecture

that this is caused by random variance, since we are randomly

generating our boat environments for every instance of the

DBP problem.

TABLE IX

AVERAGE ELAPSED TIME IN MILLISECONDS TO APPROXIMATE W ∗
lr AND

W ∗
fb TOGETHER.

Vlr,fb = 0 Vlr,fb = 1 Vlr,fb = 2 Vlr,fb = 5
szm = 0 0.64ms 0.50ms 0.42ms 0.31ms
szm = 10 2.49ms 1.32ms 0.78ms 0.37ms
szm = 50 6.12ms 2.61ms 1.24ms 0.43ms
szm = 100 8.21ms 3.06ms 1.36ms 0.48ms
szm = 150 8.85ms 3.39ms 1.43ms 0.45ms
szm = 200 8.43ms 3.58ms 1.44ms 0.46ms

As shown in Table IX and Table X, the full test has a higher

overall average number of steps taken, as it has the potential

of both worst case scenarios of the left-right and front-back

phases. It results in a total of 348 steps for the worst-case

instance. Consequently, with both phases included, we believe

that we have the potential for the best case instance to happen,

i.e., swapping one pair of rowers can lead to improvements for

both the left-right and front-back partitioning. The best case of

TABLE X

AVERAGE STEPS (SP) TAKEN TO APPROXIMATE W ∗
lr AND W ∗

fb TOGETHER.

Vlr,fb = 0 Vlr,fb = 1 Vlr,fb = 2 Vlr,fb = 5
zm = 0 7.72sp 6.68sp 6.05sp 5.17sp
zm = 10 12.75sp 8.94sp 7.00sp 5.32sp
zm = 50 16.71sp 10.28sp 7.64sp 5.41sp
zm = 100 17.66sp 10.39sp 7.49sp 5.42sp
zm = 150 17.69sp 10.63sp 7.68sp 5.42sp
zm = 200 17.35sp 10.58sp 7.57sp 5.46sp

such a situation can result in the number of steps being 1. As

an example, suppose that there is a situation where Wlr = 20,

and Wfb = 10, and the left side is heavier than the right side

by 20lb while the front half is heavier than the back by 10lb.

Therefore, if we find two participants, one in the back-left,

and the other in the front-right, with a weight difference of

10lbs, we can see that swapping them would result in Wlr = 0
and Wfb = 30, requiring only a single step to fulfill both

requirements.

An important distinction among the left-right, front-back,

and full-boat environments, in particular, is the front-back par-

titioning phase in the full-boat does not start from a random-

ized perfect discrepancy. Rather, the phase begins only after

the left-right phase has completed. Conversely, the front-back

boat environment only performs random front-back swapping

actions, leaving the left-right discrepancy unaltered. Therefore,

we can conclude that the particular order of performing left-

right partitioning phase first has an impact on the front-back

phase.

V. DISCUSSIONS AND CONCLUSION

A novel yet practical approach to the Dragon Boat Par-

tition problem has been presented. The performance of our

approach has been demonstrated, and different combinations

of our parameters have been assessed. Our approach is able

to approximate close to a perfect discrepancy, without relax-

ation. For example in our experiments, when szm = 150,

the accuracy for left-right partitioning is 97.20%, front-back

partitioning 99.79%, and full-boat balancing 97.67% in the

10,000 experiments. Our unique approach is able to find a

perfect discrepancy for all experiments in each environment

with the left-right within 12.42 steps on average, the front-back

within 7.44 steps on average, and the full-boat with 17.69 steps

on average. Additionally, in the worst case the number of steps

for each environment took 213, 149, 348 steps in the left-right,

front-back, and full-boat tests respectively. While we could

reduce the search size to decrease the number of steps, there

is a significant drop in perfect partitions found. It is easy to

see that the problem we try to attack in this work is a variation

of the classical Integer Partition Problem [2]. While there is a

great number of works on finding an approximate solution

to the problem, the most related work is from [7], which

introduces two algorithms to tackle the multi-way number

partitioning, i.e., partitioning numbers into multi-groups. The

first is the sequential number partitioning. Built upon an ex-

tended Karmarkar-Karp algorithm [6], [8], the work generates

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 244 --

each subset that could possibly be part of an optimal partition

of three groups, and for each such subset, uses the extended

Karmarkar-Karp algorithm to optimally partition the remaining

numbers into two groups to get a three-group partition. For

problem of partitioning numbers into multiple groups other

than three, the proposed approach calls so-called recursive

number partitioning. The work first runs the Karmarkar-Karp

algorithm to get an approximate four-way partition. Then all

the numbers are divided into two groups, each of which will

later be partitioned into two groups. The partitioning is done

in every way that could possibly lead to a four-way partition

better than the best one found so far. For such a given partition,

the approach tries its best to perfectly partition each of the two

subsets recursively. Our approach to the problem is different

from the one in [7], due to the unique characteristics of the

DBP problem, where we require the equal number of rowers

both between the left side and right side and between the front

half and end half. In essence, we greedily select two potential

members from opposite sides to offset the discrepancy between

them, while maintaining the equal number. We keep doing it in

each iteration while keeping the best selection in each iteration.

