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Abstract—With the increased usage of Internet of Things
(IoT) devices in recent years, various Machine Learning (ML)
algorithms have also developed dramatically for attack detection
in this domain. However, the ML models are exposed to different
classes of adversarial attacks that aim to fool a model into making
an incorrect prediction. For instance, label manipulation or label
flipping is an adversarial attack where the adversary attempts
to manipulate the label of training data that causes the trained
model biased and/or with decreased performance. However, the
number of samples to be flipped in this category of attack
can be restricted, giving the attacker a limited target selection.
Due to the great significance of securing ML models against
Adversarial Machine Learning (AML) attacks particularly in
the IoT domain, this research presents an extensive review of
AML in IoT. Then, a classification of AML attacks is presented
based on the literature which sheds light on the future research
in this domain. Next, this paper investigates the negative impact
levels of applying the malicious label-flipping attacks on IoT data.
We devise label-flipping scenarios for training a Support Vector
Machine (SVM) model. The experiments demonstrate that the
label flipping attacks impact the performance of ML models.
These results can lead to designing more effective and powerful
attack and defense mechanisms in adversarial settings. Finally,
we show the weaknesses of the K-NN defense method against the
random label flipping attack.

[. INTRODUCTION

Internet of Things (IoT) environment is designated as a
system of connected devices embedded with sensors to collect
and exchange data and execute complex tasks [1]. Over the
past years, there has been an upsurge growth in the usage of
IoT gadgets. One of the major reasons for increasing the use of
IoT devices is because they require less power consumption,
provide more effortless connectivity, and are more convenient
to use [2]. Because of this, the internet has accelerated the

spread of IoT devices and has built a strong connection by
providing service applications to different sectors such as
industries, healthcare, smart cities, smart home, etc. [3]. IoT
has become an extension of the internet that provides a relation
between the physical and digital world where sensors and
actuators are integrated to provide connectivity [4].

Researchers have proposed to use various ML models based
on popular datasets such as NSL-KDD Cup [5] and UNSW-
NB15 [6] that learn the patterns from captured data and
provide the prediction of whether an input sample is benign
or malicious. However, the solutions provided using many
of the available datasets are losing their relevance due to
new attack variants and new protocols developed according
to the changing requirements. Moreover, with the rise of new
IoT technologies, IoT devices’ existing approaches to secure
these limited resource usage are becoming obsolete. Recently,
some new datasets, including BoT-IoT [7] which is generated
through designing a natural network environment and CIC IoT
Dataset 2022 [8] are presented, which investigate different IoT
behaviors in different scenarios.

With changing the requirements, the pattern of attacks is
also changing. Nowadays, adversarial cyber attackers have
started exploiting the models rather than targeting particular
IoT devices. These attacks, which are called Adversarial
Machine Learning (AML) attacks, vary in type. Two important
categories of these attacks include evasion and poisoning. In
evasion attacks, malicious test samples are adopted by the
adversary [9]. Following this approach, the attacker forces
the implemented model to classify the data incorrectly and
thus, making the system fail [10]. Poisoning attacks are
aimed to target the data or model in ML training [11]. Data
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manipulation is an essential category of poisoning attacks that
further falls into two categories: manipulating the data in the
training stage or the label of the training samples [11].

Considering the growing importance of IoT in the recent
years and the new advances in adversarial attacks in this
domain, a comprehensive review of the recent works related to
this topic is required. However, to the best of our knowledge,
no research work has specifically investigated adversarial at-
tacks in IoT. Moreover, There are just a few works addressing
the label flipping attacks as an important category of poisoning
attacks.

Thereupon, the main aim of this research is to present an
extensive review of the recent works regarding the adversarial
machine learning in IoT. Moreover, several experiments are
conducted regarding the label flipping attacks to shed light on
different aspects of this attack category as an important issue
in the IoT domain.

Following are the main contributions of this research:

o Presenting an extensive review of Adversarial Machine
Learning (AML) in the IoT domain.

o Presenting a classification of AML attacks in the IoT
domain.

o Investigating different scenarios for the label flipping
attacks.

o Examining the effectiveness of the K-NN defense method
against the random label flipping attack.

