
Database Block Management using Master Index
Michal Kvet

University of Žilina
Žilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract—A database is formed by a set of data files holding the
data. These files are block oriented. Each row can be located by
the ROWID address pointing to the data file, data block, and its
position inside the block. For processing, block granularity is
used for memory loading and evaluation. However, a block is
fixed in size, thus, during the Update operations, block
fragmentations can be present. Moreover, once the block is
associated with the table, it is not commonly deallocated, whereas
it is part of the extent, not allocated individually. All these facts
have strong importance and impact on the performance of the
data retrieval, mostly in the case of sequential block scanning.
This paper deals with the Master index extension to locate
fragmentations, manage shrinking and identify empty blocks.
Thanks to that, database performance can be significantly
improved. The study deals with the temporal environment.

I. INTRODUCTION

Data management in the IT industry has a strong history. In
the initial phases, data were embedded into the application,
limiting the migration and consecutive usability in another
system. Later, the data were separated into a specific layer,
delimited by the data file management, with no complex data
management and retrieval supervision. Currently, databases
are not just separate layers, they are excluded into separate,
hardware and software optimized servers [1]. The whole
activities are covered by the database systems. Relational
databases are formed by the data model consisting of the
entities and relationships between them, forming referential
integrity. The whole consistency and overall integrity passing
are supervised by the transaction support ensuring the data
correctness. Although the data are still stored in the data files,
the user cannot access them directly, instead, the instance
operated by the background processes is used. Fig. 1 shows
the data flow of the system architecture. The user is delimited
by the client (user) process contacting the database listener,
which ensures the mapping by creating a server process and
interconnecting it directly to the client site. A server process is
extended by a small memory structure dealing with the local
variables, cursor states, and parameters, called Private Global
Area. The database instance itself is formed by the memory
structures and background processes supervising the
infrastructure and database [1] [2]. Thus, there is a strong data
separation and client operations. The data transfer, loading,
and result set building, as well as change operations, are
maintained by the background processes and transaction
managers. Data are block oriented in the data files, which are
consecutively treated and loaded to the memory for the deeper
evaluation in the memory Buffer cache, which block size

reflects the same principles as the physical data repository
itself.

Fig. 1. Database system architecture - user and server process mapping

As evident, a database is block oriented and forms the main
unit of the whole data processing. Data are stored in the
blocks, a block is the smallest unit for the data transfer, and
the memory Buffer cache is also formed by the block matrix.
The crucial element is its size related to the tuple structure.
Typically, the size of the tuple is not fixed, the size of the
attributes can vary, like for character strings, as well as
various data value precision. Moreover, individual values do
not need to be present, modeled by the NULL value notation.
All these factors form data block fragmentation [2] [3]. By
using huge Updates, even empty blocks can be present [3].

This paper deals with the data block optimization, shrinking
space, and relevant block identification by the proposed
Master index structure, pointing to the block precision, instead
of rows, which are characteristic of conventional indexes.
Thanks to that, the performance of the data transfer, evaluation
principles, and disc storage demands can be optimized.

The whole management is operated on the temporal
database layer [3] [4], whereas such an environment is
expressly associated with the precision changes and high
frequency of state updates; however, the solution can be
applied using any relational database platform.

The proposed paper is organized as follows. Chapter 2 deals
with the temporal database principle and modeling summary
pointing to the various architectures and granularity levels.
Temporal models form the core environment for the proposed
solution management. Chapter 3 refers to block management
and related problems limiting the performance of the system.
The main contribution of the paper is made in chapter 4.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 135 --

II. TEMPORALITY – GRANULARITY MODELS AND
ARCHITECTURES

The concept of temporal data management is based on the
tuple identifier extension by dealing with the Date and Time
spectrum. At least, one temporal dimension must be present,
forming a uni-temporal system, which commonly covers the
validity of the object state. Bi-temporal model deals with two-
time dimensions. Validity is typically enhanced by the
transaction reference allowing to store data corrections for any
existing state. In general, a multi-temporal system can be
present referencing any time sphere. One aspect is important –
sortability and timeline reflection. Any temporal meaning is
used, it must be always possible to identify, which state
occurred sooner, to define the borders, and to allow data
corrections. Simultaneously, it must be ensured, that the object
cannot be covered by more than one valid state anytime,
powered by the extended temporal integrity.

