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Abstract—The quality of life depends on the human resilience 
to stresses and other negative impacts from the environment and 
society. We assume that the human resilience can be effectively 
supported by motor activity. The problem is that people reduce 
the motor activity (the human mobility) although they are 
potentially able to move (the human motility). In this paper, we 
consider human motor activity sensorics and study the concept of 
mobile Health (mHealth) system to digitally support the mobility 
of a person during her/his daily life. The sensorics is based on 
inertial sensors of a smartphone that accompanies the person. 
The smartphone evaluates various motor tests for the human 
activity. The collected statistics provide an interesting picture to 
motivate the person to more activity. We introduce the concept 
model that interrelates human resilience and motor activity. We 
discuss possible digital support of human resilience based on 
testing the human activity. In sum, this study contributes our 
concept of smartphone-based mHealth system that digitally 
supports the motor activity of a person in daily life subject to 
increase the human resilience. 

I. INTRODUCTION 

One of the key goals of using digital technologies in 
healthcare and well-being is the quality of life (QoL) and the 
support of QoL improvement [1]. An essential factor for QoL 
is related with the human resilience to stresses and other 
negative impacts from the environment and society [2]. The 
human resilience refers to the property of a person to adapt to 
life's misfortunes and setbacks. The goal is to protect a person 
from various negative mental health conditions, such as 
depression and anxiety.  

Negative impacts to mental health occur more and more 
frequently in our daily life, especially in urban areas where the 
speed of life processes is increasing. Let us focus on the 
human resilience problem in respect to human motor activity. 
According to World Healthcare Organization (WHO), physical 
inactivity is one of the significant risk factors for global 
mortality [3]. In particular, WHO reports that any decrease in 
motor activity leads to steady increasing the morbidity 
associated with hypokinesia, such as obesity, cardiovascular 
and respiratory disorders, diabetes mellitus, cognitive and 
mental disorders. 

Another important factor is difficult conditions of the 
northern territories for human habitation, daily life and 
working life. Health status of people living in the north is of 
great importance due to chronic environmental stress and the 
increasing costs of daily and professional physical activity [4]. 
Cold-related discomfort typically limits everyday physical 
activity [5, 6]. It leads to mostly high cardiovascular and 

respiratory morbidity, and common morbidity in cold 
seasons [7], [8]. As a result, physically inactive behavior 
become more widespread. 

Emerging information and communication technologies 
(ICT) provide an effective personalized mobile support based 
on Artificial Intelligence (AI) and Ambient Intelligence 
(AmI) [9]. The Healthcare 5.0 concept focuses on real-time 
patient monitoring, ambient control and wellness, and privacy 
compliance through assisted ICT like Internet-of-Things (IoT), 
Big Data, and mobile communication [1, 10]. In this paper, we 
consider the human resilience problem in respect to low daily 
physical activity of individuals. In particular, low physical 
activity is observed in elderlies and in younger generations. 
Note that the difficult conditions of northern area play an 
important role in making the physical activity low.  

We expect that regular monitoring of motor activity can 
lead to construction of an individual picture of person’s daily 
activity. Such a picture can be used as motivation to activity, 
thus supporting the human resilience. ICT for tracking 
physical activity can help not only in disease prevention; they 
can also be integrated into the national health system to 
improve public health databases, improve the quality and 
speed of healthcare service delivery. The expected result is 
improved QoL, as it happens in well-being [11]. 

The ICT support to regular activity monitoring and to 
motivation to activity can be implemented using mobile 
applications based on smartphone, e.g., see [12-17]. Various 
activity trackers on smartphones become of active use in our 
daily life [18]. Particular direction is sensorics based on 
inertial data for analysis of human gait and other forms of 
physical activity [14]. The assisted ICT support development 
and deployment of mobile health (mHealth) systems with an 
essential role of AmI and smart spaces [9, 19]. Our assumption 
is that smartphone senses the physical activity and evaluates 
the motor tests performed by the person. The collected 
statistics provide a summary picture motivating the person to 
physical activity. This scenario is non-medical, oriented to the 
use in common settings of daily or work life, no clinical 
instruments are used [17], [19]. The opportunity is enabled by 
the progress in consumer electronics as well as in IoT and AI. 