II. BACKGROUND

Malware detection, network intrusion detection, and spam
detection are just a few of the many areas where machine
learning (ML) is important. It is typical to presume that a
machine learning model will be used in a benign environment.
In other words, it is assumed that no adversarial element will
influence how well ML models function. This presumption,
however, is not necessarily true [12]. Tricking ML models
into producing inaccurate predictions is called adversarial
machine learning (AML). In recent years, as the volume of
data generated in different domains has increased significantly,
poisoning attacks are considered to be an important category
of threat, particularly where the data is collected from users
(for IoT environments and sensor networks) or where the data
labeling is crowdsourced. As an example, label flipping attacks
are one of the major types of poisoning attacks resulting in
significant performance degradation [13]. With respect to the
growing interest in applications of ML in IoT, investigating the
potential threats impacting the effectiveness and performance
of ML models in this domain poses great importance.

A. Machine Learning (ML) in the loT Domain

Considering the various vulnerabilities in the IoT domain,
ML algorithms are widely being used to tackle the potential
issues. Based on the requirements, data analysis can be per-
formed in IoT devices or the cloud. Cloud refers to remote data
servers or edge servers that bring the computation close to the
IoT devices. As the data analysis may be done in IoT devices,
considering the limited processing power, using lightweight
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ML models is preferred. Moreover, more processing may be
performed on the data in cloud [14]. Some of the use cases of
ML in IoT include outlier and intrusion detection [15], signal
authentication and device identification [16], [17], spectrum
sensing [18], and smart grids [19]. Therefore, with respect to
the broad use of ML methods in IoT, investigating the threats
against deployed models seems to pose great importance.

B. General Overview of Adversarial Machine Learning (AML)

The training and testing phases of the ML pipeline have
different adversarial techniques. Poisoning is an important
technique applied to the training phase and includes modi-
fying training data [20]. In Indirect Poisoning, the adversarial
modification of data is done before the preprocessing stage.
Direct poisoning includes data injection, data manipulation, or
logic corruption. In data injection, the goal is to change the
distribution of data in a training set and is achieved through
injecting “adversarial inputs” to the training set. However, the
features and labels of existing data samples are not changed.
The decision boundaries of an ML model can be shifted
through this attack. In data manipulation, labels or features
of data instances in the training set are altered [11].

The aim of attacks corresponding to the test phase is not
to alter the data for training or decision boundary, but to
generate samples such that they can fool a model in the testing
phase [21]. Some of the important gradient-based techniques
of evasion include [22] Fast Gradient Sign Method (FGSM)
[23], Jacobian-based Saliency Map (JSMA) [24], and Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [25].
In gradient-free attacks, adversarial perturbations are applied
with no background information of the model that is targeted.
In other words, the target model is used as an oracle to which
adversarial samples are sent and the output is observed [26].

C. Potential Cases of Adversarial Attacks in the loT Domain

Based on [27], in an IoT/WSN (Wireless Sensor Networks)
outlier detection setting, the collected data is sent to the
gateway. Then, information is sent from the gateway to a
server. In this step, the corresponding error, event, or malicious
activity is detected to notify the end user. According to
this paper, the ML methods that can be applied for outlier
detection include statistical-based methods (parametric and
non-parametric), supervised learning-based methods (such as
SVM, Bayesian learning methods, K-NN, and Neural Net-
works), and unsupervised learning-based methods (including
K-means clustering and PCA). However, supervised learning
is used more widely in this domain. There are some limitations
to the adoption of ML algorithms in the IoT domain. One of
the most major constraints is the lack of computational power.
In other words, the complex ML algorithms are hard to be
deployed on the resource constraint devices [28].

Distributed approaches between sensing devices can also be
adopted for the purpose of outlier detection [29], [30]. How-
ever, frequent communications are required in this approach
[31]. The task of outlier detection can be performed on the
individual sensors without the need to communicate with other
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sensors. For instance, [31] has proposed a solution for outlier
detection in WSN where autoencoder instances are run on
sensors. The sensors send the input and output of autoencoders
to the cloud via a gateway. In other words, the training process
takes place in the cloud. Then, the model parameters (that
are updated) are sent back from the cloud to the sensors.
Nevertheless, outlier detection using ML algorithms is likely
to be targeted by adversaries.