There are several time spheres to be referenced, like
validity, transaction reflection, data load reference, data
transaction approval, synchronization timestamp, etc.

Object-level temporal architecture is based on the original
object identifier (primary key) extension by the temporal
sphere. Thanks to that, multiple states can be accomplished for
one object, referenced by the timeline position. Considering
that, any change of the object attribute forces the system to
create the new state completely, regardless of the real change
for the particular attribute set. Consequently, particular values
can be stored multiple times, even if the value is not changed,
the original value must be copied to form a new state. One big
advantage of such a model is related to the consecutive state
composition, which is straightforward, only time reference
must be identified and the row expresses the state. A more
complicated process, is, however, expressed by the real
change identification. It is necessary to get the direct
predecessor and compare values attribute-by-attribute.
Additionally, there can be huge storage demands, if the change
frequency rate is not the same for all attributes. Namely, there
can be static attributes, which do not have their values over
time. Object level temporal model is shown in fig. 2.

Fig. 2. Uni-temporal model [4]

A different approach is delimited by attribute granularity,
which forms the basic unit of temporal processing. By using
attribute oriented temporal model, each table column, which is
temporally registered is extended by the Date and Time
frames. Thus, the overall state of the object is formed by
individual attribute value compositions. No duplicate values
are present, each attribute can be enhanced by different

temporal positions and spheres, e.g., some attributes can be
validity modeled, the others can be covered by the validity and
transaction reference allowing to store data corrections.
Moreover, attribute-oriented granularity can sophistically
cover static attributes or conventional attributes, by which the
evolution is not monitored – only one current valid state is
stored, and history and future valid data are not processed. The
efficiency related to the change frequency is both a strength
and a weakness of the whole approach. Namely, if an only
subset of attributes is changed, only those are processed, by
using attribute granularity. Thus, any attribute change reaches
one Insert statement to the temporal layer. So, if multiple
attributes were synchronized in the change process, regardless
of set size, each attribute would be processed separately.

The architecture of the attribute-oriented temporal model is
in fig. 3. Applications communicate with the current valid
state layer, as well as temporal management to obtain
historical or future valid perspectives. Temporal management
layer can deal with any data and is considered as a supervisor
of the whole process. Actual and outdated data layers cannot
share the data directly, it can be done only by accessing
temporal management layer.

Fig. 3. Attribute oriented granularity [5]

The group-level temporal architecture was defined in 2017
by introducing a data_val object, which can be formed either
by one attribute or a synchronization group consisting of
multiple attributes or sub-groups. Data_val object is a core
granularity used in this model and is temporally oriented.
Thanks to that, the processed precision can reflect any
granularity by covering any temporal model sphere. The
architecture of the group-level temporal model is the same as
attribute oriented, but there is no management of attributes,
just the data_val object is referenced. Fig. 4 shows the data
model of the composition.

Fig. 4. Data_val composition [5]

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 136 --

Although the proposed solution of the Master index
extension is primarily intended for dynamic and frequent data
changes by focusing on temporal evolution management, the
solutions can be applied generally in any system. Even very
simple conventional systems can profit, whereas
fragmentation is present in any solution that offers dynamic
tuple size.

