

Multi-Tenant Management in Secured IoT Based
Solutions

Kerem AYTAÇ1 2, Ömer KORÇAK2
1Koç Digital R&D Center, 2Marmara University

Istanbul, Turkey
keremaytac@gmail.com, omer.korcak@marmara.edu.tr

Abstract—The existence of Internet of Things (IoT) can be
noticed in many different areas. There are lots of IoT
implementations in different domains which facilitate existing
workloads and solve many kinds of struggles within that specific
domain. The excessive growth in IoT based solutions for both home
and industry applications caused developers to pay great attention
over the requirements such as reusability, modifiability, and
interoperability with a robust security. Many IoT products should
present a core feature which serves plenty of customers from
different domains and provide domain-specific features for each of
them. This approach also forces the IoT products to be multi-tenant
supported to satisfy the requirements. Multi-tenancy brings more
strict security considerations, organizational approaches, policies,
roles, and identity managements. In this paper, we propose a solution
for implementing multi-tenancy and tenant management in an IoT
product, and drill down to details in order to disclose how to make
that product modular and give the ability to serve unlimited number
of vertical solutions.

I. INTRODUCTION

There is a steady increase in the data generated by things and
in both quantity and variety of Internet of Things (IoT) solutions
which manage those data and enable data-oriented problem
solving within single or multiple domains. These solutions are
very crucial in especially industry where there are lots of machines
to be sensed and monitored. However, many IoT products are
really tended to be designed use-dispose style which blocks
reusability and modifiability and only serve a single customer with
a single domain within a specific time. It is required to have a core
IoT product which not only provides interoperability and
modifiability, but also multi-tenancy which brings reusability with
a high security. These requirements are especially apparent for the
industrial IoT solutions.

There are many types of customers for such a product. Some
of them are companies with top-to-bottom hierarchical
organization, while some of them are holding companies which
uses this product in many internal or subsidiary companies that
belong to that holding. Moreover, some of them use this product
to adopt other companies into the product and act as a product
distributor in a specific domain. All of them strictly require a
multi-tenant management which is the pillar of Software as a
Service (SaaS) products in cloud [1].

There are several studies on how to manage tenants in multi-
tenant environments. Kalra et al. [2] handles performance issues
against an Application Programming Interface (API) for a SaaS

Application in cloud that is used by many tenants. They propose a
methodological framework in order to boost resource utilization.
Similarly, Mace et al. [3] proposes an original resource
management framework for shared distributed services. This
framework observes and tracks the resource consumption either
inside a distributed system or amongst multiple distributed
systems and they extract some vitals to a centralized system via
API and evaluate the system in terms of tenants and intervene to
throttle and fairly distribute the resources across tenants.

Besides performance approaches, there are also role-based
access control approaches in the literature. As an example, Tang
et al. [4] works on inter-tenant communication methodology for
trusted tenants. They setup some relations between each other and
they provide some detailed authorization which also asserts that
very low delays happen for end users while being authorized and
scalable. Bien et al. [5] develop a design pattern that is aimed to
be used to build PaaS and SaaS frameworks for software
developers. They named the approach as hierarchical multi-tenant
pattern. Hamilton et al. [6] studies data security for multi-tenant
cloud computing infrastructures. They focus on how to let the
users configure easily their cloud infrastructures while also
providing greater control over data security.

Moreover, many kinds of Customer Relationship Management
(CRM) Applications, or Business Applications use role-based
approaches within the system. Nowadays, nearly every application
has a SaaS correspondence in cloud which serves online to multi-
tenants. Levchenko et al. [7] examine the effects of
implementation of multi-tenancy in SaaS products to business and
its misalignment with IT side resulting with lower business value
realization and the struggles to develop a project. They introduced
some functional requirements in order to implement and adapt
multi-tenant SaaS approach by simulating it against reference
business process models. This approach is validated on a well-
known business application as well. Another role-based approach
comes from Microsoft with a CRM application namely Dynamics
CRM. In CRM world, organization management is the most vital
thing to manage accurately [8]. Their role management is also very
insightful and inspiring to design some parts of our approach.

