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Abstract—With the increased usage of Internet of Things
(IoT) devices in recent years, various Machine Learning (ML)
algorithms have also developed dramatically for attack detection
in this domain. However, the ML models are exposed to different
classes of adversarial attacks that aim to fool a model into making
an incorrect prediction. For instance, label manipulation or label
flipping is an adversarial attack where the adversary attempts
to manipulate the label of training data that causes the trained
model biased and/or with decreased performance. However, the
number of samples to be flipped in this category of attack
can be restricted, giving the attacker a limited target selection.
Due to the great significance of securing ML models against
Adversarial Machine Learning (AML) attacks particularly in
the IoT domain, this research presents an extensive review of
AML in IoT. Then, a classification of AML attacks is presented
based on the literature which sheds light on the future research
in this domain. Next, this paper investigates the negative impact
levels of applying the malicious label-flipping attacks on IoT data.
We devise label-flipping scenarios for training a Support Vector
Machine (SVM) model. The experiments demonstrate that the
label flipping attacks impact the performance of ML models.
These results can lead to designing more effective and powerful
attack and defense mechanisms in adversarial settings. Finally,
we show the weaknesses of the K-NN defense method against the
random label flipping attack.

I. INTRODUCTION

Internet of Things (IoT) environment is designated as a

system of connected devices embedded with sensors to collect

and exchange data and execute complex tasks [1]. Over the

past years, there has been an upsurge growth in the usage of

IoT gadgets. One of the major reasons for increasing the use of

IoT devices is because they require less power consumption,

provide more effortless connectivity, and are more convenient

to use [2]. Because of this, the internet has accelerated the

spread of IoT devices and has built a strong connection by

providing service applications to different sectors such as

industries, healthcare, smart cities, smart home, etc. [3]. IoT

has become an extension of the internet that provides a relation

between the physical and digital world where sensors and

actuators are integrated to provide connectivity [4].

Researchers have proposed to use various ML models based

on popular datasets such as NSL-KDD Cup [5] and UNSW-

NB15 [6] that learn the patterns from captured data and

provide the prediction of whether an input sample is benign

or malicious. However, the solutions provided using many

of the available datasets are losing their relevance due to

new attack variants and new protocols developed according

to the changing requirements. Moreover, with the rise of new

IoT technologies, IoT devices’ existing approaches to secure

these limited resource usage are becoming obsolete. Recently,

some new datasets, including BoT-IoT [7] which is generated

through designing a natural network environment and CIC IoT

Dataset 2022 [8] are presented, which investigate different IoT

behaviors in different scenarios.

With changing the requirements, the pattern of attacks is

also changing. Nowadays, adversarial cyber attackers have

started exploiting the models rather than targeting particular

IoT devices. These attacks, which are called Adversarial

Machine Learning (AML) attacks, vary in type. Two important

categories of these attacks include evasion and poisoning. In

evasion attacks, malicious test samples are adopted by the

adversary [9]. Following this approach, the attacker forces

the implemented model to classify the data incorrectly and

thus, making the system fail [10]. Poisoning attacks are

aimed to target the data or model in ML training [11]. Data
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manipulation is an essential category of poisoning attacks that

further falls into two categories: manipulating the data in the

training stage or the label of the training samples [11].

Considering the growing importance of IoT in the recent

years and the new advances in adversarial attacks in this

domain, a comprehensive review of the recent works related to

this topic is required. However, to the best of our knowledge,

no research work has specifically investigated adversarial at-

tacks in IoT. Moreover, There are just a few works addressing

the label flipping attacks as an important category of poisoning

attacks.

Thereupon, the main aim of this research is to present an

extensive review of the recent works regarding the adversarial

machine learning in IoT. Moreover, several experiments are

conducted regarding the label flipping attacks to shed light on

different aspects of this attack category as an important issue

in the IoT domain.

Following are the main contributions of this research:

• Presenting an extensive review of Adversarial Machine

Learning (AML) in the IoT domain.

• Presenting a classification of AML attacks in the IoT

domain.

• Investigating different scenarios for the label flipping

attacks.

• Examining the effectiveness of the K-NN defense method

against the random label flipping attack.

II. BACKGROUND

Malware detection, network intrusion detection, and spam

detection are just a few of the many areas where machine

learning (ML) is important. It is typical to presume that a

machine learning model will be used in a benign environment.

In other words, it is assumed that no adversarial element will

influence how well ML models function. This presumption,

however, is not necessarily true [12]. Tricking ML models

into producing inaccurate predictions is called adversarial

machine learning (AML). In recent years, as the volume of

data generated in different domains has increased significantly,

poisoning attacks are considered to be an important category

of threat, particularly where the data is collected from users

(for IoT environments and sensor networks) or where the data

labeling is crowdsourced. As an example, label flipping attacks

are one of the major types of poisoning attacks resulting in

significant performance degradation [13]. With respect to the

growing interest in applications of ML in IoT, investigating the

potential threats impacting the effectiveness and performance

of ML models in this domain poses great importance.

A. Machine Learning (ML) in the IoT Domain

Considering the various vulnerabilities in the IoT domain,

ML algorithms are widely being used to tackle the potential

issues. Based on the requirements, data analysis can be per-

formed in IoT devices or the cloud. Cloud refers to remote data

servers or edge servers that bring the computation close to the

IoT devices. As the data analysis may be done in IoT devices,

considering the limited processing power, using lightweight

ML models is preferred. Moreover, more processing may be

performed on the data in cloud [14]. Some of the use cases of

ML in IoT include outlier and intrusion detection [15], signal

authentication and device identification [16], [17], spectrum

sensing [18], and smart grids [19]. Therefore, with respect to

the broad use of ML methods in IoT, investigating the threats

against deployed models seems to pose great importance.