The concept of AmI at-home Lab for human daily life was 
introduced in our previous work [19]. This paper makes the 
next step introducing our concept of smartphone sensor-based 
mHealth system to support human resilience by monitoring 
individual physical activity. The concept considers the motor 
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activity as consisting of the two components: motility and 
mobility. The resilience is reduced to the opposite term called 
frailty. The latter denotes a multidimensional syndrome 
characterized by: 1) increased vulnerability, 2) reduced ability 
to tolerate physiological stress, including recovering from a 
stressor, 3) weakness, 4) slowness, 5) low physical activity, 6) 
weight loss and exhaustion [20, 21]. 

In the introduced concept, human acts as a sensor of own 
motor activity, similarly to human sensors in [22]. The 
mHealth system senses the physical activity (mobility) when a 
person (either frail, pre-frail, or non-frail individual) performs 
a motor test. Frailty indicators are evaluated, the report 
(decision) is delivered to the person. We expect that 
deployment of such resilience- or frailty-oriented human 
sensors will lead to increasing QoL, especially required in 
northern areas. 

The rest of this paper is organized as follows. Section II 
introduces the problem domain of motor activity sensorics and 
our model to reduce the human resilience problem to an 
opposite problem–the human frailty problem. Section III 
overviews functional tests for motor activity, which can be 
used to evaluate the physical activity of individuals. 
Section IV considers our concept of smartphone-based 
mHealth system supported with our early experiments. Section 
V summarizes the key findings of this pilot study. 

II. THE PROBLEM OF HUMAN MOTOR ACTIVITY

We consider the human motor activity as consisting of the 
two components: motility (the ability to actuate the movement 
independently) and mobility (the ability to change location in 
the physical environment). Low motor activity is typically a 
sequence of geriatric syndromes, although the motor activity is 
now become low in younger generations, living in urban areas 
and northern areas. Due to negative factors the frailty 
syndrome becomes essential in daily life, reducing the 
resilience and vitality. A possible way is to motivate people to 
physical activity. 

A. Mobility, physical activity, and hypodynamia 

Motor activity is a critical daily practice to all animals, not 
to mention humans, because it allows actively seek food and 
partners. Several terms with close, though still different 
meaning are used to characterize various aspects of the 
phenomenon of motor activity. One of them is motility, which 
means the ability to actuate the movement independently, 
which is based on the ability to contract muscles and to 
produce movements in joints, with help of internal sources of 
energy. Another important term is mobility, or the ability to 
change location in the environment or to move between two 
locations, for example, between the start and end/destination 
points. Then, the term motion, in sensu lato, refers to the 
progression of an object or subject in space, or progression of 
the entire big subject or object (waves, avalanche, air, planets 
on the sky, etc). Motion could be also understood as a state 
opposite to the state of rest. As such, motion refers to the state 
of restlessness of the entire object. Correspondingly, the term 
movement refers to a physically moving smaller object (or part 
of the object), such as a hand, forearm, leg, or the head. 

To better understand the difference between motility and 
mobility, one can imagine an individual who is able to move 
but has little reason or motivation to do that. In other words, 
such a human has the ability to move (i.e., is characterized by 
motility), but is not able to transfer the body from one location 
to another one (i.e., does not have mobility). Thus, there is a 
conflict between these two features, which becomes most 
evident in the process of aging. Indeed, many neurologically 
healthy aged people, who can move and even do physical 
exercise, do not do so for several reasons (so-called "barriers", 
see further in the text). They are capable of motility, but not 
mobility. 

Ultimately, this leads to the so-called "sedentary lifestyle" 
and, inevitably, to conditions such as "hypokinesia" and 
"hypodynamia". It should be noted that the term "hypokinesia" 
(decreased amount of movements) is strictly opposite to the 
term "hyperkinesia", and it is most often attributed to clearly 
pathological conditions (neurological diseases) [23]. Hence, 
with regard to healthy aging, it would be more appropriate to 
use the term "hypodynamia", or a decrease in strength or 
power. 