III. BLOCK MANAGEMENT AND RELATED PROBLEMS

Each data object – table or index – is formed by the
segment. The data object segment consists of the object
definition, parameters, properties, and pointer to the associated
object data. These data are stored in the blocks, however, such
blocks are not allocated separately, instead, a set of blocks is
created at once, called data extent. Individual extents are
chained together forming the list of associated object data
blocks. The last associated block is referenced by the High
Water Mark (HWM) pointer, forming the upper block limit.
By sequential scanning, the first block is defined by the
segment pointer, the last block is pointed by the HWM. The
scanning process is done using block granularity. Blocks can
be differentiated based on the data style, either a data block or
index block can be identified [6] [7] [8].

Thus, one object is generally formed by one segment. In the
case of using table partitioning, each partition is then reflected
by one segment. One segment has an unlimited number of
associated extents, which should correspond to the amount of
data stored in them. However, that prerequisite is true only in
optimal conditions. Individual database systems do not
deallocate data blocks, if they are empty, for two main
reasons. Firstly, data blocks cannot be allocated and
deallocated separately. Thus, to do that, the whole extent
should be empty, which would require additional copying and
transferring data. Secondly, data storage enhancement is really
demanding process, consuming many system resources. It also
requires significant processing time in an additional manner.
Whereas it is assumed the data blocks will be used in the
recent future, they are retained in the table to limit consecutive
allocation necessity. However, that´s just the performance
limitation, if sequential scanning is used.

A. Data access methods

Full Table Scan (Table Access Full – TAF) is a common
access method, by which all the associated table block set is
scanned sequentially, block-by-block. It requires taking the
block and transferring it to the memory Buffer cache for the
consecutive evaluation and tuple identification, which is then
treated regarding the conditions of the query. Thus, there must
be a decision, whether a particular row passes all the
conditions to be part of the result set in a required format,
delimited by the Select clause of the query. TAF is the most
demanding access method, whereas it is not prone to block
fragmentation, even non-relevant or free blocks are loaded
lowering the precision and overall efficiency. It is used, if no
better access method using an index is available or the query
evaluator background processes decide that using an index
would be more demanding than TAF method usage. Although
a suitable index may be present in the system, based on

statistics it is clear that if more than 15-25% of the index data
are selected, sequential scanning is preferred [1] [2] [9].

An index is a specific data structure, extending the table
definition and data management, by allowing access and
identifying rows more effectively by using the index key.
Index in relational databases is commonly B-tree oriented,
which is resistant to the data changes without efficiency
degradation. Based on [3], it is rather molded to width than to
depth. Thus, 200 million rows require to use of only 4 nodes
to identify the row in the leaf layer. Root and internal nodes of
the B-tree are used for the traversing, leaf nodes consist of the
data pointers – ROWIDs, which are delimited by the data file,
data block, and position of the row inside the block. From the
logical perspective, the ROWID value is unique and requires
10 bytes.

Among the B-tree enhanced by the leaf layer data sortage
forming B+tree, relational databases use bitmap indexes,
mostly related to the analytical environment or hash indexes
splitting the data into multiple buckets or partitions.

By using the index, various access methods can be used. If
the index key is marked as unique and the Where clause is
based on the equality regarding the index key, Index Unique
Scan (IUS) can be used, by which no more than one row is
returned. In contrast, Index Range Scan (IRS) can produce any
number of rows. It takes the list of ROWIDs obtained by the
index traverse, followed by particular row loading into the
memory Buffer cache for the evaluation. The granularity of
the loaded data is always the block itself.

Other index access methods are Index Full Scan (IFS) and
Index Fast Full Scan (IFFS) methods. IFS reads the entire
index and uses the fact the index items are leaf node sorted.
IFFS is an analogy of the TAF, but the amount of processed
data is limited, whereas the index is commonly distributed
over a smaller number of blocks. Moreover, not all the data
attributes are indexed, lowering the storage demands, as well
[9] [10] [11].