Given the circumstances of this rower assignment problem, we

have room to have some difference between the two groups

as long as it falls into an acceptable range. In addition, our

problem has to consider the discrepancy situation between the

front half and back half of a boat.
We are planning to analyze our proposed algorithm in terms

of its time and space complexity. While we conjecture the

analysis of the space complexity is relatively easier (the only

hard part would be the analysis of the space requirement of

the swap operations), the time complexity poses some great

challenges. The major obstacle is in the stage of balancing the

left and right side, due to its dynamic nature. (The situation of

the front and back half, though different, is quite similar.) We

will also look into the analysis of the performance ratio of our

proposed approach, i.e., the gap between the result from our

approach to the optimal assignment of rowers. At this moment,

we are considering borrowing some analytic techniques in [7].

There is another subtle situation we may consider in our future

work, where a rower rows with one hand with a different

efficiency than with the other. For example, a rower rows

with an efficiency of 70% with their right hand and 30% with

their left hand. How we involve such a consideration in our

approach would be a non-trivial problem.

The data structure of SwapMemory in our approach ap-

proach is implemented as a stack. Each element therein

contains the information for P x and P y , the assignment of

each rower, etc. As can be seen easily, such an arrangement

leads to data redundancy. How to maintain the same amount

information dynamically, while aiming reducing redundancy is

the next task on our agenda. A crucial step in our approach is

to find the best pair (P x, P y), since it is the one that consumes

the large portion of the running time. In our implementation,

we maintain the available rowers from both sides as two

individual lists and conduct a linear search when needed. We

are considering using a heap to speed up this search speed. We
plan to experiment on the DBP instances with larger number

of rowers and generalize our approach to other application

scenarios, such as cargo arrangements in large shipments,

passenger arrangements in airplanes, etc.

REFERENCES

[1] M. Fogliani. The Best Way to Balance Your Dragon Boat, 2011, un-
published, https://dragonanalytics.com.au/the-best-way-to-balance-your-
dragon-boat/.

[2] M. Garey and D. Johnson. Computers and intractability, vol. 174,
freeman. San Francisco, 1979.

[3] B. Regnier. Applying Deep Convolutional Neural Networks to the
Dragon Boat Partition Problem. Master’s Thesis, University of Leth-
bridge, 2021.

[4] B. Hayes. Computing science: the easiest hard problem, American
Scientist, 90(2), pp. 113-117, 2002.

[5] What Is Dragon Boat Racing? https://www.dragonboatevents.com/what-
is-dragon-boat-racing.

[6] N. Karmarkar and R. M. Karp. The differencing method of set partition-
ing. Technical Report UCB/CSD 82/113, Computer Science Division,
University of California, Berkeley, 1982.

[7] R. E. Korf. Multi-Way Number Partitioning. In Proceedings of the
International Joint Conference on Artificial Intellgience, pp. 583-543,
2009.

[8] R. E. Korf. A complete anytime algorithm for number partitioning.
Artificial Intelligence, 106(2), pp 181–203, 1998.

[9] R. E. Korf. From approximate to optimal solutions: A case study of
number partitioning. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, pages 266–272, 1995.

[10] S. Mertens. The Easiest Hard Problem: Number partitioning, Computa-
tional Complexity and Statistical Physics, 125(2), pp. 125-139, 2006.

[11] S. Mertens. Phase transition in the Number Partitioning Problem. Phys-
ical Review Letters, 81(20), pp. 4281–4284, 1998.

[12] P. Pedregal. Introduction to optimization, vol. 46. Springer Science &
Business Media, 2006.

[13] R. Sedgewick. and K. Wayne, Algorithms. Addison-wesley professional,
2011

[14] K. Stickels. How to balance a dragon boat: tips for your most successful
race boat layout, 2015, unpublished, http://paddlechica.com/how-to-
balance-a-dragon-boat-tips-for-your-most-successful-race-boat-layout.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 245 --