B. General Overview of Adversarial Machine Learning (AML)

The training and testing phases of the ML pipeline have

different adversarial techniques. Poisoning is an important

technique applied to the training phase and includes modi-

fying training data [20]. In Indirect Poisoning, the adversarial

modification of data is done before the preprocessing stage.

Direct poisoning includes data injection, data manipulation, or

logic corruption. In data injection, the goal is to change the

distribution of data in a training set and is achieved through

injecting ”adversarial inputs” to the training set. However, the

features and labels of existing data samples are not changed.

The decision boundaries of an ML model can be shifted

through this attack. In data manipulation, labels or features

of data instances in the training set are altered [11].

The aim of attacks corresponding to the test phase is not

to alter the data for training or decision boundary, but to

generate samples such that they can fool a model in the testing

phase [21]. Some of the important gradient-based techniques

of evasion include [22] Fast Gradient Sign Method (FGSM)

[23], Jacobian-based Saliency Map (JSMA) [24], and Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [25].

In gradient-free attacks, adversarial perturbations are applied

with no background information of the model that is targeted.

In other words, the target model is used as an oracle to which

adversarial samples are sent and the output is observed [26].

C. Potential Cases of Adversarial Attacks in the IoT Domain

Based on [27], in an IoT/WSN (Wireless Sensor Networks)

outlier detection setting, the collected data is sent to the

gateway. Then, information is sent from the gateway to a

server. In this step, the corresponding error, event, or malicious

activity is detected to notify the end user. According to

this paper, the ML methods that can be applied for outlier

detection include statistical-based methods (parametric and

non-parametric), supervised learning-based methods (such as

SVM, Bayesian learning methods, K-NN, and Neural Net-

works), and unsupervised learning-based methods (including

K-means clustering and PCA). However, supervised learning

is used more widely in this domain. There are some limitations

to the adoption of ML algorithms in the IoT domain. One of

the most major constraints is the lack of computational power.

In other words, the complex ML algorithms are hard to be

deployed on the resource constraint devices [28].

Distributed approaches between sensing devices can also be

adopted for the purpose of outlier detection [29], [30]. How-

ever, frequent communications are required in this approach

[31]. The task of outlier detection can be performed on the

individual sensors without the need to communicate with other
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sensors. For instance, [31] has proposed a solution for outlier

detection in WSN where autoencoder instances are run on

sensors. The sensors send the input and output of autoencoders

to the cloud via a gateway. In other words, the training process

takes place in the cloud. Then, the model parameters (that

are updated) are sent back from the cloud to the sensors.

Nevertheless, outlier detection using ML algorithms is likely

to be targeted by adversaries.

Signal authentication is one of the major tasks of IoT

where adversarial attacks are likely to happen. Signals are

sent from IoT devices (in the perceptual layer) to a gateway

to control the operation of IoT devices. However, this signal

is likely to be manipulated. Dynamic data injection attacks

may happen in this stage. The gateway has to authenticate

the signals sent from IoT devices. However, as the gateway

is resource-constraint, it should optimally choose signals for

authentication [16]. Traditional solutions such as ML-based

Radio Frequency fingerprint identification can help with device

identification. However, these solutions are facing some chal-

lenges such as huge amounts of training data. Deep learning

methods are used widely for device identification and signal

recognition. But, they are susceptible to adversarial attacks.

The attacks may be targeted or non-targeted [32].

Malware detection in IoT is also vulnerable to attacks

conducted by adversaries. In terms of combating malware

in IoT, there are two signature-based solutions. The first

solution is host-based where the detection system is installed

on devices. However, these solutions seem to be inadequate

with respect to the developments in malware attacks. More

importantly, resource-constrained devices cannot benefit from

these solutions, particularly as these solutions are signature-

based. Another solution is to put the detection mechanisms in

the cloud [33].

Tampering with sensors’ measurements is one of the po-

tential adversarial attacks [34]. As an example, to investigate

the effect of gases emitted by a factory, the government may

decide to measure the emissions of the corresponding factory.

However, the factory manager may tamper with the sensors’

measurements by releasing chemicals near the sensors when

air quality is good. Therefore, it is hard to derive that bad air

quality is related to the emissions of this factory [35].

The data fusion and aggregation steps are vulnerable to

attacks as well [36]. Data collection from different sensors

is an important task where the data noise is filtered. This

data collection should be context-aware, privacy-preserving,

reliable, and real-time. However, there is the potential that

several devices sending data to the fusion center are controlled

by an adversary and therefore, the decision is compromised

[37].

Wireless communications that are used widely in the IoT

domain are at the risk of over-the-air wireless attacks as they

are broadcasted. However, the use of ML in this domain lacks

security. There are several techniques for adversarial attacks

including exploratory, evasion, and poisoning where the aim

is to get an understanding of the target model, evade the

model in the test phase to make wrong decisions, and provide

the model with wrong training data to affect the decisions

respectively. These attack approaches can be mapped to the

wireless domain to act as the jamming, spectrum poisoning,

and priority violation attacks [38].

III. LITERATURE  REVIEW

The summary of several research works related to adver-

sarial machine learning in IoT is presented in Tables I and

XI. These works are compared in terms of the investigated

attack(s), related attack categories, used models, and dataset.

Figure 1 shows the proposed classification of Adversarial

Machine Learning (AML) attacks in the IoT domain according

to the literature review section. Machine learning models can

be deployed in different layers in edge devices or sensors,

gateways, and the cloud. In the figure, they are connected to

the layers with dashed lines. However, there are threats against

the models in each layer. Over-the-air wireless attacks that

include priority violation, jamming, and spectrum poisoning

can be deployed against the transmitters. Moreover, tampering

with sensor measurements is another potential issue in this

layer. IoT devices are likely to be controlled by adversaries in

this layer which can result in inaccurate output results.