Every customer should be separated and isolated in a product
as their data belongs to themselves. For the sake of clarity, we can
describe the approach with a hotel example. We can assume the
customers as separate hotel buildings with different facilities or
features in a street and each building has its own security guards

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 56 --

and barriers which only allow authorized access for that building.
However, organizations or departments in a company are more
like the rooms in the same hotel. They can be fully or partly
accessed by some people with a given privileged card such as
managers, cleaners or single accessed by room residents with a
card grants access only a specific room. Sometimes, some
companies (i.e., holding or group companies) assume themselves
as a single tenant, and wants to manage its own subsidiary or sub-
companies with a very high privilege access key within the same
tenant. They are more of a group of hotel buildings that reside in
different places (i.e., street, city, country), but owned by same
owner. Each of them has similarities where some differences
present in terms of facilities or features, but they serve with the
same name differentiating with some place names (i.e., Hotel Foo
Garden– City A and Hotel Foo Suites – City B). So, there are
different customer types with different access privileges.
Residents only book some room from City A or City B and reside
where he books and unable to access the other. Cleaners are the
employees that belong to and be paid by only one of the hotels.
However, the owner or co-founder of the hotel group can access
and manage any of them regardless of in which city it is.

Thus, the IoT product should show a behavior which can
handle these structure types of companies in a secure way.
Additionally, that IoT product should be attachable by some other
vertical solutions to empower the regarding domain. This vertical
solution also should present the capabilities of core mentioned
above. In this paper, we address all these issues and propose a
viable approach for implementing multi-tenancy and tenant
management in an IoT product by enabling unlimited number of
vertical solutions. We provide technical details of how we manage
the tenants and give sample scenarios that cover various cases on
policy and role management issues in an IoT product.

The rest of the paper is organized as follows. Next section has
a glance at the company structures. Section III deep dives into the
IoT product structure and the detailed explanation of proposed
solution. Section IV gives the implementation details and some
useful visual demonstrations to create better understanding.
Finally, Section V concludes the paper.

II. OVERVIEW OF COMPANY STRUCTURES

As introduced in the previous section, without loss of
generality, expressing with the hotel example is a convenient way
to define the problem. Fig. 1 illustrates a sample tenant structure
of a company, namely Company A, which owns two hotels and
one cleaning company which uses the IoT Product. We call the
root company as “tenant” which buy and use the product.
Companies have very top-to-bottom hierarchical and tree-branch
like organizations where some of them are parents, and some of
them are children. Parents manage the children; children report to
parents. For example, in Fig. 1, Front Desk organization manages
two organizations, Reception and Welcoming Committee. Such
organizations with low access privileges are simply called “Child
Organization or Organization”.

 As also described in the previous section, there are some
companies which break down into subsidiaries or other sub-
companies and they want to use that product with a single tenant
rather than multiple tenants per company. Yes, they are different
companies to each other, nevertheless they owned by the same root

company, meaning that they are not isolated as much as different
tenants are. We call those isolations as “Zone Organizations”.
Although they behave like separate tenants, zones are managed by
its regarding tenant.

Moreover, tenant itself is also an organization which is treated
as root. The root is one and only one. We call that organization as
“Root Organization”, where all the zones are parented by. Root
organization is more of a virtual organization to represent a joint
point for all organization at the top.

Fig. 1 Sample Tenant Structure of Company A

In Fig. 1, Company A also founded a cleaning company to
dedicate to hotels which the company owns and performs the
cleaning stuff in-house by not outsourcing to other cleaning
companies. Each cleaning city organization is responsible with the
hotels reside in the same city. Hotel Z Garden and Hotel Z Suites
has similar organization schema, except for a Pre-Sales child
organization as Hotel Z Garden needed to invest for pre-sales
operations as it is less demanded hotel comparing to the other
hotel.