In addition, there are several other terms, which denote 
specific aspects of human motor activity. Among them, are 
exercise and non-exercise physical activity (NEPA), and 
activities of daily living (ADL). Exercise physical activity 
stands for the activity, which is performed volitionally, 
regularly, purposefully, vigorously and according to a kind of 
forethought program, which is very similar to common sport 
training. Accordingly, NEPA [24], usually measured in hours, 
includes all daily living movements (in general sense) 
performed irregularly without a special plan. The state, which 
is opposite to physical activity, either the exercise or non-
exercise one, is physical inactivity. Many processes contribute 
to physical inactivity [25, 26], e.g., poor peer support, lack of 
motivation, social stigma, lack of support in family, and 
barriers to exercise. 

B. Geriatric syndromes 

The so-called "geriatric syndromes" are clinical conditions 
in older adults that do not fall into specific disease categories 
[27]. Along with hypodynamia, the geriatric syndromes 
include other physiological (actually, pathophysiological) 
states/symptoms, such as sarcopenia, polypharmacy, 
malnutrition, depression, falls, frailty, dementia, etc. Thus, the 
geriatric syndromes appear as rather a phenotype, than a 
disease. Hypodynamia is associated with "sarcopenia", a term 
which describes the ageing related loss of skeletal muscle 
mass [28]. According to [27], in older people the incidence of 
sarcopenia, depression, dementia, falls, and frailty was 20-
40%, polypharmacy - >50%, urinary incontinence - around 
50%, malnutrition - around 10%, and it increases with age. 
Only 20% of individuals in 60-69 years age group did not have 
any of these syndromes and 48% of cases in ≥80 years had 
more than four syndromes.  

C. Frailty, Resilience, and Vitality 

The term "frailty" is a multidomain "umbrella" measure, 
which denotes a multidimensional syndrome characterized by 
the following features: 1) increased vulnerability, 2) reduced 
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ability to tolerate physiological stress, including recovering 
from a stressor, 3) weakness, 4) slowness, 5) low physical 
activity, 6) weight loss and exhaustion [27,21,20,29]. In that 
sense, "frailty" denotes the state, which is generally opposite 
to the state "resilience", or the ability to counter stress, or to 
bounce-back" from stressors [2]. 

Similarly, according to scholarly literature, there are 5 
frailty indicators [20, 21]: 1) unintentional weight loss (or a 
body mass index (BMI) <18.5 kg/m2) 2) muscle weakness 
assessed by grip strength, adjusted for gender, 3) exhaustion, 
4) slowness assessed by means of walking speed, adjusted for
gender and standing height, and 5) low physical activity 
assessed with a weighted score of kilocalories expended per 
week calculated using the questionnaire, on the basis of each 
participant's report. The subject is classified as "frail" if less 
than 3 of the aforementioned indicators are present. 
Correspondingly, the subject is classified "pre-frail" if 1-2 
indicators are present, and "non-frail" if no indicators are 
present. 

Vitality (or "internal capacity") is another widely used new 
phenotypic concept, is becoming popular among healthcare 
professionals and doctors. The internal capacity design was 
recently defined by WHO as the totality of all the physical and 
mental abilities of an individual, including five areas: 
movement, vitality, cognitive abilities, psychological and 
sensory [30]. Vitality is associated with self-estimation of 
"liveliness" and feeling "full of energy", physical performance, 
vigor, or strength. Measuring "vitality" is challenging, as it has 
different aforementioned aspects. Vitality has unclear 
physiological nature, which makes its measurement 
problematic. 

The frailty and sarcopenia are related syndromes, as they 
share in common such features as lower lean mass and 
reduced physical function [20], while malnutrition plays a key 
role in the pathogenesis of both frailty and sarcopenia, and 
vice versa [29]. Hypodynamia and sarcopenia are associated 
with muscle disuse, immobilization and chronic low-grade 
inflammatory activity [31]. In parallel, autonomic de-
conditioning due to sedentary life-style, and cognitive decline 
take place with ageing. In addition, one should dissociate the 
effects of chronological aging per se on muscle characteristics 
from the non-chronological, or secondary, influence of 
lifestyle or disease processes. 

In sum, aged people are under risk of practically inevitably 
coming of the geriatric syndromes, which potentially would 
lead to decreased mobility and quality of life, and, eventually, 
to social de-adaptation. To overcome these unfavorable 
conditions, the older people should engage in either exercise 
or non-exercise physical activity, and modify their nutrition. 