A specific access method has been introduced in Oracle
database 9i. It uses the physical orientation of the composite
index key and skips the leading index to obtain the data. Index
Skip Scan is initiated by probing the index for distinct values
of the prefix column. Each of these distinct values is then used
as a starting point for a regular index search. Afterward, the
partial result sets are merged. As a result, the index is scanned
from the second layer. The database optimizer selects this
method if it assumes the total demands are lower than TAF.
Note, that index structure is optimized by getting the same
depth for any covered tuple. The disc storage reflection is also
optimized, compared to the entire table.

From the performance point of view, the index can be
considered an ideal solution. Data block addresses (ROWID
values) are extracted, which form the most efficient way to
identify and access the record in the block. So, is there any
limitation? Sure, it is. ROWID should be precise, however,
there are many situations, which result in ROWID
“desynchronization”. Firstly, migration automatically
invalidates existing ROWIDs, whereas the addresses are
changed. Secondly, multiple indexes can point to one tuple. If

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 137 --

the tuple position address is changed, original ROWID
pointers remain in the indexes. And it very often happens in
dynamic systems, where the record after the Update operation
can no longer be served by the original location and the
system has to find a new block for it. A migrated row is
another performance limitation related to the index. If the
index is used, particular ROWID is not precise. By loading the
original block to the memory Buffer cache, the system
identifies just the pointer to a different block, which must be
memory loaded and evaluated. It is evident, that the amount of
I/O operations is rising. It is inevitable to highlight that the
multiple nodes can be affected by it forcing the system to load
several blocks to find the particular block. In the optimal
settlement, just one would be enough.

Thus, it is evident, that data fragmentation is a critical
factor influencing the performance of the whole system.
Temporal databases are characterized by storing object state
evolution in time frames. Sooner or later, however, historical
data do not need to be covered in an original form and can be
removed by deleting such rows or by moving them to another
repository, typically data warehouses, data archives, or lakes,
operated by the ETL (Extract-Transform-Load) process.
Consequently, when moving the data from the original
repositories, many fragmentations of the blocks are present,
even empty blocks are part of the extents. Database systems
do not mark them specifically and remain them in the system.
TAF method can degrade significantly, free blocks are loaded
and evaluated.

Concluding this section, three main problems are identified
by proposing own solutions described in this paper:

Relevant block identification by limiting empty
blocks from the evaluation strategy (TAF).
Limiting data migration by improving the
performance of the data access to locate the data
consistently (index access methods).
Consolidating the data by using proposed block
shrinking and defragmentation methods.

B. Physical definition of the block

Oracle storage management unit is a data block by
multiplying Oracle data blocks, not operating system blocks.
To ensure performance, the Oracle data block should be a
multiple of the operating system block size, whereas
physically, all the activities are always supervised by the
operating system, pointing to the internal processes and
operations. The size of the Oracle data block is delimited by
the DB_BLOCK_SIZE initialization parameter of the database
[1]. Without a total data reconstruction, it is unable to change
it later. DB_BLOCK_SIZE defines the size of the element of
the Buffer cache matrix. Typically, the block size is 8KB.
Besides, five non-standard block sizes can be defined and
referenced. However, to make it usable, additional memory
structures must be allocated and formatted regarding the
particular block size. The data block itself is a complex
structure and can be differentiated into several parts. Fig. 5
shows the architecture of the block. It consists of the header

consisting of the general block information, like a reference to
the segment (data or index). Table Directory structure contains
the information about the table origin covering rows by that
block. Row Directory refers to the actual rows in the blocks. It
contains the addresses for each row piece. Header, Table
Directory, and Row Directory are commonly named
Overhead, which can have variable sizes, however, it refers to
84 to 107 bytes on average [12]. Row Data is a core part of the
block consisting of the values for individual attributes of the
rows, referred to as the block working area. Free space of the
block is used for the Insert and Update operations, in case the
original size is smaller than the state after the change. Free
space can be also accomplished by the transaction entry
requiring a small information piece for any Insert, Update,
Delete operation and cursors (for Update type).