ML models for device identification and authentication can

be deployed in gateways. However, adversaries are capable of

fooling these models into making wrong decisions. If intrusion

detection systems are used in gateways or the cloud, they

have the potential of being targeted for adversarial attacks.

The process of data fusion in the fog layer is also vulnerable

to threats. The data fusing process can be performed in the

cloud level as well [39], making this layer vulnerable. If

the classification of smart home IoT devices is performed

in the cloud, the utilized ML algorithms may be attacked by

adversaries. Based on [40], data processing is possible to be

performed in smart gateways in smart homes. Therefore, smart

gateways are vulnerable to adversarial attacks. There is also

the possibility of attacks against data operation retrieval in a

Security Operation Center (SOC).

IV. LABEL  FLIPPING  ATTACKS

Label flipping is a major subcategory of data poisoning

aiming at manipulating data labels to impact the ML model’s

performance adversely [13]. These attacks cause major prob-

lems for the ML-based systems, particularly in noisy or

uncertain environments like complex networks and IoT [41].

In a label flipping attack, the attacker can control the label of a

limited proportion of samples. Poisoning attacks are shown to

be effective in impacting the performance of ML algorithms

such as neural networks, deep learning systems, Support

Vector Machines (SVM), and embedded feature selection

methods. Although deep learning systems have shown great

performance when dealing with samples with clean labels,

their effectiveness is degraded in the case of existing samples

with flipped labels [41], [42].

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 5 ----------------------------------------------------------------------------



T
A

B
L

E
 I

. S
U

M
M

A
R

Y
 O

F
 T

H
E

 R
E

S
E

A
R

C
H

 W
O

R
K

S
 R

E
V

IE
W

E
D

 I
N

 T
H

E
 L

IT
E

R
A

T
U

R
E

 R
E

V
IE

W
 S

E
C

T
IO

N

A
ut

ho
r

In
ve

st
ig

at
ed

A
tt

ac
k(

s)
R

el
at

ed
C

at
eg

or
ie

s
U

se
d

M
od

el
s

D
at

as
et

D
es

cr
ip

tio
n

B
ar

ac
al

d
o

et
al

.
(2

0
1

8
)

[3
5

]
T

am
p

er
in

g
w

it
h

se
n

so
rs

’
m

ea
su

re
m

en
t

p
o

is
o

n
in

g
S

V
M

(f
o

r
ev

al
u

at
io

n
)

D
at

as
et

u
se

d
in

[4
3

]
an

d
M

N
IS

T
P

ro
v
en

an
ce

m
et

a-
d
at

a
is

u
se

d
fo

r
d
ef

en
se

ag
ai

n
st

p
o
is

o
n
in

g
at

ta
ck

s.

L
u

o
et

al
.

(2
0

2
0

)
[3

7
]

C
o

n
tr

o
ll

in
g

a
sm

al
l

p
o

r-
ti

o
n

o
f

Io
T

d
ev

ic
es

se
n

d
-

in
g

d
at

a
to

th
e

fu
si

o
n

ce
n

te
r

P
o

is
o

n
in

g
5

-l
ay

er
n

eu
ra

l
n

et
w

o
rk

-
S

V
M

1
0

0
0

0
sa

m
p

le
s

co
ll

ec
te

d
fr

o
m

tw
o

G
u

as
si

an
d

is
tr

ib
u

-
ti

o
n

s

D
at

a
is

co
ll

ec
te

d
fr

o
m

m
an

ip
u

la
te

d
Io

T
d

ev
ic

es
an

d
an

at
ta

ck
m

o
d

el
is

le
ar

n
t.

sa
g

d
u

y
u

et
al

.
(2

0
1

9
)

[3
8

]
Ja

m
m

in
g

,
S

p
ec

tr
u

m
P

o
i-

so
n

in
g

,
P

ri
o

ri
ty

v
io

la
ti

o
n

E
x

p
lo

ra
to

ry
,

E
v
as

io
n

,
an

d
P

o
is

o
n

-
in

g
at

ta
ck

s
F

N
N

S
p

ec
tr

u
m

se
n

si
n

g
d

at
a

in
th

e
ex

p
er

im
en

ta
l

se
tt

in
g

•
A

n
ex

p
lo

ra
to

ry
at

ta
ck

fo
ll

o
w

ed
b

y
a

p
o

is
o

n
in

g
o

r
ev

as
io

n
at

ta
ck

in
th

e
w

ir
el

es
s

co
m

m
u

n
ic

at
io

n
d

o
m

ai
n

ar
e

su
g

g
es

te
d

an
d

la
u

n
ch

ed
.

•
A

d
ef

en
se

m
ec

h
an

is
m

b
as

ed
o

n
th

e
st

ac
k
el

b
er

g
g
am

e
is

p
ro

-
p

o
se

d
.

S
h

i
et

al
.

(2
0

1
8

)
[4

4
]

S
p

ec
tr

u
m

d
at

a
p

o
is

o
n

in
g

E
x

p
lo

ra
to

ry
,

E
v
as

io
n

(a
n

d
P

o
is

o
n

-
in

g
ag

ai
n
st

ad
v
er

sa
ry

if
th

e
d
ef

en
se

is
p

er
fo

rm
ed

)

F
N

N
S

p
ec

tr
u

m
se

n
si

n
g

d
at

a
in

th
e

ex
p

er
im

en
ta

l
se

tt
in

g
T

h
e

tr
an

sm
it

te
r’

s
b

eh
av

io
r

is
in

fe
rr

ed
an

d
th

e
sp

ec
tr

u
m

se
n

si
n

g
d

at
a

is
ef

fe
ct

ed
b

y
th

e
ad

v
er

sa
ry

to
m

an
ip

u
la

te
th

e
tr

an
sm

it
te

r’
s

d
ec

is
io

n
s.