Physical activity and correct nutritional support seem to be 
the only ways to prevent and slow the progression of 
sarcopenia, and hence frailty [32, 33]. Among all physical 
exercise interventions studied, intensive resistance training 
was found the most efficient to counter sarcopenia, including 
the very old geriatric patients [34]. Significant ameliorations 
(up to >50% strength gain) can be expected after six weeks of 
training at a rhythm of 2-3 sessions per week. From a 

preventive viewpoint, all elderly patients should be advised to 
start such an exercise program and continue it as long as 
possible. As for the pharmacological interventions to counter 
sarcopenia, which mostly include drugs with anabolic effects, 
their efficiency is doubtful [35]. 

D. Mobilization and barriers to start physical exercising 

There are physical, behavioral, and psychosocial barriers 
[26, 36] to start physical exercising. Therefore, older subjects 
need a kind of personalized "mobilization", which can be 
designed as a service for encouragement, motivation, or 
mobilization. The service can be delivered using smartphone 
and IoT technology. 

Prior to taking of exercise as a therapy, several important 
questions should be addressed [36], namely 1) type of 
exercise, 2) dosing and timing of exercise, and 
3) implementation strategy. As for the type and dosing of
exercise, higher-intensity aerobic exercise is regarded as the 
most efficient type of exercise for the elderly, including those 
with neurological diseases [34]. As for implementation of 
exercise, alike medicines, it must be adapted on a regular basis 
over the course of the disease to optimize the benefit [36]. 

In sum, we can conclude with the following. 1) Instant 
awareness on current level of resilience (frailty, vitality) 
through measuring informative physiological indicators along 
the exercise intervention. 2) Delivering the status to a 
customer would be a challenging technological problem to be 
addressed. Such aspects of the motor function, as muscle 
mass, muscle function (strength, endurance, coordination, 
contraction speed), and muscle performance are critical to 
evaluate frailty (resilience) in the elderly. As such, low mass, 
low function, and low performance are the target domains to 
be measured and assessed 

Therefore, the aim of the present study was to seek for the 
most relevant, easy-to-do, albeit informative tests, tasks and 
tools, which can be arranged in a AmI-based environment to 
assess one's resilience to stresses or human frailty.  

III. MOTOR ACTIVITY TESTING

Numerous functional tests have already been invented to 
evaluate specific aspects of the motor and motor-cognition 
state of in varied target groups, including the old-age group 
[37]. A comprehensive comparative analysis of the most used 
functional tests is provided in [38]. We have divided tests into 
two categories: 1) tests that are performed in everyday life; 
2) tests that require special conditions.

A. Everyday Life Tests 

Such functional tests are performed during daily life of a 
given person. As a result, the person is focused on her/his 
personal activity, not on the motor activity exercise. 

1) Walking speed (WS), or gait speed (GS), test. Measuring
the WS over a short distance, for example, over 3-6 m, is an 
easier method to evaluate the frailty and resilience in clinical 
practice [37]. In addition, WS test is an objective parameter 
that can be evaluated repeatedly. Low WS (<0.8 m/s) is a good 
marker of frailty. Usually, WS is measured during the 3 m 
Timed Up-and-Go (TUG) test. 
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2) Trail Walking Test (TWT). In the real world, walking is
usually performed under dual task conditions (with cognition 
load), which requires much attention to changing 
environmental features (furniture, other people in the room, 
pets, autos outdoors, etc) to avoid tripping, slipping and 
colliding, and to recover quickly from postural disturbances 
[39]. TWT was first introduced in [40] to address the 
circumstances of the real-world walking.  

In addition, TWT allows to assess motor-cognitive 
interference [39]. The essence of the TWT method is to walk 
under change of direction and cognition conditions (from one 
cone marked with a flag to another, which are placed 
randomly at 15 positions in a 16 m2 (4 ×4 m) area. The TWT 
consists of 3 different motion-cognition conditions. In a pure 
motor task (condition 1), the participants are asked to follow a 
line connecting 15 cones. In a motor-cognition task (condition 
2) participants have to step on numbered targets in sequential
and ascending order. In the most complex task (condition 3), 
the subject step on targets with an ascending alternating 
number-letter sequence. As in other motor-cognitive tasks, the 
participants are instructed to perform the tasks as quickly but 
accurately as possible.  