Fig. 5. Database block structure [12]

C. Free space block optimization

Delete and Update statements can increase the free space
inside the block if that Update operation changes existing
values to the smaller values from the storage perspective. The
released space is, however, available just for the same
transaction or makes it available after the transaction approval.
Thus, any other concurrent transactions cannot use during the
run. Generally, free space is not continuous making the
fragmentation deeper. Oracle does not coalesce the free space,
as long as it is not necessary. It does the compression only if it
is clear, new data will form and can be covered by the free
space. Note, that the compression causes local block data
migration. Namely, ROWID also points to the data block
position, however, during the compression, particular rows are
shifted, although they are still part of the original block.
Therefore, by using the index, the relevant block is identified
and loaded optimally, but the row pointer is not precise
forcing the system to rescan the whole block [12] [13] [14].

D. Migrating and chaining rows

The row can be too large to fit into one block, even during
the Insert, but also the Update operation. It typically reports
the column of LONG or LONG RAW data type. In that case,
the row must be effectively reconstructable by accessing all
blocks converting that row. Oracle uses a chain of blocks
reserved for the segment. Row chaining is a standard activity
and is unavoidable. Combining various data block sizes is not

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 138 --

suitable, whereas it would be necessary to spread information
across multiple memory structures, operated by multiple
background processes. Moreover, it would be necessary to be
spread across various data files with specific data block size
representation making the solution too complicated. And
finally, it would require a sophisticated solution in the area of
block transformation, the transfer and optimization of access
not only from the block perspective, but also related to the
index structures and methods. Block chaining cannot be
directly optimized, if it occurs frequently, there is just a
recommendation to reconsider the block size apparent for the
table.

Data migration occurs if the row length increases after the
change and there is no free space in the block to serve the
extension. In that case, Oracle migrates the whole row to
another block by the assumption, the newly provided block
can fully cover the row. The original row piece is retained,
extended by the pointer to another block. The ROWID inside
the index does not change and points to the original position.

Row chaining, as well as migrated row presence, decreases
I/O performance, whereas more than one row must be loaded
to retrieve the information value of the row [1] [15] [16].

IV. THE PROPOSED SOLUTION – MASTER INDEX EXTENSION

This section deals with the proposed solution focusing on
the individual challenges summarized previously. Subpart A
deals with the Master index definition, architecture, and usage.
Subpart B deals with the space management enhancements, C
delimits the migration management using the Master index, D
defines the searching priority based on the data block usage
and E refers to the block space shrinking.

A. Master index definition
The master index is based on the assumption, that each

table has at least one index, at least defined by the unique row
identifier – primary key. In principle, for the Master index
definition, any index can be selected, there is just one
prerequisite – it must cover all the table tuples - rows, which
hold NULL values for the whole index key, are not indexed,
whereas it would be impossible to provide traverse operations
through the index to locate index leaf. NULL values cannot be
mathematically compared.

The Master index selection can be done either manually by
using ALTER table command, or the selection can be done
automatically by the database optimizer. It prefers precisely
those indexes that are small in size since their browsing is
shorter than in the case of other indexes or those that are the
most efficient for processing. Efficiency is in this case
expressed by the cost of loading the index into memory for
evaluation. Thus, a relatively complex index may be preferred,
because it is already loaded in memory Buffer cache entirety,
or its proportional part is present there. And hence, the overall
processing can be less demanding and faster.

The manual decision for the table can be selected as
follows:

ALTER TABLE <table_name>
 SET MID = <index_name>;

Automated selection and management are more preferred,
whereas it can be dynamically changed based on the current
data memory perspective:

ALTER TABLE <table_name> SET MID = AUTO;

To disable Master index selection, NULL is set.