Signal authentication is one of the major tasks of IoT
where adversarial attacks are likely to happen. Signals are
sent from IoT devices (in the perceptual layer) to a gateway
to control the operation of IoT devices. However, this signal
is likely to be manipulated. Dynamic data injection attacks
may happen in this stage. The gateway has to authenticate
the signals sent from IoT devices. However, as the gateway
is resource-constraint, it should optimally choose signals for
authentication [16]. Traditional solutions such as ML-based
Radio Frequency fingerprint identification can help with device
identification. However, these solutions are facing some chal-
lenges such as huge amounts of training data. Deep learning
methods are used widely for device identification and signal
recognition. But, they are susceptible to adversarial attacks.
The attacks may be targeted or non-targeted [32].

Malware detection in IoT is also vulnerable to attacks
conducted by adversaries. In terms of combating malware
in IoT, there are two signature-based solutions. The first
solution is host-based where the detection system is installed
on devices. However, these solutions seem to be inadequate
with respect to the developments in malware attacks. More
importantly, resource-constrained devices cannot benefit from
these solutions, particularly as these solutions are signature-
based. Another solution is to put the detection mechanisms in
the cloud [33].

Tampering with sensors’ measurements is one of the po-
tential adversarial attacks [34]. As an example, to investigate
the effect of gases emitted by a factory, the government may
decide to measure the emissions of the corresponding factory.
However, the factory manager may tamper with the sensors’
measurements by releasing chemicals near the sensors when
air quality is good. Therefore, it is hard to derive that bad air
quality is related to the emissions of this factory [35].

The data fusion and aggregation steps are vulnerable to
attacks as well [36]. Data collection from different sensors
is an important task where the data noise is filtered. This
data collection should be context-aware, privacy-preserving,
reliable, and real-time. However, there is the potential that
several devices sending data to the fusion center are controlled
by an adversary and therefore, the decision is compromised
[37].

Wireless communications that are used widely in the IoT
domain are at the risk of over-the-air wireless attacks as they
are broadcasted. However, the use of ML in this domain lacks
security. There are several techniques for adversarial attacks
including exploratory, evasion, and poisoning where the aim
is to get an understanding of the target model, evade the
model in the test phase to make wrong decisions, and provide
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the model with wrong training data to affect the decisions
respectively. These attack approaches can be mapped to the
wireless domain to act as the jamming, spectrum poisoning,
and priority violation attacks [38].

III. LITERATURE REVIEW

The summary of several research works related to adver-
sarial machine learning in IoT is presented in Tables I and
XI. These works are compared in terms of the investigated
attack(s), related attack categories, used models, and dataset.

Figure 1 shows the proposed classification of Adversarial
Machine Learning (AML) attacks in the IoT domain according
to the literature review section. Machine learning models can
be deployed in different layers in edge devices or sensors,
gateways, and the cloud. In the figure, they are connected to
the layers with dashed lines. However, there are threats against
the models in each layer. Over-the-air wireless attacks that
include priority violation, jamming, and spectrum poisoning
can be deployed against the transmitters. Moreover, tampering
with sensor measurements is another potential issue in this
layer. 10T devices are likely to be controlled by adversaries in
this layer which can result in inaccurate output results.

ML models for device identification and authentication can
be deployed in gateways. However, adversaries are capable of
fooling these models into making wrong decisions. If intrusion
detection systems are used in gateways or the cloud, they
have the potential of being targeted for adversarial attacks.
The process of data fusion in the fog layer is also vulnerable
to threats. The data fusing process can be performed in the
cloud level as well [39], making this layer vulnerable. If
the classification of smart home IoT devices is performed
in the cloud, the utilized ML algorithms may be attacked by
adversaries. Based on [40], data processing is possible to be
performed in smart gateways in smart homes. Therefore, smart
gateways are vulnerable to adversarial attacks. There is also
the possibility of attacks against data operation retrieval in a
Security Operation Center (SOC).