Tenant structures in other domains are analogous to this
example, and the hierarchical structure given in Fig. 1 can be
adopted to many different domains. For example, we may consider
the international banks with vertical and tall organization
hierarchy. They have some regional organizations which manages
a bunch of cities, where city organizations manage the branches in
that city. Moreover, country representatives also manage the
regions in that country. This depiction is the roughest one, they
may have more mid-level parent organizations which manages a
bunch of children. Generally, in the banks, above organizations
have the privilege to access the below ones. Such as, a Human
Resources (HR) employee in region can access some information
about employees that belongs to city organization as well as
branch employees. However, that HR employee cannot access any
information about country representative manager or CEO of the
bank.

III. OVERVIEW OF IOT PRODUCT STRUCTURE AND SOLUTION

PROPOSAL

In this section, we will focus on the IoT software product
structure and more technical details will be revealed. The IoT
product contains a core as a generic and horizontal product which

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 57 --

provides a framework for different IoT applications, providing a
user interface for tracing and tracking data, generating data-related
reports, providing other value adding modules such as machine
learning, rule engine, and so on. It does not present any domain-
specific features, but serves to any kind of domain. Moreover, this
IoT core exposes very helpful endpoints to be mounted by other
solutions in order to extend, specialize and customize the
capabilities of product to specific domains.

Fig. 2 IoT Product and Vertical Solutions Architecture Overview

Both core and vertical solutions as in the Fig. 2 (such as
Manufacturing Execution System [9]) consist of lots of
microservices which communicates each other by using recent and
contemporary microservice architectural approaches. All
microservices expose some useful endpoints to be used by user
interfaces, other internal microservices, other vertical solution
microservices, other 3rd party external services, etc. Those
endpoints should be authorized and authenticated, otherwise it
causes a great security leak. Authentication proves who you are,
whereas authorization shows how privileged you are. Those two
notions should be satisfied to make the system secure and robust.
Authentication can only grant or deny a user to access to the
product services, and if it is a valid user; the border-check can be
passed easily. However, accessing to the objects that a user does
not have to see or have to see or may partially see is matter of
authorization which is the main security wall inside the software.
For instance, a user is not allowed to see any objects that belongs
to other customer (tenant) or another zone that he/she does not
belong to, or an upper organization that the user must not access
due to his/her job definition.

To define more what are the objects that reside in core or other
solutions; let us just grab the instantiation of Company A tenant
which adopts this IoT product, and everything is remote controlled
or monitored with high-end devices. Let us assume that, in Hotel
Z Garden in City Z, there is a door between front desk and back
desk and this door can be ruled by only back desk employees. This
door can be opened remotely by user interface that is provided by
core. So, back door users should login into the system, find the
necessary door record and hit the open button. However, front desk
users should neither see nor command the door. Besides, the hotel
management that works in related zone should command that door
as well.

Let us just enhance the scenario, and say this hotel also bought
a solution namely “RTLS (Real Time Locating System) [10]
Management” for their auto guided robot vacuums where a study
uses this solution to satisfy warehouse security and increase the

efficiency on operations. Those vacuums clean up the hotel. So,
these vacuums are also considered as another objects in core and
RTLS solution. The door that we mentioned recently also should
be known by RTLS solution, because vacuums should open or
close the door when they need to clean beyond the door from front
desk. So, the door is a shared object by core and RTLS. However,
a temperature sensor that is embedded in the wall of reception is
none of RTLS solution’s business. So, this sensor only belongs to
the core. Someone from reception can monitor the temperature.

More specifically, hotel building object is a generally shared
object amongst any solution as it is related to any of them. Both
core and RTLS solution or any possible solutions later probably
need to show building information in their interfaces. So, in Fig. 3
a general overview of object distribution can be observed which
covers the above scenario.

Fig. 3 Object distribution over core and other solution space

 This object belongings to some solutions are called namely
“Solution Ownership” in this study (a.k.a “Application
Ownership). The final scenario, but not the least, any object that
does not belong to that specific solution (a.k.a Application) cannot
be seen even by a fully authorized user in that solution.

 Solution Ownership is the most generalized and coarse way to
manage the object ownerships. We need a fine-tuned way that
prevents from unauthorized access to objects within the same
solution according to user, user’s organization, roles, grant levels
etc. In this part, there will be more details which is the
authorization backbone of the product.