ALTER TABLE <table_name> SET MID = NULL;

The master index is used as a pointer locator to the block
set, which holds real data. Thus, sequential scanning is
transformed into the Master Index Scan (MIS). It is analogous
to TAF, but the scanning of free blocks is automatically
refused, whereas there is no pointer to them from the Master
index. To optimize the performance of the MIS, for the
particularly marked index, an additional layer operated by the
Block extractor background process is created. There is also a
B+tree index structure, but the leaf layer contains only
pointers to the block themselves, not the rows. It uses logical
pointers to the additional layer, which refers to the list of
blocks, which hold at least one data tuple. Fig. 6 shows the
data flow of the Master index usage. It is clear, that there can
be significant benefits related to I/O loading operation.

Fig. 6. Data flow - Index access selection [3]

There is still sequential block scanning using MIS
methods, however, it does not refer to all associated blocks
pointed by the segment and HWM, instead, only relevant
blocks are scanned. The proposed MIS method, if enabled,
completely replaces the TAF method.

B. Free space management
The primary purpose of the Master index definition is to

identify relevant blocks to be used for the evaluation and
loading during the data retrieval process. It replaces the
sequential scanning necessity of the whole block set
associated with the table segment through the extents.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 139 --

However, how to identify free blocks available for holding
new data tuples? In principle, the result is composed of the
difference between two sets – all associated blocks, reference
by the extent of content and its interconnection with others,
and the set of used blocks, which can be obtained by the
Master index. The original solution used the mathematical
operation difference, but the performance was not optimal.
Namely, during the Insert operation, it is necessary to identify
one block, which can cover the requirement, not to reflect all
the blocks. Therefore, the Master index extension has been
proposed, by introducing a Block reference module. It consists
of a list of all blocks, that are associated with the table,
divided by the extent and data file affiliation, forming the
index key. The master index then does not reference the
physical address of the block, just the Block reference module
is reflected. The physical address of the block is then part of
such a structure. Thanks to that, blocks, which are not
referenced, are free. Moreover, by grouping individual blocks
together based on the extent membership, it is possible to
easily identify completely empty extents, which can be
optionally deallocated from the table. Fig. 7 shows the
architecture of the Master index enhancement by the Block
reference module.

Fig. 7. Master index – Block reference module

Note, that the interconnection between the Master index
and Block reference module is done by a two-side linked list,
thus, from both structures, unused blocks can be referenced.
The master index is preferred for the data retrieval process
(Select statement), whereas the Block reference module is
optimized for the Insert statements.

C. Migration management using Master index

The core granularity of the Master index is the block itself,
but there is still an ordinary index origin, which can be used,
or incorporated, respectively. Before proposing this solution,
migrated rows were handled by rebuilding indexes [2] or by
using logical data pointers to the physical infrastructure [3].
The optimization technique used in the proposed solution is
based on indirect pointers from the Block reference module to
the index set. It is done on the block granularity, thus there is a
piece of evidence, that a particular row contains at least one
migrated row. Referenced index set covering such a block is

then re-evaluated by removing migration. Consequently, there
is no need to use logical data pointers – ROWlogs, which can
form a performance bottleneck, whereas multiple indexes can
be scanned in parallel, however, layer mapping logical
pointers to physical infrastructure is only one. Moreover, only
one transaction could operate a particular block by the Update,
if the migration was present, the rest retrieval operations hung
till the transaction ended.

By using the Master index extension, data migration
reflection is done out of the main transaction and does not
impact any running operations or transactions.

D. Optimization - number of tuples covered
The leaf layer of the Master index is formed by the

BLOCKIDs – identifiers of the relevant data blocks. By
loading a particular block into the memory Buffer cache, it is
ensured (by removing migrated row reference), that at least
one data row is present there for the evaluation. By using
optimization criteria producing some data portion almost
immediately followed by the full result set loading, it is
inevitable to highlight the block content and probability, a
particular row passing the criteria is present there. The finest
assumption is based on the tuple number covered by the block.
Thus, the block filled with 3 tuples should be preferred
compared to the block showing 1 row only. From the Master
index, however, block occupancy is not evident. Moreover,
the utilization of the block itself is not a relevant composition,
due to the various size of the row.