3) 2-minute (2MWT), 6-minute walk (6MWT) test, and 10-
meter walk test (10MeWT). In the 6MWT, the participants 
were asked to walk “as far as possible” in the 6 min (no 
running was allowed) [41]. In 2MWT, the participants were 
instructed to “walk at your comfortable, usual pace”. The 
distance covered in 2 and 6 min was used as a measure 
outcome in the 2MWT and 6MWT. In the 10MeWT, the GS is 
measured within a distance of 10 m. Usually, healthy older 
people (cal. 80 years old) walk with a speed 0,96 m/s [42], at 
2MWT they walk 134.3–184.2 m, [43], and at 6MWT - 392-
572 m [44]. 

B. Specialized Tests 

This category of functional tests implies that people do not 
perform such tests by accident. To run these tests, one need to 
have a task to solve a specific problem. Examples include the 
following tests. 

1) Maximal step length (MSL) is the ability to maximally
step out and return to the initial position [38]. In addition, such 
MSL-related metric as RST (the time taken to step out and 
return in multiple directions as fast as possible) is often taken 
into account.  

2) Timed Up-and-Go (TUG) test is a well-known and
widely-used test of functional mobility [39]. To perform that 
test, individuals have to perform 5 sequential tasks: 1) to rise 
from a chair of standardized height (e.g., 46 cm high, sit-to-
stand phase), 2) walk a fixed distance of 3 m, or Gait-Go 
phase, 3) turning by 180°, or U-turn, 4) walk back to the chair, 
or Gait-Come phase, and 5) sit down again with a turn, or 
Walk-to-Sit phase. The task allows to evaluate several distinct 
motor functions: 1) a transfer from standing to sitting and vice 
versa (postural transitions, anticipatory postural adjustments), 
gait characteristics during walking and turning (walking speed, 
gait), dynamic balance. In addition, the TUG test can be 
performed under cognition load, what is under dual tasking. 
This allows evaluating cognitive involvement as well. 

Altogether, this test allowed to assess basic mobility skill and 
strength, agility and balance [38, 45]. Smaller values (faster 
time) represent better performance at each phase of the TUG 
test. 

3) Four square step test (FSST) was found to be a good
predictor of falls, which appears as part of the aforementioned 
geriatric syndromes [46]. 

4) Backward stepping (BS). In that test, participants step
back 3 meters, usually within 4-5 seconds [47]. One cannot 
regard that test as safe and easy-to-do for the use in elderly 
people in a non-laboratory environment. 

5) Tandem walk (TW). The number of correct tandem steps
subjects could perform with arms crossed and eyes closed in a 
series of 10 steps is tested [48]. This method seems to be non-
safe and easy-to-do by older people in home environment. 

6) Performance oriented mobility assessment (Tinetti
POMA). POMA is a widely-used test battery, which allows 
predicting falls by assessment of gait and balance [49].  

7) miniBEST test (a mini version of the BESTest) [50]. A
4-domain test battery, which allows assessing postural and 
anticipatory reactions, body orientation in space, gait, static 
and dynamic balance. 

Tests 6) and 7) are considered as precise, valid and reliable 
outcome measures of mobility and motor performance in 
elderly. However, they consist of >15 separate tests and 
require 1-2 testers, which is not reliable for instant assessment 
of mobility.

In addition, such more advanced functional tests (called as 
tasks) as 1) car task (to open the door of the car, then to sit 
down in it, to open the door and to step out to resume the 
initial standing position), 2) sock task (to put on socks or a 
footwear), and 3) lift-and-carry test (to approach a shelf, then 
pick up a 4,5 kg weight, and to walk back) [14] are used to 
identify impairments of mobility under specific pathologies of 
the motor system. Also, a 5 Chair Sit-to-Stand (5CSS), 
Alternate Stepping (AS), and Timed Rapid Gate (TRG) tests 
are used [51]. 

IV. CONCEPT OF SMARTPHONE-BASED MHEALTH SYSTEM

The introduced mHealth system implements tracking 
random execution of tests from the first category. Nowadays, 
many people have smartphones. Such a smartphone has an 
IMU (inertial measurement unit) to sense and measure the 
motor activity. A smartphone is relatively powerful computing 
device to process the sensed data using AI methods, even for 
fast and volumetric data, e.g., see [52]. 