IV. LABEL FLIPPING ATTACKS

Label flipping is a major subcategory of data poisoning
aiming at manipulating data labels to impact the ML model’s
performance adversely [13]. These attacks cause major prob-
lems for the ML-based systems, particularly in noisy or
uncertain environments like complex networks and IoT [41].
In a label flipping attack, the attacker can control the label of a
limited proportion of samples. Poisoning attacks are shown to
be effective in impacting the performance of ML algorithms
such as neural networks, deep learning systems, Support
Vector Machines (SVM), and embedded feature selection
methods. Although deep learning systems have shown great
performance when dealing with samples with clean labels,
their effectiveness is degraded in the case of existing samples
with flipped labels [41], [42].
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Due to the importance of label flipping attacks, different
attack experiments against Support Vector Machines (SVM)
are investigated. As SVM is determined to be robust in
adversarial settings [43], it is a suitable option to be utilized
for the experiments.

Fig. 2 shows the framework of experiments conducted
regarding label flipping. The dataset contains samples of
the DoS, DDoS, Reconnaissance, and theft attack categories.
Then, the data is pre-processed. Afterward, three experiments
are conducted using the SVM ML model to investigate the
adversarial effects of the label flipping attack. In the first
experiment, samples with small or large margins to the hy-
perplane are flipped using the RBF and linear SVM kernels.
In the second experiment, the effect of flipping samples of
specific attack categories on the performance of an SVM
model is investigated. Finally, the effect of flipping specific
attack categories on misclassified samples is explained. In the
experiments’ results, the percentage of samples with flipped
labels is shown with Noise(%).

A. Preliminaries

1) Support Vector Machine (SVM): We have performed
our studies by varying kernel, i.e., using linear [51] and Radial
Basis Function (RBF) [52]. SVM discriminates two classes of
data by drawing an optimal hyperplane that maximizes the
distance between data classes. Considering the data to have
two classes, the Support Vector Machine (SVM) solves the
following optimization problem [53]:

l
1
minw,g §WTW + CZ&
=1
Subject to y;(WTp(X;) +b) > 1 ¢

£ = 0. ey

where X, y;, &, W, and C are input data, label vector, param-
eters associated with optimization, weight vector, and penalty
parameter of error term respectively. According to [54], the
RBF kernel seems to be the first option while using the Support
Vector Machines (SVM). It can handle nonlinearity when the
labels and attributes have a nonlinear relation. Actually, the
samples are mapped to a higher dimension in a nonlinear
manner. The kernel function for RBF is:

(@)

where ~ is a kernel parameter. The function named linear
discriminant is used to separate two different class samples
at the time of training of the classifier [55]. The hyperplane
discriminant function df (k) is defined in Eq. (3).

K (2, 25) = exp(—||z; — a;4]*),7 > 0

df (k) = sgn(>_ cys (ix +i — b))

k=1

3

where n is the number of training records (k = 0, ...,n), Y,
which is either —1 or +1, is the label label of training data,
i), are the support vectors and 0 < oy, < C(constantC > 0),
and b is a bias value.
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2) Dataset Description: The BoT-IoT dataset [56] has been
selected to conduct the experiments in this paper. The dataset
is released by the Cyber Range Lab of UNSW Canberra
and created in a realistic network environment, including
normal and malicious traffic. The original dataset includes
more than 72 million records with 46 features. However, a
reduced version in which there are about 3,000,000 samples
(5% of the original dataset) including best features has also
been presented. The BoT-IoT dataset is imbalanced, i.e., the
number of benign samples is significantly less than attacks in
this dataset. Therefore, for the experiments, we have chosen
to work on a smaller balanced dataset. In this way, the
performance in terms of the detection rate is not significantly
affected for two classes of data. The number of samples chosen
for experiments is 20000 including 6481 DoS, 6482 DDoS,
6481 Reconnaissance, 79 Theft, and 477 benign samples. The
target dataset is generated through sampling of the 5% dataset
(mentioned earlier). As the 5% dataset is divided into training
and testing sets, we have extracted samples from both sets
while considering Theft/benign samples. On the other hand,
just the training set (from the 5% dataset) has been considered
for extracting DDoS, DoS, and Reconnaissance samples.

3) Data Pre-processing: For data pre-processing, 19 Fea-
tures were selected. However, we have omitted six features as
they can identify samples uniquely [57]. Further, MinMaxS-
caler() [58] is used to normalize the value of features between
0 and 1 as data scaling can affect the performance of ML
models [59].