It may even happen that a single record requires more disc
space than two analogous ones referring to the same table.
Thus, from the table point of view, a block with more content
should be preferred (higher loaded blocks), however, from the
sequential access processing and record identification point of
view, it is just the opposite, and blocks that contain more
records should be preferred.

From the core B+tree index, by taking the leaf layer and
extracting the block references from the ROWIDs, it is
possible to get the number of rows part of each block. That
prerequisite is done by marking block usage in the Master
index for any existing table and each new consecutive data
change is then reflected to the value tick, associated with any
data block. Another solution is done by counting the number
of pointers pointing to the Block reference module. Such a
value can be then used as a part of the Master index key
enhancement by preferring a higher block filling ratio.

E. Shrinking space
The limitation of the dynamic system full of undefined

values and various attribute value sizes is reflected by no
correlation between the tuple count inside the block and its
fullness. As stated, several rows covered by each block can be
obtained from the existing structures (mostly indexes) and
there is no necessity to load that block using I/O and parse it.
However, the fullness of the block cannot be obtained without
ticking that block. Therefore, the crucial task is, how to obtain
those values and how to deal with the missing calculations.

Shrinking space operation is not performed randomly, but
must be preceded by a specific event, delimited commonly by

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 140 --

the Delete operation or possibly by the Update operation
lowering the storage demands. However, when executing a
row removal operation, the particular row must be loaded to
the memory and supervised by the transaction. And that´s just
the point. If the block is present in the memory Buffer cache,
there is no problem to calculate the block usage ratio. It is
operated by the introduced background process – Block
analyzer, which is the master process, extended by the Block
analyzer slave(n).

Thus, in the proposed solution, some data blocks are
excluded from the potential shrinking, but they are not
properly described. On the other hand, suitable blocks are
initially those, which have been freed by the Delete operation.
And all of them are described by the usage in the Master
index. In the second phase, each ticked block is automatically
evaluated for utilization, if any change operation (Insert or
Update) is performed. For the data retrieval, the calculation is
enhanced by the introduced parameter
Select_block_utilization set for the table. It defaults to False
meaning, that Select statements are not extended by the block
utilization calculation. Vice versa, if set to True, if the block
has not been processed, yet, the particular block is analyzed
and utilization is stored in the Master index for consecutive
reference.

Later on, by the analysis, we introduced one extra
parameter value called Exclude. In that case, if the block is not
described, its reference is added to the buffer for the
evaluation and utilization processing, however, it is done
outside the main transaction. Consequently, the original Select
statement is not influenced by the utilization calculation,
which could strongly impact the performance, if the table is
the huge and total amount of blocks to be recalculated is high.

ALTER TABLE <table_name>
 SET SELECT_BLOCK_UTILIZATION

 = {TRUE | FALSE | EXCLUDE};

V. CONCLUSIONS

This paper aims to propose multiple methods for optimizing
the performance of the database system on the physical data
layer. The overall performance of individual data
manipulation operations depends on index usage, as well as
physical infrastructure. Each table is delimited by the segment
forming the structure and set of extents linked together.
Logical database space is an extent, formed by a specific
number of contiguous data blocks allocated for storing table or
index data. Block itself is fixed-size and influenced by the data
fragmentation, whereas the data rows are not the same size.

This paper proposes methods for data fragmentation and
shrinking space by focusing on the empty blocks, which are
not commonly deallocated, whereas it is too demanding and
assumed, the data blocks will be used in the recent future. If
sequential data block scanning is used during the data
retrieval, even free blocks are memory loaded by increasing
costs and processing time.

Another problem is related to index definition and
migration. It occurs if the original block cannot fit the updated
row. In that case, the particular original block stores only the

pointer to the next block, where the row resides. During the
index data processing, multiple blocks must be loaded, instead
of loading just one block.

The proposed solutions are based on the Master index,
which primarily reflects block orientation in a B+tree format.
It is extended by the utilization and number of tuples covered,
which contribute to block layer optimization.