A. Scenario 

The high-level scenario is the following. 1) Collecting data 
from smartphone sensors; 2) Recognition of basic user actions 
(e.g., walking, standing, sitting, lying); 3) Search among the 
basic actions for patterns, such as the motor tests discussed in 
Section III. For simplicity, we assume that the person is 
carried a smartphone on her/his belt. 

Let us consider that low BMI, exhaustion, physical 
inactivity, slow walking speed, and muscle weakness 
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constitute the so-called "frailty phenotype" [21, 20, 51]. These 
features can be detected by screening tests/tasks evaluated 
with cutoff values. 

There are many methods of sensorics for tracking motor 
activity, e.g., see [53]. Basically, they collect data from the 
accelerometers and gyroscopes of smartphones. In many 
datasets, the number of features is measured in hundreds. We 
also plan to use such data, but first we need to select only the 
most important features to recognize the necessary types of 
activity (see Table I). At the output of this stage, we receive 
the collected data. 

TABLE I. SYSTEM ACTIONS 

Stage Actions Minimum output 
unit 

Collecting and 
filtering data 
from a 
smartphone 

Application launch Acceleration along 
the axes x, y and z. 
Angular velocity 
along the x, y and 
z axes. 
Etc. 

Activity Type 
Recognition 

Applying machine 
learning algorithms 
such as decision 
trees 

Type of activity: 
walking, standing, 
sitting etc. 

Search for motion 
patterns (tests) 

Passing through the 
time window, 
mapping a window 
in the data to a 
window in the test 

The name of the 
test that the user 
passed. For 
example, walking 
speed 

Analysis and 
recommendations 

Comparison the 
results of the test 
passed by the user, 
with normal 
indicators, 
preparation of a 
recommendation 

Report for the user 
on the level of his 
physical activity 
and 
recommendations 
(if necessary). 

Let us consider the events the mHealth system should 
recognize. The answer to this question is given by the tests 
that the user will pass: 

1. Walking speed tracks walking, so it is necessary to
understand when the user is walking. It is also necessary to 
understand when the user stopped, for example, at a traffic 
light, so as not to include the stop in the test. In addition, each 
walking event must have a corresponding speed. It will be 
analyzed in the next step. 

2. Trail Walking Test assumes that the user can interact
with the environment. For example, he can bypass obstacles in 
the form of other people. Thus, we need to build a trajectory of 
movement in order to recognize when the user is turning. 

3. 2-minute (2MWT), 6-minute walk contains not only
walking, but also speed, like the first test. Also, different types 
of walking are possible. For example, the user may be in a 
hurry somewhere, and then such a pace cannot be considered 
usual. The opposite situation is also possible, when the user 

walks very slowly, because, for example, she/he enjoys nature. 
This pace of walking also cannot be considered usual. Long-
term measurements (e.g., weekly) should be considered in 
order to determine the user's typical walking pace.  

In sum, the main recognized features (physical activity 
states) are: walking, standing position, walking speed and 
trajectory of movement. The corresponding scenario is shown 
in Figure 1. We assume that within one second the person can 
be in one of these states (when passing tests). Let S = {s1, s2, 
s3, …, sn}, be an array of states obtained after data analysis, n 
is the number of measurements. Outside of the test, the person 
can also sit and lie down. A number of states obtained from 
the analysis of motion types are transferred to the next stage. 

Let the system have been running for 10 minutes. In this 
case, from the previous stage, we received an array Sn where 
n=600 (one for each second). Now we need to understand if 
the user performed any tests. We build a set of patterns P = 
{p1, p2, p3, …, pm} where m is a count of tests. Every test has 
length of the pattern. For example, the Walking speed test 
pattern assumes that the user walks for 6 seconds. In this case, 
the pattern of a test looks like this: pt = [walking, walking, 
walking, walking, walking, walking]. In this case, the length of 
the test pattern lpt = 6.  