 Hereinafter, object word will be called as asset where they are
the beings, objects in IoT world. This ownership is so called
“Asset Ownership”. So, every asset may have some owners other
than solutions. Before diving deeply into this, let us just discuss
about users, organizations and roles, permissions which are the
decomposed pieces of roles and features creating solutions and
what customers pay for.

 Users are the ones who are managed by IdentityServer and
authenticated to use IoT product and surrounding solutions. Each
user should belong to a child organization or a zone, and thus, to a
tenant.

 Role is a key that has access to data with respect to their
permission levels. A role is combined with user and organization

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 58 --

so that it defines that the role will provide an access to that specific
user over selected organization(s). It contains various type of
permissions.

 EndpointItemPermission is responsible to validate a user to
reach that specific type of service endpoint. It is generally used in
microservice endpoints. (e.g. Asset_Read, Asset_Delete,
Vacuum_Read). If no such permission found for user, service
generates 403 Forbidden HTTP result as defined in the RFC
document [11] for related request.

 MenuItemPermission is responsible to render menu in a UI
project. This permission includes route information, menu icon
info, order number, or child menus if exist etc. This permission
type is used to define the menu for redirecting to a page in
accordance with which menu is clicked. (e.g. Rule Management,
Asset, Asset Type menu items). If a user does not have this
permission, then they will not be able to see that menu in UI.

 UIItemPermission is responsible for components, buttons,
sections, or any kind of UI Items for displaying/not displaying to
the corresponding user. Any UI will need to take these permissions
into consider in order to decide what to show or not. (e.g. Gauge
Chart Widget, Update Profile Picture Button, A Create button for
an object).

 Permission Groups consist of meaningful set of permissions
to manage them easily and intuitively. For example, an “Asset
User Permission Group” may contain Asset Read and Create
endpoint permissions and also AssetType Read endpoint
permission and Asset MenuItem Permission and also “Create an
Asset Button” UIItemPermission. So, if the permissions are atoms,
permission groups are molecules. So, there should not be
inconsistent atoms within a molecule.

 Policy corresponds to an authorization area, also known as
Organization. Organizations are the things that have strict
boundaries by containing some assets or users. So, policy is
another nomenclature of organization.

 Feature is the smallest struct within a solution that presents a
capability. It contains bunch of permission groups in order to
manage authorization for users.

 Feature Set is basically a set of features.

 Solution, also known as Application, is set of feature sets.
Thus, if some feature sets are combined, it will correspond to a
solution.

 Considering these definitions, a customer pays for a solution
regarding the feature sets consisting of. For example, a customer
wants to enable Electric Vehicles Charging Management System
(EVCMS) whereas a study explains very well about the usage and
adaptation of this solution for the sake of more efficient battery
usage [12] in their Core IoT Platform as a vertical solution. This
solution contains two feature sets namely “Charging Tracker” and
“Reporting” as in Fig. 4. Each feature set also includes some
features. For example, they want to communicate with Core IoT
via OCPP (Open Charge Point Protocol) which is an EVCMS-
specific communication protocol where the protocol usage in this
domain is well-defined in a study [13], but they do not want to
enable any voltage surge protection software, because they already
handle this problem in charging unit as is. Moreover, they do not
want any reporting features, so Reporting feature set will not be
enabled for this customer.

Fig. 4 Solution to Feature Decomposition for a EVCMS solutions

 If a feature is not enabled, then there will be no
permission groups, thus no permission will be granted to that
customer (tenant). So that, this customer will not be authorized
somehow to any endpoints or UI things which corresponds to a
specific feature.

 Now let us refer to the zones introduced in the previous section.
Zones are the structures which buy solutions. So, in a tenant with
multiple zones, each zone can prefer different type of solutions,
feature sets or features and any organization that is connected to
zone at the top can only use them. All the zones are isolated from
each other in terms of purchased solutions. However, this isolation
is not a hard line, but a soft line. As described previously, each user
belongs to one and only one child organization within zone. From
that point on, roles come to the stage and show themselves to make
users grant any kind of authorization. Zones are analogous to
closed-door rooms, and users are the residents inside these rooms
whereas the roles are the keys for these rooms. Thus, anyone from
Zone Hotel Z Suites – City X can access to any feature from Hotel
Z Garden – City Z, thanks to roles. Fig. 5 illustrates a sample
scenario where Company A purchased a set of solutions in
accordance with zones.