S
h

i
et

al
.

(2
0

1
8

)
[4

5
]

Ja
m

m
in

g
E

x
p

lo
ra

to
ry

an
d

P
o

is
o

n
in

g
(i

n
th

e
d
ef

en
se

ag
ai

n
st

ad
v
er

sa
ry

)
F

N
N

S
en

si
n

g
re

su
lt

s
o

f
th

e
tr

an
s-

m
it

te
r

an
d

ad
v
er

sa
ry

in
th

e
ex

p
er

im
en

ta
l

se
tt

in
g

•
T

h
e

tr
an

sm
is

si
o

n
d

ec
is

io
n

s
o

f
th

e
tr

an
sm

it
te

r
ar

e
ca

p
tu

re
d

b
y

th
e

ad
v
er

sa
ry

an
d

th
en

,
a

m
o

d
el

is
tr

ai
n

ed
to

p
re

d
ic

t
th

e
fu

tu
re

d
ec

is
io

n
s

an
d

ja
m

th
em

.
•

A
d

ef
en

se
b

as
ed

o
n

so
m

e
d

el
ib

er
at

e
w

ro
n

g
ac

ti
o

n
s

m
ad

e
b

y
th

e
tr

an
sm

it
te

r
is

p
ro

p
o

se
d

.

E
rp

ek
et

al
.

(2
0

1
8

)
[4

6
]

Ja
m

m
in

g
E

x
p

lo
ra

to
ry

an
d

P
o

is
o

n
in

g
(i

n
th

e
d
ef

en
se

ag
ai

n
st

ad
v
er

sa
ry

)
F

N
N

S
p

ec
tr

u
m

se
n

si
n

g
d

at
a

in
th

e
ex

p
er

im
en

ta
l

se
tt

in
g

•
T

h
e

tr
an

sm
it

te
r’

s
d

ec
is

io
n

s
ar

e
co

ll
ec

te
d

b
y

th
e

ad
v
er

sa
ry

an
d

u
se

d
to

b
u

il
d

a
m

o
d

el
to

p
re

d
ic

t
an

d
ja

m
th

e
fu

tu
re

tr
an

sm
is

-
si

o
n

s.
•

G
A

N
is

u
se

d
to

re
d

u
ce

th
e

tr
ai

n
in

g
ti

m
e

p
ro

ce
ss

fo
r

th
e

ad
v
er

sa
ry

.
•

A
d

ef
en

se
b

as
ed

o
n

a
fe

w
w

ro
n

g
ac

ti
o

n
s

m
ad

e
d

el
ib

er
at

el
y

b
y

th
e

tr
an

sm
it

te
r

is
p

ro
p

o
se

d
.

K
im

et
al

.
(2

0
2

0
)

[4
7

]
A

tt
ac

k
ag

ai
n
st

si
g
n
al

m
o

d
u

la
ti

o
n

E
v
as

io
n

D
N

N
(V

T
-C

N
N

2
)

G
N

U
ra

d
io

M
L

d
at

as
et

R
M

L
2

0
1

6
.1

0
a

A
n
u
m

b
er

o
f

ad
v
er

sa
ri

al
at

ta
ck

s
ag

ai
n
st

m
o
d
u
la

ti
o
n

cl
as

si
fi

er
s

in
th

e
w

ir
el

es
s

co
m

m
u

n
ic

at
io

n
s

d
o

m
ai

n
ar

e
p

ro
p

o
se

d
an

d
ev

al
u

at
ed

.

S
in

g
h

an
d

S
ik

d
ar

(2
0

2
2

)
[4

8
]

A
tt

ac
k

ag
ai

n
st

ap
p
li

an
ce

cl
as

si
fi

ca
ti

o
n

in
sm

ar
t

h
o

m
e

en
v

ir
o

n
m

en
t

E
v
as

io
n

D
N

N
U

K
-D

A
L

E
,

an
d

R
E

F
IT

P
ro

p
o

se
d

a
n

ew
g

ra
d

ie
n

t
as

ce
n

t-
b

as
ed

w
h

it
e-

b
o

x
ad

v
er

sa
ri

al
at

ta
ck

B
ao

et
al

.
(2

0
2

1
)

[3
2

]
A

tt
ac

k
s

ag
ai

n
st

d
ev

ic
e

id
en

ti
fi

ca
ti

o
n

E
v
as

io
n

C
N

N
G

en
er

at
ed

si
g

n
al

s
b

y
th

e
au

th
o

rs
•

S
ev

er
al

at
ta

ck
s

ar
e

ex
am

in
ed

ag
ai

n
st

th
e

C
N

N
-b

as
ed

d
ev

ic
e

id
en

ti
fi

ca
ti

o
n

m
et

h
o

d
.

•
C

o
m

b
in

ed
ev

al
u

at
io

n
o

f
in

d
ic

at
o

rs
is

p
ro

p
o

se
d

to
en

h
an

ce
th

e
ev

al
u

at
io

n
.