B. Applying Label Flipping on Samples with Shortest or
Largest Distances to the Hyperplane of SVM

The percentage of samples selected to flip their labels range
from 5% to 50% of the dataset’s size. The increase is 5% for
each turn. Two different SVM kernels, including linear and
RBF, have been examined. To have a relative distance to the
hyperplane, the decision_function(X) is used [60] (a model is
trained by the training set first, then the training set is fed to the
decision_function(X) of the trained model in order to acquire
the relative distance). After measuring the samples’ distances
to the hyperplane, they are ordered based on the absolute value
of the distance [57]. After acquiring the samples (with short
or large distances to the hyperplane), their label is flipped and
the model is trained.

The first experiment is conducted for two cases:

o Select samples having shortest distances to the hyper-
plane and flip their labels for the linear and RBF kernels.
o Select samples having the largest distances to the hyper-
plane and flip their labels for the linear and RBF kernels.

As discussed in [61], applying label flipping on samples with
a large distance to the hyperplane should affect the model
more significantly. However, no considerable difference in
the model’s performance was observed while flipping for
two cases. But, applying label manipulation on samples with
largest distances to the hyperplane has relatively more negative
impacts, which can be seen in Fig. 3, confirming [61].
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Another study [62] emphasizes that SVM with RBF kernel
is more robust against adversarial examples for the case of
input data manipulation poisoning. While considering the
results for the linear Kernel, the label noise applied on samples
having the largest distances to the hyperplane has caused more
adverse effects compared to RBF in general (there are some
noise levels where the adverse effect is more for the RBF
kernel). However, overall, the difference is not considerable.
It can be assumed that the inconsistency may be related to the
distribution of data or parameter settings. We also believe that
the similarity between results in cases of samples with shortest
distances and largest distances to the hyperplane is due to the
fact that samples are very close in the feature space. In other
words, the distance between the closest samples and furthest

Preprocessing

SVM
Machine Learning

— Label flipping - Sampleswitha
large or small margin to the
hyperpline

~ Label flipping - certain attack
- Label flipping - effectof
flipping the Label of certain
attack types on misclassifiation

samples is negligible. The results corresponding to the first
experiment are depicted in Fig. 3.

Tables II to V show the results for accuracy, precision,
recall, and Fl1-score. In contrast with the accuracy, recall, and
F1-score metrics, it can be seen that there is no decrease in the
values of precision. As the number of false positives increases,
the value of precision decreases. In the dataset used for this
study, one label is in minority against the other one (same as
most of the real-world intrusion detection datasets in which
attack samples are fewer than benign samples). However, in
this dataset, the number of benign samples are considerably
fewer than attacks. The benign and attack categories are con-
sidered negative and positive types respectively. Therefore, as
the number of benign samples is significantly fewer than attack
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instances, the algorithm makes more errors when predicting
the label of attack samples resulting in an increase in the
number of false negatives. Moreover, the model does not have
difficulties in detecting benign samples (which results in a
reduction in the number of false positives). Therefore, as the
recall and precision metrics depend on the number of false
negatives and false positives respectively, the values of recall
decrease whereas the values of precision remain relatively
unchanged when applying label flipping.

C. Applying Label Flipping on Samples of a Specific Attack
Category

In this attack scenario, the aim is to analyze the effect
of label flipping applied on samples belonging to a specific
attack category in a dataset that includes different attack types,
i.e., instead of manipulating the label of just attack or benign
samples or samples from different categories together, samples
of specific attack types are targeted, and results are analyzed.
In other words, samples are first chosen (with respect to the
desired label noise percentage) having the largest distances to
the hyperplane with RBF kernel and then, only samples from a
specific category are flipped in turn. There is also the "Theft”
attack category. However, as the number of samples for this
attack are too few, it is not considered for this experiment.

Fig. 4 shows the achieved results for this experiment. In the
case of DDoS, a small performance degradation is witnessed.
While flipping just DoS samples caused a more major negative
effect comparing to DDoS, the results demon-strate a
significant change in performance for the case of
Reconnaissance when more than 25% label noise is applied.
Tables VI to VIII show the results for accuracy, precision,
recall, and F1-score. As discussed in section IV-B, the values of
precision remain unchanged as the number false positive are
negligible.