 Roles are not only simple door keys, but also defines how to
access. Now, we deep dive into the role definition. Roles are only
associated with one zone and one solution that is purchased by
zone. It contains feature sets and thus features and thus permission
groups and thus eventually Endpoint, UI Item and Menu
permissions in it. We simply grant privileges to permission groups
in terms of Read, Create, Update or Delete. If we grant Read
privilege for a permission group, then we grant accordingly any
permissions that resides in that permission group with a given
access level.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 59 --

Fig. 5 Illustration of Hotel Tenant with Purchased Solutions and enabled feature
sets, and features.

 Roles are standalone objects, and one can assign roles to users
by associating organizations as in Fig. 6. To instantiate this
description let us say we have Role A with some CRUD (Create,
Read, Update, Delete) privileges and we want to assign this Role
A to User B to be used in Organization 1 in Zone X and another
Organization namely 2 in Zone Y. Additionally, we want the user
to use this role wherever he is. So, if this user changes his
organization, this role will automatically be valid in that
organization. Here we see that roles are only usable with
organization association by users, and they use roles as a key to
access that closed room.

Fig. 6 Role decomposition and depiction of how they are assigned to users

 Now, we consider ownerships defined previously. Each object
can have an owner by a user or organization or entire customer
(tenant). If an object does not have any owner or customer type of
ownership, then there will be no role rules applied, anyone can
access those objects if they are granted with authorization for
managing that object space. For example, if a user is granted with
“Car Read” privilege, then he will be reading that “Car” no matter
how he gets the roles, or where his organization is.

 Another role limiter and fine-tuner approach is “Access
Levels” for Permission Groups. This approach sets the access
rights for organizations and records that is owned by someone.

 User Level: If we create a role and grant “Car Read”
privilege with User level, then the user that is assigned
with this role can only access his own records, meaning

that, the cars that he individually owned. Thus, he cannot
see any other cars that is owned by other users or
organizations.

 Organization Level: If we create a role and grant “Car
Read” privilege with Organization level, then the user
that is assigned with this role can only access the Cars
owned by organization or users in this organization that
is addressed by Role-Organization association.

 Organization and its children (top-to-down): If we
create a role and grant “Car Read” privilege with this
level, then the user that is assigned with this role can only
access the Cars owned by organization or users in this
organization and propagate down to its child
organizations that is addressed by Role-Organization
association. To exemplify, “a manager can see any
salaries of any employee that is in all the branches below
his branch”.

 All Organizations in the zone: Barely seen from the
definition, this level of privilege will make the user to see
all the records that belongs to any organization under the
zone which the role is defined for.

Some other notion in this approach is User Types. There are
three types of users.

 Superadmin: One and only user that can rule the whole
company which is exempted from any roles and
privileges. This user can access and do any operation
against any objects, can create users, roles, organizations
and more. It is assumed that only a single superadmin
should exist within tenant space to provide some security
and control.

 Admin: Zone admins can rule the whole zone in a tenant
as superadmin does, but only a specific zone. They can
also create any roles, organizations, users in the given
zone. They require roles to access other zones. Any user
can be assigned with an admin role by superadmins at any
time to rule a zone.

 Normal User: Simple, basic users other than admins.
They need roles to move inside the organization hierarchy,
otherwise they do not have any access capability.

The last but not the least notion in this approach is
Organization Types. There are two types of organizations.

 Normal Organization: The ordinary organization type.

 Isolated Organization: A niche but useful organizations
that presents a sandbox within zones. They are tightly
sealed organizations that no usual roles can access with
any kind of propagating privilege levels (top-to-down
and all organizations level). In order to access them, the
role should be associated especially to that isolated
organization. An Isolated organization can only be
created under a normal organization. No normal
organization can be created under an isolated
organization.

IV. IMPLEMENTATION DETAILS AND DEMONSTRATIONS

In this section, we provide some visual implementations and
demonstrations for the sake of better understanding, and describe

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 60 --

some scenarios which demonstrate objects and users and their
behaviors when a role is given.