S
ad

eg
h

i
an

d
L

ar
ss

o
n

(2
0

1
9

)
[4

9
]

A
tt

ac
k
s

ag
ai

n
st

en
d
-t

o
-

en
d

co
m

m
u

n
ic

at
io

n
sy

s-
te

m
s

E
v
as

io
n

M
L

P
an

d
C

N
N

-b
as

ed
au

to
en

-
co

d
er

s
S

im
u

la
te

d
si

g
n

al
s

P
h
y
si

ca
l

b
la

ck
-b

o
x

ad
v
er

sa
ri

al
at

ta
ck

s
ar

e
in

v
es

ti
g
at

ed
an

d
m

et
h
o
d
s

to
p

er
fo

rm
th

es
e

at
ta

ck
s

ar
e

su
g

g
es

te
d

.

F
er

d
o
w

si
an

d
S

aa
d

(2
0

1
9

)
[1

6
].

[4
6

]
M

an
ip

u
la

ti
n

g
si

g
n

al
s

b
e-

tw
ee

n
Io

T
D

s
an

d
th

e
g
at

ew
ay

P
o

is
o

n
in

g
(a

s
th

e
d

at
a

in
je

ct
io

n
at

ta
ck

in
th

e
si

g
n

al
tr

an
sm

is
si

o
n

p
h
as

e
in

in
v
es

ti
g
at

ed
)

L
S

T
M

F
o

r
si

m
u

la
ti

o
n

s,
a

re
al

d
at

as
et

fr
o

m
an

ac
ce

le
ro

m
-

et
er

is
u

se
d

.
•

A
w

at
er

m
ar

k
in

g
ap

p
ro

ac
h

is
p

ro
p

o
se

d
fo

r
Io

T
d

ev
ic

e
au

th
en

ti
-

ca
ti

o
n

.
•

A
g
am

e
th

eo
re

ti
c

ap
p

ro
ac

h
is

p
ro

p
o

se
d

to
p

re
d

ic
t

v
u

ln
er

ab
le

d
ev

ic
es

w
h

en
th

e
co

m
p

u
ta

ti
o

n
al

re
so

u
rc

es
ar

e
li

m
it

ed
.

•
A

re
in

fo
rc

em
en

t
le

ar
n

in
g

al
g

o
ri

th
m

is
p

re
se

n
te

d
fo

r
th

e
ca

se
w

h
er

e
in

fo
rm

at
io

n
is

in
co

m
p

le
te

.

S
h

ar
af

-D
ab

b
ag

h
an

d
S

aa
d

(2
0

1
6

)
[5

0
]

O
b

je
ct

em
u

la
ti

o
n

P
o

is
o

n
in

g
In

fi
n

it
e

G
au

ss
ia

n
M

ix
tu

re
m

o
d

el
-

tr
an

sf
er

le
ar

n
in

g
G

en
er

at
ed

fi
n

g
er

p
ri

n
ts

P
ro

p
o

se
d

a
m

ec
h

an
is

m
fo

r
Io

T
o

b
je

ct
au

th
en

ti
ca

ti
o

n
b

as
ed

o
n

d
ev

ic
e’

s
fi

n
g

er
p

ri
n

ts
.

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 6 ----------------------------------------------------------------------------



Due to the importance of label flipping attacks, different

attack experiments against Support Vector Machines (SVM)

are investigated. As SVM is determined to be robust in

adversarial settings [43], it is a suitable option to be utilized

for the experiments.

Fig. 2 shows the framework of experiments conducted 
regarding label flipping. The dataset contains samples of 
the DoS, DDoS, Reconnaissance, and theft attack categories. 
Then, the data is pre-processed. Afterward, three experiments 
are conducted using the SVM ML model to investigate the 
adversarial effects of the label flipping attack. In the first 
experiment, samples with small or large margins to the hy-

perplane are flipped using the RBF and linear SVM kernels. 
In the second experiment, the effect of flipping samples of 
specific attack categories on the performance of an SVM 
model is investigated. Finally, the effect of flipping specific 
attack categories on misclassified samples is explained. In the 
experiments’ results, the percentage of samples with flipped 
labels is shown with Noise(%).

A. Preliminaries

1) Support Vector Machine (SVM): We have performed

our studies by varying kernel, i.e., using linear [51] and Radial

Basis Function (RBF) [52]. SVM discriminates two classes of

data by drawing an optimal hyperplane that maximizes the

distance between data classes. Considering the data to have

two classes, the Support Vector Machine (SVM) solves the

following optimization problem [53]:

minw,ξ
1

2
WTW + C

l∑

i=1

ξi

Subject to yi(W
Tφ(Xi) + b) ≥ 1− ξi

ξi ≥ 0. (1)

where Xi, yi, ξi, W, and C are input data, label vector, param-

eters associated with optimization, weight vector, and penalty

parameter of error term respectively. According to [54], the

RBF kernel seems to be the first option while using the Support

Vector Machines (SVM). It can handle nonlinearity when the

labels and attributes have a nonlinear relation. Actually, the

samples are mapped to a higher dimension in a nonlinear

manner. The kernel function for RBF is:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (2)

where γ is a kernel parameter. The function named linear

discriminant is used to separate two different class samples

at the time of training of the classifier [55]. The hyperplane

discriminant function df(k) is defined in Eq. (3).

df(k) = sgn(

n∑

k=1

αkyk (ik ∗ i− b)) (3)

where n is the number of training records (k = 0, ..., n), yk,

which is either −1 or +1, is the label label of training data,

ik are the support vectors and 0 ≤ αk ≤ C(constantC > 0),
and b is a bias value.