The difference in results is related to the different positions
of attack samples in the feature space. For example, it can be
concluded that as DoS samples are located further from the
hyperplane compared to the DDoS samples (we have ordered
all the samples in the dataset based on their relative distance
to the hyperplane, samples with the largest distances at the
first of the list), more of them are chosen for label flipping
and therefore, the model’s performance is decreased more.

D. Investigating the Effect of Label Flipping Applied on
Samples Having a Specific Attack Category on Type of the
Misclassified Samples

In this experiment, the effect of label flipping on mis-
classified samples is analyzed. The aim is to identify which
samples (from which category) are misclassified more when
label flipping is applied just on a specific attack type. To this
end, the attack categories of misclassified samples are recorded
following the steps mentioned in the previous experiment.
Then, they are compared with the target attack category for
which labels are flipped. It is worth mentioning that 5-fold
cross validation is used for all the experiments. For each fold,
the noise is applied on the training set and the average is
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TABLE II. ACCURACY, PRECISION, RECALL, AND FI-SCORE - EX-PERIMENT
I, FLIPPING SAMPLES WITH SHORTEST DISTANCES TO THE HYPERPLANE
WITH THE LINEAR KERNEL

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%)
0% 98 99 99 99
5% 95 98 96 97
10% 94 99 94 97
15% 89 99 89 94

20% 82 100 82 90
25% 79 100 78 83
30% 76 100 76 86
35% 76 100 75 85
40% 58 100 57 73
45% 55 100 54 70
50% 53 100 52 69

TABLE III. ACCURACY, PRECISION, RECALL, AND F1-SCORE - EX-
PERIMENT I, FLIPPING SAMPLES WITH LARGEST DISTANCES TO THE
HYPERPLANE WITH THE LINEAR KERNEL

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%)
0% 98 99 99 99
5% 97 97 100 98
10% 89 97 91 94
15% 82 97 83 90

20% 76 96 78 86
25% 72 96 73 83
30% 66 96 68 80
35% 61 96 63 76
40% 54 95 55 70
45% 49 95 50 66
50% 46 95 47 63

recorded for each noise level (after completion of five folds).
Moreover, the parameters of SVM are default.

For analysis, the total number of samples from each attack
category whose labels are flipped, the number of misclassified
samples from the same attack category as the chosen attack,
and the number of misclassified samples from other attack cat-
egories for all five folds are counted. The presented numbers
are the summation for all folds (the red, green, and blue lines).
As depicted in Fig. 5, the results obtained using RBF kernel
highlight that when more label noise is applied on samples of
any attack category, the number of misclassified samples of the
same attack type increases as well.

The results can lead to designing more effective attack
scenarios. In other words, when the priority of an adversary
is to reduce the performance of an intrusion detection system
in terms of detecting a specific attack type, he can apply label
flipping on samples of the same attack category in the training
set. On the other hand, when designing defense strategies, if
detecting a specific attack category poses greater importance,
the security team can put more emphasis on protecting the
samples of the same attack category in the training set.

V. DEMONSTRATING THE WEAKNESSES OF THE K-NN
METHOD TO DETECT AND CORRECT LABEL NOISE IN
DATASETS

Many defense mechanisms have been proposed in the liter-
ature to tackle the label flipping attack. Several data cleaning
approaches are based on K-NN. However, these methods may
not work well for all cases. In this section, we evaluate the
robustness of a defense method that utilizes the K-NN model
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TABLE VIII. ACCURACY, PRECISION, RECALL, AND FI-SCORE -
EXPERIMENT II, FLIPPING JUST RECONNAISSANCE SAMPLES HAV-ING LARGEST
DISTANCES TO THE HYPERPLANE WITH THE RBF KERNEL

TABLE IV. ACCURACY, PRECISION, RECALL, AND FI-SCORE - EX-
PERIMENT 1, FLIPPING SAMPLES WITH SHORTEST DISTANCES TO THE
HYPERPLANE WITH THE RBF KERNEL

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%) Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%)
0% 99 99 99 99 0% 99 99 99 99
59, 97 99 08 08 5% 99 99 99 99