Fig. 7 A role that manages the door objects in hotel that is managed via Door
Automation Solution which is defined to Hotel Z Suites – City X zone.

First things first, we create a role as in Fig. 7, and define the
privileges as in Fig. 8. If we grant Read role, then the user will be
granted any permission groups in terms of read type that is
contained by Feature Door Command (such as Door_Read,
DoorType_Read permissions in permission groups).

Fig. 8 Door Management Feature set with Door Command Feature that contains
some permission groups (Door_C,R,U,D; DoorType_C,R,U,D) for the given
role.

Fig. 9 The role is assigned to the user with Pre-Sales organization association

After the role is created, it is associated to organizations. An
example UI is shown in Fig. 9 where the aforementioned role is
associated with Pre-Sales organization and assigned to the user.
Multiple organizations can be assigned to a single role of a user.
The more association role has, the more accessibility role will
have.

Fig. 10 depicts a scenario where User A is in Sales
organization. The role is now granted to User A as if he is in Pre-
Sales organization, although he is in Sales organization. There is
a door which belongs to Pre-Sales organization, but owned by
User A which is a very niche scenario, but possible. As the User
A owns that door, even though that door is also contained by Pre-
sales; and the User A is granted with User Level privilege, the
User A can execute the given operation, that is Read operation.
The user surely cannot modify, delete or create a door object as
no privilege granted except for read (in Fig. 8). To conclude, no
matter where the object is in terms of organization, if that object
is owned by a user and that user granted with user-level privilege,
then that object is accessible by mentioned user.

Fig. 10 User A is assigned with a role to Pre-Sales that includes User-Level
Read privilege for a Door record that is owned by User A, but in Pre-Sales
Organization.

Now we discuss the objects that is owned only by organization
(no user ownership) which is the most coincided scenario in IoT
world. As in the Fig. 11, User A that belongs to Sales organization
is assigned with a role to Pre-Sales that includes Organization-
Level Read privilege for a Door record that is owned by Pre-Sales
Organization. So, this user can benefit that role to read any doors
in Pre-Sales, and the door is in Pre-Sales as well, thus, read
operation is successful.

Fig. 11 User A is assigned with a role to Pre-Sales that includes Organization-
Level Read privilege for a Door record that is owned by Pre-Sales Organization.

Fig. 12 shows a similar scenario with very slight difference,
that is, role is associated with Back-Desk organization rather than
Pre-sales in the previous case. In this case, User A can only see
the doors in Back-Desk, however the door is still in
Pre-sales organization. To sum up, there will be no read operation
allowed.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 61 --

Fig. 12 User A is assigned with a role to Back Desk that includes
Organization-Level Read privilege for a Door record that is owned by Pre-Sales
Organization.

A slightly different but an interesting scenario is illustrated in
Fig. 13. User A is now granted with the same role, but this time
the door is owned by the same organization that he is in. Even
though they are in the same organization, the user will not be able
to see that door as the role is associated to Back-Desk. What
matter is how the role is and assigned, not where the user is.

Fig. 13 User A is assigned with a role to Back Desk that includes
Organization-Level Read privilege for a Door record that is owned by Sales
Organization.

Now, we consider a scenario where the access level of the role
is increased to “Organization and Its children (Top to down)” as
in Fig. 14. This role traverses from the organization that is given
to the below organizations by drilling down. In Fig. 14, viewable
organizations are shown by light gray. This role grants user to
view any doors in Back desk, Sales and including the door in Pre-
Sales.

Fig. 14 User A is assigned with a role to Back Desk that includes Organization
and Its Children level Read privilege for a Door record that is owned by Pre-Sales
Organization.

In the scenario shown in Fig. 15, the access level of the role is
increased to “All Organizations”. Now, all child organizations
and zone organization can be read by User A in terms of door
object. So, regardless of where the door is in the mentioned
organizations, user can read that door object thanks to highest
level of privilege.

Fig. 15 User A is assigned with a role to Back Desk that includes All

Organizations level Read privilege for a Door record that is owned by Pre-Sales
Organization.