2) Dataset Description: The BoT-IoT dataset [56] has been

selected to conduct the experiments in this paper. The dataset

is released by the Cyber Range Lab of UNSW Canberra

and created in a realistic network environment, including

normal and malicious traffic. The original dataset includes

more than 72 million records with 46 features. However, a

reduced version in which there are about 3,000,000 samples

(5% of the original dataset) including best features has also

been presented. The BoT-IoT dataset is imbalanced, i.e., the

number of benign samples is significantly less than attacks in

this dataset. Therefore, for the experiments, we have chosen

to work on a smaller balanced dataset. In this way, the

performance in terms of the detection rate is not significantly

affected for two classes of data. The number of samples chosen

for experiments is 20000 including 6481 DoS, 6482 DDoS,

6481 Reconnaissance, 79 Theft, and 477 benign samples. The

target dataset is generated through sampling of the 5% dataset

(mentioned earlier). As the 5% dataset is divided into training

and testing sets, we have extracted samples from both sets

while considering Theft/benign samples. On the other hand,

just the training set (from the 5% dataset) has been considered

for extracting DDoS, DoS, and Reconnaissance samples.

3) Data Pre-processing: For data pre-processing, 19 Fea-

tures were selected. However, we have omitted six features as

they can identify samples uniquely [57]. Further, MinMaxS-

caler() [58] is used to normalize the value of features between

0 and 1 as data scaling can affect the performance of ML

models [59].

B. Applying Label Flipping on Samples with Shortest or
Largest Distances to the Hyperplane of SVM

The percentage of samples selected to flip their labels range

from 5% to 50% of the dataset’s size. The increase is 5% for

each turn. Two different SVM kernels, including linear and

RBF, have been examined. To have a relative distance to the

hyperplane, the decision function(X) is used [60] (a model is

trained by the training set first, then the training set is fed to the

decision function(X) of the trained model in order to acquire

the relative distance). After measuring the samples’ distances

to the hyperplane, they are ordered based on the absolute value

of the distance [57]. After acquiring the samples (with short

or large distances to the hyperplane), their label is flipped and

the model is trained.

The first experiment is conducted for two cases:

• Select samples having shortest distances to the hyper-

plane and flip their labels for the linear and RBF kernels.

• Select samples having the largest distances to the hyper-

plane and flip their labels for the linear and RBF kernels.

As discussed in [61], applying label flipping on samples with 
a large distance to the hyperplane should affect the model 
more significantly. However, no considerable difference in 
the model’s performance was observed while flipping for 
two cases. But, applying label manipulation on samples with 
largest distances to the hyperplane has relatively more negative 
impacts, which can be seen in Fig. 3, confirming [61].
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Fig. 1. A proposed classification of Adversarial Machine Learning (AML) in IoT

Fig. 2. The proposed framework of the study

Another study [62] emphasizes that SVM with RBF kernel

is more robust against adversarial examples for the case of

input data manipulation poisoning. While considering the

results for the linear Kernel, the label noise applied on samples

having the largest distances to the hyperplane has caused more

adverse effects compared to RBF in general (there are some

noise levels where the adverse effect is more for the RBF

kernel). However, overall, the difference is not considerable.

It can be assumed that the inconsistency may be related to the

distribution of data or parameter settings. We also believe that

the similarity between results in cases of samples with shortest

distances and largest distances to the hyperplane is due to the

fact that samples are very close in the feature space. In other

words, the distance between the closest samples and furthest

samples is negligible. The results corresponding to the first 
experiment are depicted in Fig. 3.

Tables II to V show the results for accuracy, precision,

recall, and F1-score. In contrast with the accuracy, recall, and

F1-score metrics, it can be seen that there is no decrease in the

values of precision. As the number of false positives increases,

the value of precision decreases. In the dataset used for this

study, one label is in minority against the other one (same as

most of the real-world intrusion detection datasets in which

attack samples are fewer than benign samples). However, in

this dataset, the number of benign samples are considerably

fewer than attacks. The benign and attack categories are con-

sidered negative and positive types respectively. Therefore, as

the number of benign samples is significantly fewer than attack

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 8 ----------------------------------------------------------------------------



instances, the algorithm makes more errors when predicting

the label of attack samples resulting in an increase in the

number of false negatives. Moreover, the model does not have

difficulties in detecting benign samples (which results in a

reduction in the number of false positives). Therefore, as the

recall and precision metrics depend on the number of false

negatives and false positives respectively, the values of recall

decrease whereas the values of precision remain relatively

unchanged when applying label flipping.

C. Applying Label Flipping on Samples of a Specific Attack
Category

In this attack scenario, the aim is to analyze the effect

of label flipping applied on samples belonging to a specific

attack category in a dataset that includes different attack types,

i.e., instead of manipulating the label of just attack or benign

samples or samples from different categories together, samples

of specific attack types are targeted, and results are analyzed.

In other words, samples are first chosen (with respect to the

desired label noise percentage) having the largest distances to

the hyperplane with RBF kernel and then, only samples from a

specific category are flipped in turn. There is also the ”Theft”

attack category. However, as the number of samples for this

attack are too few, it is not considered for this experiment.

Fig. 4 shows the achieved results for this experiment. In the 
case of DDoS, a small performance degradation is witnessed. 
While flipping just DoS samples caused a more major negative 
effect comparing to DDoS, the results demon-strate a 
significant change in performance for the case of 
Reconnaissance when more than 25% label noise is applied. 
Tables VI to VIII show the results for accuracy, precision, 
recall, and F1-score. As discussed in section IV-B, the values of 
precision remain unchanged as the number false positive are 
negligible.

The difference in results is related to the different positions

of attack samples in the feature space. For example, it can be

concluded that as DoS samples are located further from the

hyperplane compared to the DDoS samples (we have ordered

all the samples in the dataset based on their relative distance

to the hyperplane, samples with the largest distances at the

first of the list), more of them are chosen for label flipping

and therefore, the model’s performance is decreased more.