During future research, provided techniques will be
physically applied to the database definition, pointing to the
limitations in a data-distributed manner. It is assumed, that the
proposed solutions can be significantly beneficial in cloud
environments, where the Buffer cache memory perspective
can occupy a larger space. By using data partitioning, the
Master index must be applied separately for each partition or
fragment, however, data shrinking can be generally applied
across the partitions. The intended solution is related to the
pointer stitching.

ACKNOWLEDGMENT

This publication was realized with support of Operational Program
Integrated Infrastructure 2014 - 2020 of the project: Intelligent
operating and processing systems for UAVs, code ITMS
313011V422, co-financed by the European Regional Development
Fund.

It was partially supported by the Erasmus+ projects:
Project number: 2022-1-SK01-KA220-HED-000089149,
Project title: Including EVERyone in GREEN Data Analysis.
Project number: 2020-1-HR01-KA226-HE-094713, Project
title: Cloud cOmputing for Digital Education Innovation.
Project number: 2021-1-SI01-KA220-HED-000032218,
Project title: Better Employability for Everyone with APEX.

REFERENCES
[1] D. Kuhn and T. Kyte, Expert Oracle Database Architecture: Techniques

and Solutions for High Performance and Productivity. Apress, 2021.
[2] R. Greenwald, R. Stackowiak, and J. Stern, Oracle Essentials: Oracle

Database 12c, O'Reilly Media, 2013.
[3] M. Kvet, J. Papán, “The Complexity of the Data Retrieval Process Using

the Proposed Index Extension”, IEEE Access, vol. 10, 2022.
[4] M. Kvet and K. Matiaško, “Analysis of current trends in relational

database indexing”, 2020 International Conference on Smart Systems
and Technologies (SST), Croatia, 2020.

[5] M. Kvet, “Autonomous Temporal Transaction Database”, 30th
Conference of Open Innovations Association FRUCT, 2021.

[6] M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration:
Manage and Safeguard Your Organization’s Data, Apress, 2019.

[7] J. Lewis, Cost-Based Oracle Fundamentals, Apress, 2005.
[8] S.Y.W. Su, S.J. Hyun and H.M. Chen, “Temporal association algebra: a

mathematical foundation for processing object-oriented temporal
databases”, IEEE Transactions on Knowledge and Data Engineering,
vol. 4, issue 3, 1998.

[9] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency, Apress,
2020.

[10] T. Cunningham, “Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge”, 23rd IEEE International
Conference on Mobile Data Management, Cyprus, 2022.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 141 --

X.Yao, J. Li, Y. Tao and S. Ji, “Relational Database Query Optimization
Strategy Based on Industrial Internet Situation Awareness System”, 7th
International Conference on Computer and Communication Systems
(ICCCS), China, 2022.
Oracle database documentation, Data Blocks, Extents, and Segments,
Web:
https://docs.oracle.com/cd/B19306_01/server.102/b14220/logical.htm
Z. Liu, Z. Zheng, Y. Hou and B. Ji, “Towards Optimal Tradeoff
Between Data Freshness and Update Cost in Information-update
Systems”, 2022 International Conference on Computer Communications

and Networks (ICCCN), USA, 2022.
[14] W. Wang, Y. Jin, B. Cao, “An Efficient and Privacy-Preserving Range

Query over Encrypted Cloud Data”, 2022 19th Annual International
Conference on Privacy, Security & Trust (PST), Canada, 2022

[15] S. Pendse, et al., “Oracle Database In-Memory on Active Data Guard:
Real-time Analytics on a Standby Database”, 2020 IEEE 36th
International Conference on Data Engineering (ICDE), USA, 2020.

[16] J. Janáček and M. Kvet, “Shrinking fence search strategy for p-location
problems”, 2020 IEEE 20th International Symposium on Computational
Intelligence and Informatics (CINTI), Hungary, 2020

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 142 --