We have to note that, a company may include multiple zones
as described before. In Fig. 16, we just zoom out and show other
zones in the company. User A uses the same role, but this time
the door is owned by another Sales organization that is under
Hotel Z Suites City X. Even though the read privilege is “All
Organizations”, this only covers all organizations in the zone that
is addressed by the role. Roles are inherited from single zone
organization as in Fig 7. Therefore, the door is not accessible by
User A.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 62 --

Fig. 16 User A is assigned with a role to Back Desk in Hotel Z Garden City

Z that includes All Organizations level Read privilege for a Door record that is
owned by Sales Organization in Hotel Z Suites City X.

Nevertheless, there is still an easy way to access that door
simply granting another role that is inherited from Hotel Z Suites
City X with Organization-Level Door_Read privilege as in Fig.
17.

Fig. 17 User A is assigned with a role to Back Desk in Hotel Z Garden City
Z that includes All Organizations level Read privilege and another role with
Organization Level Read privilege for a Door record that is owned by Sales
Organization in Hotel Z Suites City X.

Now, let us consider a scenario where the door is an object
that presents in Door Automation solution and door automation
solution is only purchased by Hotel Z Suites and Hotel Z Garden,
not by Cleaning Company Z. In this case, the door object does not
exist from the perspective of Cleaning Company Z. In other
words, no door can be observed for Head Quarters under Cleaning
Company Z zone, as well as the operations against door.

To make concise the approach of isolated organization, let us
have an illustration to finalize this section. A critical door to
security cabin should be isolated from any other roles that is
assigned to users. Otherwise, propagating privilege levels (such
as “All Organizations” or “Top-to-down” levels) enable access to
them. But this door should be managed by only security users. So,
creating security cabin as an isolated organization will prevent
any propagated access by privilege levels. Thus, the door owned
by security cabin organization is not accessible even with the

highest privilege level namely “All Organizations”. In order to
access to that door, User A should be assigned with a role
associated directly with security cabin, not back-desk or sales or
any other organization. Fig. 18 illustrates this approach. This
niche scenario will work very well with such kind of approach.

Another useful tip about isolated organization is that they can
present propagation property within each other. So, if we connect
another security sub-cabin organization for security cabin, then
any privilege with top-to-down to the main cabin can also
infiltrates to that sub-cabin thanks to propagation property.

Fig. 18 User A is assigned with a role to Back Desk that includes All

Organizations level Read privilege for a Door record that is owned by Security
Cabin Organization.

These architectural designs can fit into user interfaces as given
in Fig. 19. User SU is authorized to Solution X, Y and Z that are
granted by roles no matter which zone it comes from. If user
switches to Solution X, all the menus and features that are related
to Solution X will appear in the page, and any requests (HTTP or
else) originated from that solution page to microservices will
carry a header namely “solution-id” which points the originated
solution. So that, services can decide what to do with that request
accordingly by authenticating or authorizing.

Fig. 19 User SU which is authorized to Solution X-Y-Z somehow with roles
can see and switch to any solution from the User Interface

Not only UI, but also other services, APIs should include
solution-id in each request regardless of what protocol is (HTTP
or else). So that, regarding API can authorize the requestor with

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 63 --

the given solution. Fig. 20 depicts how third-party APIs can
communicate with an API that serves for a solution.

Fig. 20 3rd Party API authorizes itself to communicate with Door API in order
to retrieve the doors that service user can.

If a third-party API is trusted and not required to be authorized
with Service User and bypass all permission checks that are
processed in the 4th step and solution ownerships, a “maximum-
privilege” token can work for this purpose. Any API that uses
maximum-privilege token can retrieve any objects that are in any
solution and in any tenant in a single request. This is useful for
some scenarios which also provides ease of usage and boosted
performance.