D. Investigating the Effect of Label Flipping Applied on
Samples Having a Specific Attack Category on Type of the
Misclassified Samples

In this experiment, the effect of label flipping on mis-

classified samples is analyzed. The aim is to identify which

samples (from which category) are misclassified more when

label flipping is applied just on a specific attack type. To this

end, the attack categories of misclassified samples are recorded

following the steps mentioned in the previous experiment.

Then, they are compared with the target attack category for

which labels are flipped. It is worth mentioning that 5-fold

cross validation is used for all the experiments. For each fold,

the noise is applied on the training set and the average is

TABLE  II.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -  EX-PERIMENT  
I,  FLIPPING  SAMPLES  WITH  SHORTEST  DISTANCES  TO THE  HYPERPLANE  

WITH  THE  LINEAR  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 98 99 99 99
5% 95 98 96 97

10% 94 99 94 97
15% 89 99 89 94
20% 82 100 82 90
25% 79 100 78 88
30% 76 100 76 86
35% 76 100 75 85
40% 58 100 57 73
45% 55 100 54 70
50% 53 100 52 69

TABLE  III.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -  EX-

PERIMENT  I,  FLIPPING  SAMPLES  WITH  LARGEST  DISTANCES  TO THE  
HYPERPLANE  WITH  THE  LINEAR  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 98 99 99 99
5% 97 97 100 98

10% 89 97 91 94
15% 82 97 83 90
20% 76 96 78 86
25% 72 96 73 83
30% 66 96 68 80
35% 61 96 63 76
40% 54 95 55 70
45% 49 95 50 66
50% 46 95 47 63

recorded for each noise level (after completion of five folds).

Moreover, the parameters of SVM are default.

For analysis, the total number of samples from each attack 
category whose labels are flipped, the number of misclassified 
samples from the same attack category as the chosen attack, 
and the number of misclassified samples from other attack cat-

egories for all five folds are counted. The presented numbers 
are the summation for all folds (the red, green, and blue lines). 
As depicted in Fig. 5, the results obtained using RBF kernel 
highlight that when more label noise is applied on samples of 
any attack category, the number of misclassified samples of the 
same attack type increases as well.

The results can lead to designing more effective attack

scenarios. In other words, when the priority of an adversary

is to reduce the performance of an intrusion detection system

in terms of detecting a specific attack type, he can apply label

flipping on samples of the same attack category in the training

set. On the other hand, when designing defense strategies, if

detecting a specific attack category poses greater importance,

the security team can put more emphasis on protecting the

samples of the same attack category in the training set.

V. DEMONSTRATING THE WEAKNESSES OF THE K-NN 
METHOD TO DETECT AND CORRECT LABEL NOISE IN 

DATASETS

Many defense mechanisms have been proposed in the liter-

ature to tackle the label flipping attack. Several data cleaning

approaches are based on K-NN. However, these methods may

not work well for all cases. In this section, we evaluate the

robustness of a defense method that utilizes the K-NN model
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TABLE  IV.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -  EX-

PERIMENT  I,  FLIPPING  SAMPLES  WITH  SHORTEST  DISTANCES  TO THE  
HYPERPLANE  WITH  THE  RBF  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 99 99 99 99
5% 97 99 98 98

10% 92 98 93 96
15% 85 98 86 92
20% 81 98 82 89
25% 76 98 77 86
30% 71 98 72 83
35% 67 97 67 80
40% 61 97 61 75
45% 56 97 56 71
50% 51 96 52 67

TABLE  V.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -  EX-PERIMENT  
I,  FLIPPING  SAMPLES  WITH  LARGEST  DISTANCES  TO THE  HYPERPLANE  WITH  

THE  RBF  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 99 99 99 99
5% 95 99 95 97

10% 89 98 89 94
15% 84 99 85 91
20% 80 99 81 89
25% 73 98 73 84
30% 65 98 65 78
35% 63 99 63 77
40% 58 98 58 73
45% 54 98 53 69
50% 48 98 47 64

TABLE  VI.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -  EX-

PERIMENT  II,  FLIPPING  JUST  DDOS  SAMPLES  HAVING  LARGEST  
DISTANCES  TO  THE  HYPERPLANE  WITH  THE  RBF  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 99 99 99 99
5% 97 99 98 98

10% 97 99 97 98
15% 97 99 97 98
20% 97 99 97 98
25% 97 99 97 98
30% 96 99 97 98
35% 96 99 97 98
40% 96 99 96 98
45% 95 99 96 97
50% 93 99 93 96

TABLE  VII.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -
EXPERIMENT  II,  FLIPPING  JUST  DOS  SAMPLES  HAVING  LARGEST  

DISTANCES  TO  THE  HYPERPLANE  WITH  THE  RBF  KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 99 99 99 99
5% 97 99 97 98
10% 96 99 96 98
15% 92 99 92 96
20% 91 99 91 95
25% 91 99 91 95
30% 91 99 91 95
35% 90 99 91 95
40% 88 99 88 93
45% 85 99 85 91
50% 81 99 81 89

TABLE  VIII.  ACCURACY,  PRECISION,  RECALL,  AND  F1-SCORE  -

EXPERIMENT II, FLIPPING JUST RECONNAISSANCE SAMPLES HAV-ING  LARGEST  
DISTANCES  TO  THE  HYPERPLANE  WITH  THE  RBF KERNEL

Noise(%) Accuracy(%) Precision(%) Recall(%) F1-score(%)
0% 99 99 99 99
5% 99 99 99 99

10% 99 99 99 99
15% 96 99 97 98
20% 95 99 96 97
25% 91 99 91 95
30% 78 99 78 87
35% 77 99 77 87
40% 76 99 76 86
45% 74 99 74 85
50% 74 99 74 84

Fig. 3. The results for scenario I including label flipping applied on samples 
with large or small margins to the hyperplane