10% 92 98 93 96 10% 99 99 99 99
15% 85 98 86 92 15% 96 99 97 98
20% 81 98 82 89 20% 95 99 96 97
25% 76 98 77 86 25% 91 99 91 95
30% 71 98 72 83 30% 78 99 78 87
359, 67 97 67 80 35% 77 99 77 87
40% 61 97 61 75 40% 76 99 76 86
45% 36 97 36 71 45% 74 99 74 85
50% 51 96 52 67 50% 74 99 74 84

TABLE V. ACCURACY, PRECISION, RECALL, AND FI-SCORE - EX-PERIMENT 1.0

1, FLIPPING SAMPLES WITH LARGEST DISTANCES TO THE HYPERPLANE WITH g

THE RBF KERNEL
0.9

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%)
0% 99 99 99 99 0.8 4
5% 95 99 95 97 g IR,
10% 89 98 89 94 £
15% 84 99 85 91 é 0.7
20% 80 99 81 89 o
25% 73 98 73 84 0.6 { =—- Linear kernel - Shortest distance ..
30% 65 98 65 2 T N HESPOPS Linear kernel - Largest distance
35% 63 99 63 77 o5 ] — RBF kernel - Shortest distance
40% 58 98 58 73 | —-- RBF kernel - Largest distance
45% 54 98 53 69 ; ; ; ; . .
50% 48 98 47 64 0 10 20 30 40 50

Noise%

TABLE VI. ACCURACY, PRECISION, RECALL, AND FI-SCORE - EX-

PERIMENT II, FLIPPING JUST DDOS SAMPLES HAVING LARGEST
DISTANCES TO THE HYPERPLANE WITH THE RBF KERNEL

Fig. 3. The results for scenario I including label flipping applied on samples
with large or small margins to the hyperplane

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%) 1.00 4
0% 99 99 99 99
5% 97 99 98 98
10% 97 99 97 98 0.95 1
15% 97 99 97 98
20% 97 99 97 98 ~ 0.90 -
25% 97 99 97 98 2
30% 96 99 97 98 E
35% 96 99 97 98 £ 0.85 1
40% 96 99 96 98
45% 95 99 96 97 0.80 { —— Just DoS
50% 93 99 93 96 -—— JustDDoS e
0754 Just Reconnaissance el
TABLE VII. ACCURACY, PRECISION, RECALL, AND FI-SCORE - 0 1o . 0 0 *
Noise%

EXPERIMENT II, FLIPPING JUST DOS SAMPLES HAVING LARGEST
DISTANCES TO THE HYPERPLANE WITH THE RBF KERNEL

10

Fig. 4. Using RBF kernel while flipping label of samples from specific attack
categories having large distances to the hyperplane

Noise(%) | Accuracy(%) | Precision(%) | Recall(%) | Fl-score(%)

0% 99 99 99 99

5% 97 99 97 98 against the random label flipping attack. While applying the
10% 96 99 96 98 label flipping attack on a training set, many poisoning points
;gzz 3% gg 3% gg will be far from the true samples (non-poisoning data points)
25% 91 99 91 95 having the same label. Using K-NN to mitigate the effect
ggZ g(‘) gg g} gg of label flipping attacks by relabelling malicious points is
40% 88 99 88 93 suggested in [13]. The procedure is as follows: for each sample
45% 85 99 85 91 in the training set, the K nearest neighbors are found based
S0% 81 £l 81 8 on the Euclidean distance. If most of the neighbors (according
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Fig. 5. The results for scenario III that include investigating the effect of flipping samples from specific categories on misclassified samples

to a threshold, ranging from 0.5 to 1) have a different label,
the label of the sample is flipped. According to this paper,
large and small values of k show better performance when the
number of poisoning points is large and small respectively. For
larger thresholds, the defense is less effective as fewer points
are relabeled. This defense is designed for the case where
specific data points are affected by label noise. However, The
proposed approach has two drawbacks when noise is applied
randomly:

o It is likely that some benign samples are located close to
attack samples (and likewise, some attack samples may
be surrounded by benign samples). Therefore, based on
the proposed methodology, these genuine benign or attack
data points will be relabeled.

There may be cases where all the neighboring data points
are poisoned. For example, a genuine benign sample is
surrounded by poisoning points that are benign in nature,
but their label is flipped as an attack (or the same on
the other side, a genuine attack sample is surrounded
by poisoning benign samples so that it is relabeled).
Moreover, in some cases, a poisoning benign (attack)
sample may be surrounded by other poisoned benign
(attack) samples and as a result, it is not detected and
relabeled.