Fig. 21 API space and their responsibility diagram for a Multi-Tenant
Management in IoT

The last but not the least, we briefly discuss API-
Responsibility map shown in Fig. 21. In this map, different APIs
are defined. Inbound arrows depict that given information is
passed into inbounded API from outbounding API. Product API
is responsible from solutions and features. Policy API is
responsible from roles and permissions but aware of many objects
(such as users, organizations and solutions) from other APIs. This
approach simply derives from Domain Driven Design [14]
namely shared objects in Bounded Contexts which is not a related
topic to this paper. Tenant API is responsible from tenants
and organizations, and Identity Server API is responsible from
users.

V. CONCLUSION

In this study, we propose a robust, but flexible tenant
management approach in terms of authorization and
authentication. There are plenty of IoT solutions that can leverage
the capabilities of traceability that IoT presents. Every solution
that mounts over the IoT core brings more and more objects to be
managed. It is really challenging to manage huge number of
objects within a tenant in a secure way. Our approach
significantly eases the management of these objects by defining
roles, access levels, ownerships, and permissions in a very
appropriate way. We believe that such a tenant management will
mitigate significant amount of struggling and challenging
operations against an IoT ecosystem. The proposed approach may
work with the domains other than IoT as well, since it is designed
as generic as possible. As a future work, this approach will be
applied to other domains such as customer relationship
management or inventory monitoring system.

ACKNOWLEDGMENT

This work is supported by Koç Digital R&D Center.

REFERENCES

[1] Bezemer, C. P., & Zaidman, A. (2010, September). Multi-tenant SaaS
applications: maintenance dream or nightmare?. In Proceedings of the
joint ercim workshop on software evolution (evol) and international
workshop on principles of software evolution (iwpse) (pp. 88-92).

[2] Kalra, S., & Prabhakar, T. V. (2018, February). Towards dynamic tenant
management for microservice based multi-tenant saas applications. In
Proceedings of the 11th Innovations in Software Engineering Conference
(pp. 1-5).

[3] Mace, J., Bodik, P., Fonseca, R., & Musuvathi, M. (2015). Retro:
Targeted resource management in multi-tenant distributed systems. In
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15) (pp. 589-603).

[4] Tang, B., Li, Q., & Sandhu, R. (2013, July). A multi-tenant RBAC model
for collaborative cloud services. In 2013 eleventh annual conference on
privacy, security and trust (pp. 229-238). IEEE.

[5] Bien, N. H., & Thu, T. D. (2014, April). Hierarchical multi-tenant
pattern. In 2014 International Conference on Computing, Management
and Telecommunications (ComManTel) (pp. 157-164). IEEE.

[6] Hamilton, H., & Alasti, H. (2017). Controlled Intelligent Agents' Security
Model for Multi-Tenant Cloud Computing Infrastructures. International
Journal of Grid and High Performance Computing (IJGHPC), 9(1), 1-13)

[7] Levchenko, A., & Taratukhin, V. (2021, January). Reference business
processes-based method for multi-tenant saas architecture deployment
and adaptation. In 2021 28th Conference of Open Innovations
Association (FRUCT) (pp. 264-270). IEEE.

[8] Bellu, R. (2018). Microsoft Dynamics 365 for dummies. John Wiley &
Sons.

[9] McCLELLAN, M. (2001, June). Introduction to manufacturing
execution systems. In MES Conference & Exposition, Baltimore,
Maryland (pp. 1-7).

[10] Halawa, F., Dauod, H., Lee, I. G., Li, Y., Yoon, S. W., & Chung, S. H.
(2020). Introduction of a real time location system to enhance the
warehouse safety and operational efficiency. International Journal of
Production Economics, 224, 107541).

[11] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., &
Berners-Lee, T. (1999). Hypertext transfer protocol--HTTP/1.1 (No.
rfc2616).

[12] Liu, K., Li, K., Peng, Q., & Zhang, C. (2019). A brief review on key
technologies in the battery management system of electric vehicles.
Frontiers of mechanical engineering, 14(1), 47-64.

[13] Alcaraz, C., Lopez, J., & Wolthusen, S. (2017). OCPP protocol: Security
threats and challenges. IEEE Transactions on Smart Grid, 8(5), 2452-
2459).

[14] Evans, E., & Evans, E. J. (2004). Domain-driven design: tackling
complexity in the heart of software. Addison-Wesley Professional.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 64 --