Further, we introduce a set of windows WP = {wP1, wP2, 
wP3, …, wPn-lpt}, where for set P, wpi = {si, si+1, si+2, …, si+lpt}. 
Compare each position of the comparison window wpi and the 
test pattern pt. Then the measure of similarity Ψwp will be equal 
to Ψwp = 

஼

୪୮୲
, where C is the number of identical elements of 

arrays wpi and pt at the same positions. We assume that the test 
is passed if Ψwp≥0.9.  

Fig. 1. Scenario of human gait sensing during test execution. 

After receiving the test results, we can compare them with 
normal values. If the test results are within the normal range, 
then the application simply notifies the user about this. If 
deviations are present, the user is also notified of this. In 
addition to the test results, the application analyzes the general 
motor activity of a person. For example, if a person walks 15 
minutes a day, then recommendation can motivate the person 
to walk more. 

B. Screening tests and cutoff values for muscular 
performance in the elderly 

In the existing literature, there are studies, which 
recommend cutoff values for muscle mass, muscle function 
and muscle performance measurements. For example, work 
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[54] recommends 7.0 kg of muscle mass per m2 for men and 
5.7 kg/m2 for women (by using bioimpedance analysis), 
handgrip strength (<26 kg for men and <18 kg for women), 
and usual gait speed (<0.8 m/s). Similarly, the assessment of 
such aspects of muscle performance as grip strength and 
endurance was found reliable as a screening tool showing 
sufficient sensitivity [27]. In [51], the authors found 
that 1.24 m/s is a cutoff point for gait speed (GS) in elderly 
people. 

Most community-dwelling older persons are able and 
willing to repeatedly assess their mobility and fall risk with 
MSL and GS tests [55]. Compliance of repeatedly self-
measuring MSL and GS is good, as the median number of 
weekly measurements was 23.0 (88% of required 26) and 21.0 
(81%) for MSL and GS, respectively.  

Therefore, several simple (easy-to-do, safe, self-measured, 
reliable) motor tests are used in the field of frailty assessment 
in old-age population: 1) gait speed (cutoff values <0,8 m/s) as 
a marker of slowness, 2) maximal step length, and 3) chair rise 
time. In addition to GS and MLS, hand grip (a marker for 
weakness), and weight control could have formed a reliable 
battery to assess mobility and frailty in the elderly. 

It was reported that data on as much as 10 strides (or, 20 
steps) is sufficient to reliably characterize velocity and 
cadence of human's gait [56]. Ten strides roughly correspond 
to the distance of 10-15 meters. Having in the mind that, of all 
tests, gait speed has the strongest correlation with frailty and 
the highest diagnostic value [57], we can assume that 
characterization of gait speed (<0.8 m/s) at the distance of 10-
15 m is sufficient to trace such feature of frailty in older 
subjects as slowness. Such test can be regarded as the simplest 
single measure that can replace the complex frailty assessment 
as a self-test for monitoring frailty at home or outdoors. 

C. Enabler Technologes (smartphone-based) 

Thus, gait speed, and, to a lesser degree, hand grip and 
BMI appear as the best indicators of frailty and, indirectly - 
resilience, in elderly people. There is a plenty of studies, 
which propose instruments to characterize human gait. Motion 
video-capture and force plates techniques are still regarded as 
"gold standard" methods to extract features from the human's 
gait [58]. However, the aforementioned method (gait speed 
evaluation at 10 m distance) does not require such 
sophisticated technique. Great progress has been made within 
the last decade, in inventing instrumented versions of TUG 
test (iTUG) [14]. In most of these versions, varied number and 
positions of custom or IMU-based sensors (usually, 
accelerometers) were used to discriminate between phases of 
TUG test [59, 60]. From the other hand, smartphones, as they 
also are equipped with IMU, are increasingly used to analyze 
the motor function in varied clinical and age groups [14]. 
Smarphones IMU allow reliably discriminate TUG test phases. 
Besides that, smartphones are promising as they are 
widespread and low-cost tool [61], [12], [62].  

Self-administrable versions of iTUG (Self-TUG) are 
increasingly developed. In study [63], usability problems were 
identified (incorrect performance of the test, incorrect 
placement of the smartphone, etc.). Nevertheless, only less 

than one third of users make usability mistakes, which can be 
considered as promising. Still, Self-TUG and other self-
conducted tests (e.g., Self-Sit-to-Stand or Self-Tandem) have 
some limitations, as subjects try to perform the test as fast as 
possible [13], which does not reflect real ADL. In addition, the 
self-test and clinical test, that is conducted in hospital 
conditions, differed in both time and performance quality [17]. 