Based on the paper, the first problem is likely to happen in
the regions where benign and attack samples overlap (close
to hyperplane for SVM). It is also discussed that (for the first
problem) the fraction of benign and attack samples that are
relabeled is expected to be the same. However, this problem
is still discussed as a shortcoming in [41]. The experiments
in this section are conducted on a dataset same as what was
discussed in section IV-A2. For each data point in the data set,
10 neighbors (using Sklearn NearestNeighbors) are extracted.

The second problem (that happens when all the neighboring
data points are poisoning) seems to be more important. In this
case, when there is a genuine benign or attack data instance
surrounded by poisoning points, the label of data instance is
flipped wrongly. Moreover, there may be regions in the data
space where label of all instances is flipped. In this case,
the algorithm is unable to detect data instances with wrong
labels. As an example, table IX shows the case in which a
genuine attack data instance is surrounded by poisoning benign
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TABLE IX. A GENUINE ATTACK DATA INSTANCE IS
SURROUNDED BY POISONING BENIGN SAMPLES SO THAT ITS LABEL IS FLIPPED

Neighbors
1% Neighbor
274 Neighbor
374 Neighbor
4" Neighbor
5" Neighbor
6" Neighbor
7t" Neighbor
8" Neighbor
9" Neighbor
10" Neighbor

Neighbor Category
DDoS (Attack in real)
DDoS (Benign is real)
DDoS (Attack in real)
DDoS (Benign in real)
DDoS (Attack in real)
DDoS (Benign in real)
DDoS (Benign in real)
DDoS (Benign in real)
DDoS (Benign in real)
DDoS (Benign in real)

samples so that its label is flipped. The noise level here is 30%.

An experiment is conducted to show the weaknesses of the
proposed defense for the random label flipping attack. This
experiment includes looking for the genuine attack samples
that are changed to benign wrongly, the genuine benign
samples that are changed to attack wrongly, poisoned attack
samples that are not detected, and poisoned benign samples
that are not detected. The applied random label noise in this
experiment is 30%. The results are demonstrated in table X.
According to the results, the K-NN method is not a powerful
defense mechanism against the random label flipping attack.

VI. CONCLUSION

Adversarial attacks have become concerns for ML models
not only used in IoT but also in other domains. In this paper, a
comprehensive review of the recent research works regarding
Adversarial Machine Learning (AML) in the IoT domain is
presented. Moreover, a classification of adversarial attacks in
IoT is proposed to assist the researchers for their future works
in this domain. As mentioned earlier, IoT environments are
vulnerable to poisoning attacks such as label flipping. As
another contribution of this paper, we have investigated the
effect of label flipping on an IoT dataset in three different sce-
narios to determine how choosing samples to flip their labels
contributes to more negative effects. These experiments can
lead to designing more efficient attack and defense strategies.
Based on the results, choosing different samples to flip their
labels can cause distinct impacts. Moreover, it is observed that
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TABLE X. RESULTS FOR THE EXPERIMENT AIMING AT DEMONSTRATING THE DATA INSTANCES SURROUNDED BY SAMPLES WITH POISONING LABELS.

PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

A = GENUINE ATTACK DATA INSTANCES ARE CHANGED TO BENIGN.
B = ATTACK DATA INSTANCES THAT ARE FLIPPED TO BENIGN ARE NOT RELABELED.
C = BENIGN DATA INSTANCE THAT ARE FLIPPED TO ATTACK ARE NOT RELABELED.

D = GENUINE BENIGN DATA INSTANCE ARE CHANGED TO ATTACK.

Case | Round 1 | Round 2 | Round 3 | Round 4 | Round 5 | Average
A 368 424 366 371 384 384
B 95 134 128 143 115 123
C 12 5 14 9 6 9
D 40 34 39 22 17 30

as the number of samples from one particular attack category
whose labels are flipped increases, the number of misclassified
samples from the same category increases as well. In terms
of the defense against the random label flipping attack, the
K-NN method did not show promising results. However, this
defense mechanism is likely to be a good choice for cases
where specific samples are chosen to flip their labels. Our
future work would focus on other types of poisoning attacks
that affect ML models.
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