Fig. 4. Using RBF kernel while flipping label of samples from specific attack 
categories having large distances to the hyperplane

against the random label flipping attack. While applying the

label flipping attack on a training set, many poisoning points

will be far from the true samples (non-poisoning data points)

having the same label. Using K-NN to mitigate the effect

of label flipping attacks by relabelling malicious points is

suggested in [13]. The procedure is as follows: for each sample

in the training set, the K nearest neighbors are found based

on the Euclidean distance. If most of the neighbors (according
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Fig. 5. The results for scenario III that include investigating the effect of flipping samples from specific categories on misclassified samples

to a threshold, ranging from 0.5 to 1) have a different label,

the label of the sample is flipped. According to this paper,

large and small values of k show better performance when the

number of poisoning points is large and small respectively. For

larger thresholds, the defense is less effective as fewer points

are relabeled. This defense is designed for the case where

specific data points are affected by label noise. However, The

proposed approach has two drawbacks when noise is applied

randomly:

• It is likely that some benign samples are located close to

attack samples (and likewise, some attack samples may

be surrounded by benign samples). Therefore, based on

the proposed methodology, these genuine benign or attack

data points will be relabeled.

• There may be cases where all the neighboring data points

are poisoned. For example, a genuine benign sample is

surrounded by poisoning points that are benign in nature,

but their label is flipped as an attack (or the same on

the other side, a genuine attack sample is surrounded

by poisoning benign samples so that it is relabeled).

Moreover, in some cases, a poisoning benign (attack)

sample may be surrounded by other poisoned benign

(attack) samples and as a result, it is not detected and

relabeled.

Based on the paper, the first problem is likely to happen in

the regions where benign and attack samples overlap (close

to hyperplane for SVM). It is also discussed that (for the first

problem) the fraction of benign and attack samples that are

relabeled is expected to be the same. However, this problem

is still discussed as a shortcoming in [41]. The experiments

in this section are conducted on a dataset same as what was

discussed in section IV-A2. For each data point in the data set,

10 neighbors (using Sklearn NearestNeighbors) are extracted.

The second problem (that happens when all the neighboring

data points are poisoning) seems to be more important. In this

case, when there is a genuine benign or attack data instance

surrounded by poisoning points, the label of data instance is

flipped wrongly. Moreover, there may be regions in the data

space where label of all instances is flipped. In this case,

the algorithm is unable to detect data instances with wrong

labels. As an example, table IX shows the case in which a

genuine attack data instance is surrounded by poisoning benign

TABLE  IX.  A  GENUINE  ATTACK  DATA  INSTANCE  IS  
SURROUNDED BY POISONING BENIGN SAMPLES SO THAT ITS LABEL IS FLIPPED

Neighbors Neighbor Category
1st Neighbor DDoS (Attack in real)

2nd Neighbor DDoS (Benign is real)

3rd Neighbor DDoS (Attack in real)

4th Neighbor DDoS (Benign in real)

5th Neighbor DDoS (Attack in real)

6th Neighbor DDoS (Benign in real)

7th Neighbor DDoS (Benign in real)

8th Neighbor DDoS (Benign in real)

9th Neighbor DDoS (Benign in real)

10th Neighbor DDoS (Benign in real)

samples so that its label is flipped. The noise level here is 30%.

An experiment is conducted to show the weaknesses of the

proposed defense for the random label flipping attack. This

experiment includes looking for the genuine attack samples

that are changed to benign wrongly, the genuine benign

samples that are changed to attack wrongly, poisoned attack

samples that are not detected, and poisoned benign samples

that are not detected. The applied random label noise in this

experiment is 30%. The results are demonstrated in table X.

According to the results, the K-NN method is not a powerful

defense mechanism against the random label flipping attack.

VI. CONCLUSION

Adversarial attacks have become concerns for ML models

not only used in IoT but also in other domains. In this paper, a

comprehensive review of the recent research works regarding

Adversarial Machine Learning (AML) in the IoT domain is

presented. Moreover, a classification of adversarial attacks in

IoT is proposed to assist the researchers for their future works

in this domain. As mentioned earlier, IoT environments are

vulnerable to poisoning attacks such as label flipping. As

another contribution of this paper, we have investigated the

effect of label flipping on an IoT dataset in three different sce-

narios to determine how choosing samples to flip their labels

contributes to more negative effects. These experiments can

lead to designing more efficient attack and defense strategies.

Based on the results, choosing different samples to flip their

labels can cause distinct impacts. Moreover, it is observed that
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TABLE X. RESULTS FOR THE EXPERIMENT AIMING AT DEMONSTRATING THE DATA INSTANCES SURROUNDED BY SAMPLES WITH POISONING LABELS.

A = GENUINE ATTACK DATA INSTANCES ARE CHANGED TO BENIGN.
B = ATTACK DATA INSTANCES THAT ARE FLIPPED TO BENIGN ARE NOT RELABELED.
C = BENIGN DATA INSTANCE THAT ARE FLIPPED TO ATTACK ARE NOT RELABELED.
D = GENUINE BENIGN DATA INSTANCE ARE CHANGED TO ATTACK.

Case Round 1 Round 2 Round 3 Round 4 Round 5 Average
A 368 424 366 371 384 384

B 95 134 128 143 115 123

C 12 5 14 9 6 9

D 40 34 39 22 17 30

as the number of samples from one particular attack category

whose labels are flipped increases, the number of misclassified

samples from the same category increases as well. In terms

of the defense against the random label flipping attack, the

K-NN method did not show promising results. However, this

defense mechanism is likely to be a good choice for cases

where specific samples are chosen to flip their labels. Our

future work would focus on other types of poisoning attacks

that affect ML models.
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