The best way to avoid inference of the test conditions, 
either self- or clinically administered, is to make the test 
"incorporated" in the ADL to make it “invisible” for the 
subject. In particular, we propose that analyzing of gait speed 
during straightforward 10-meter walks during ADL, with the 
help of smartphone applications, would be the most easy-to-do 
informative approach to evaluate frailty in the elderly.  

The smartphone is a core personalized part of the mHealth 
system. Activity Tracker applications provides a promising 
basic solution as they allow counting steps and evaluate length 
of walk in one min [16]. Walking is the commonest physical 
activity, and the approach supports monitoring the gait speed 
in real-life setting, without inference of self-testing. In 
addition, mHealth components (smartphone apps, physical 
activity trackers) have a significant effect in increasing 
physical activity, for example by 1850 steps [18], or 1126 step 
daily [64], which roughly equals 0,7-1 km. For most people 
walking at a moderate intensity approximates to 3000 steps in 
30 min (100 steps in 1 min) [65]. 

D. Candidate functional tests and tasks to assess the motor 
performance 

In sum, the phenotype-based approach to assess health and 
wellbeing of an individual looks promising and evolving. The 
characteristics of the motor activity, along with 
nutrition/metabolism and cognition, are likely the best markers 
of wellbeing (in the terms of vitality, frailty and resilience). 
Among the motor activity, fastness/slowness and 
strength/weakness are the best predictors of frailty. 

Altogether, there is a variety of motor tests and their 
composition to tasks to evaluate the human mobility and motor 
performance, of which several have potential to invent high-
throughput, easy-to-do and valid self-assessment systems (e.g., 
TUG test, gait speed and maximal length of steps, and 10-
meter walk). Still, these can be reduced to the 10-meter walk 
test and gait speed assessment with help of a smartphone 
Activity Tracker.  

In respect with aforementioned studies, simple tests can be 
used to evaluate the motor performance in the elderly. In 
addition, such simple tests are beneficial, because they do not 
create motivation/mobilization barriers to entry exercise or 
non-exercise physical activity. Indeed, complex motor tests (or 
tasks) can discourage the subject. Then, simple tests are easier 
to conduct methodologically and technically. Finally, simple 
tests can be easily evaluated in a IoT or AmI environment. 

E. Early Experiments 

The physical activity types were described in Table I 
above. The experiment aims at recognition the actions that a 
person performs. The following actions are recognized: 
walking, sitting, standing, lying, upstairs, downstairs.  
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We prepared ready-made data. The hypothesis was tested: 
is it possible to recognize human actions using a model trained 
on the gait samples of other people? We took a ready-made 
dataset [66] and construct a decision tree over the dataset. The 
trained model showed a recognition accuracy of no more than 
80%. However, when the model was trained on the gait of the 
same person, the accuracy was always more 90%. There were 
not enough people in the original data. However, it was 
decided to individually train the model on the gait. 

Smartphone Samsung Galaxy S5 was used. It has an 
accelerometer, gyroscope, and magnetometer. Each action 
took 15 seconds. Then a decision tree was built and actions 
were recognized. Action recognition accuracy of 98% was 
achieved. However, this high accuracy was achieved due to 
laboratory conditions. In the future, it is necessary to develop a 
training scheme that will not be too complicated, and which 
will allow the model to be trained. The accuracy of the model 
must be greater than 90%. Five parameters were used as initial 
data, which are shown in Figure 1. Our further plan for 
experiments is to recognize the steps performed by a person. 
Recognition algorithms can be used from [67-68].  

V. CONCLUSION 

This paper introduced a concept of smartphone-based 
mHealth system to perform and measure functional tests of 
human motor activity, to evaluate frailty indicators, and 
deliver the final information (decision) to either frail, pre-frail, 
or non-frail people. The measurements can be used to decrease 
human frailty syndrome, so increasing the human resilience 
through the motor activity. The system (as a mobile 
application) can provide motivation to the person to start more 
physical activity, to monitor the status and the progress. 
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