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Abstract—In interconnected power system networks, low-
frequency oscillations (LFOs) have been a significant challenge
for engineers for several years, which makes the system unstable
by lowering the damping ratio. This article represents a method
for designing robust power system stabilizers (PSS) that use the
jellyfish search algorithm (JSA) based optimization approach for
multimachine networks. The suggested method uses the JSA
optimization technique to damp out LFOs by tuning the critical
parameters of conventional lead-leg type power system stabilizers
(CPSS). In this optimization problem, a damping ratio-based
objective function is used to increase the system damping. This
method is tested on two separate multimachine networks exposed
to a three-phase fault, and compared with two well-known
optimization algorithms called particle swarm optimization
(PSO) and backtracking search algorithm (BSA). Results show
that the JSA optimized technique provides better system
damping than PSO and BSA-based techniques, indicating that
the suggested technique is robust and reliable.

[. INTRODUCTION

The interconnected power system is continuously
increasing due to the increasing electric power demand in the
current decades. In such systems, heavy power is transferred to
the load, and the power system operates closer to the limits of
transient and dynamic stability. This increased effort to transfer
the electric power over massive geographical and electrical
distances  introduces  low-frequency  electromechanical
oscillation (0.1-3Hz) in the system [1]. These LFOs can grow
significantly with time if they are not damped out quickly,
resulting in severe system outages [2], [3].

In the 1950s to 1960s, continuously acting automatic
voltage regulators (AVR) had widely been used for voltage
regulations in many power plants. Although it maintained a
constant voltage level to the load, it could not make the “fine
adjustments” required to control oscillation in the speed. As a
result, the AVR could not dump the low-frequency oscillation
for extended periods. Because of AVR’s limitation, the
quantity of power transmitted on the system was limited. The
Power System Stabilizer (PSS) was integrated into
synchronous generators to allow fine-tuning power oscillations,
also known as low-frequency oscillations. PSS is used with the
excitation mechanism of the synchronous generator to provide
an extra control signal to improve the system damping [3]-[6].
Integrating renewable energy sources into the power system
can also introduce LFOs [7]. A modified AVR and PSS design
are proposed in this article [8] to improve these types of
systems’ damping.

Recently, several modern control theory-based PSS models
have been designed, including intelligent control, variable
structure control, optimal control, and adaptive control [9]-
[11]. Regardless of modern control techniques, the
conventional lead-leg PSS structure is still most popularly used
by power system utilities due to its simplicity [12]-[14]. The
parameters of a conventional PSS can significantly impact the
power system’s dynamic stability [14]. PSS performance can
be improved considerably by choosing the correct parameter
values.

PSS can be built in a sequential manner using conventional
techniques, with one electromechanical mode being considered
at a time [15]. Nevertheless, the stabilizer for one
electromechanical mood may cause instability in other moods.
That is why sequential techniques are avoided [16]. A gradient-
based design is proposed in this paper [17]. However, gradient
techniques can become stuck in one of the local optimal,
causing them to fail.

On the other hand, these conventional PSSs are designed
using a linear model [18]. However, when a system undergoes
significant disturbances, the nonlinear effects of the power
system become prominent, and the operational point of the
system shifts significantly in response. So the liner model can
not maintain stability [18], [19]. Therefore, a nonlinear power
system stabilizer design was proposed in [20] by Jiang. An
excitation controller and nonlinear control for Power System
Stabilizer were developed by Fusco et al. [21].

In the last two decades, metaheuristic optimization methods
have gained immense popularity. Many algorithms based on
these methods have been used extensively in multi-machine
PSS design problems, such as the backtracking search
algorithm (BSA) [22], particle swarm optimization (PSO) [23],
whale optimization algorithm [24], genetic algorithms
[25][26][27], cultural algorithms [28], artificial bee colony
[29], simulated annealing [19], support vector regression [30],
fuzzy gravitational search algorithm [31] and so on.

Artificial jellyfish search algorithm (JSA) [32] is a novel
bio-inspired swarm-based metaheuristic optimization method
inspired by jellyfish foraging in the sea, which was developed
by Jui-Sheng Chou and Dinh-Nhat Truong. JSA has three
valuable features: (1) It is simple to apply; (2) It is simple to
code; and (3) It only has two internal parameters. The JSA
method is validated using 25 large-size (CEC2005) and 50
small-size mathematical benchmarking functions of varying
dimensions. The test results demonstrate that JSA can achieve
the optimum value in fewer iterations than other optimization
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methods in its class. The JSA shows comparatively better
results in mathematical benchmark testing than the GA, PSO,
DE, ABC, GSA, FA, TLBO, SOS, TSA, and WOA algorithms
[32].

This novel optimization technique is successfully
implemented in different optimization problems such as
distribution systems automation [33], optimal power flow [34],
PEMFCs’ model uncertain parameters [35], parameter
estimation of single-phase transformer [36], and so on. But,
JSA is not implemented yet to optimize the parameters of PSS
in MMPS networks.

In this research, the challenge of developing a robust PSS
for MMPS networks is presented as an optimization problem,
and the optimal parameter values for PSS are obtained using
the JSA technique. The suggested method is tested on two
multimachine networks, and the performance of JSA-tuned
PSS is compared to that of BSA- and PSO-tuned PSS.

II. MODELING OF POWER SYSTEM

A. Synchronous Generator

A fourth-order equation model can represent the n number
of synchronous generators in a power system network [3]-[5].
Where any i*" generator on that network can be expressed
mathematically by these equations:

b1 = wp(w; — 1) (D

@y =~ (Pmi = Pet = Ppi) @)

€ = i [Efai — eqi — (Xqi — Xgi)iail 3)
Erqr = TLEL [Kgi(Veri — Vg + Upssi) — Efa “4)

The meaning of the symbols used in the given equations is
mentioned in the Appendix section. These nonlinear
differential equations from (1) to (4) can be linearized with
some approximation [5].

B. Conventional PSS:

Fig. 1 illustrates the block diagram of a lead-leg CPSS. The
changes in generator angular frequency (4w, are given as
input, and the output is taken as the changes in the generator’s
control signal (U,y).
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Fig. 1. Conventional lead-lag PSS structure
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It consists of a gain or amplifier block (K¢;) that is used to
obtain the necessary positive damping. A washout/rest block
having time a constant 7, is provided so that PSS remains
deactivated when there are no network disturbances. Two lead-
leg compensators are used for phase compensation. 7, T, T3
and T, are the time constants of two lead-leg phase
compensators. The control signal’s amplitude is limited by the
limiter block. When LFO occurs, the phase lead of CPSS
compensates for the overall lag of the excitation system.

III.

The problem is to optimize the PSS parameters so that it
can improve the system damping. The objective function (J)
should be maximized:

PROPOSED OPTIMIZATION PROBLEM

J=max {{;, i=123,..,n}

)
Here, ¢; is i*® machines minimum damping ratio (MDR),
and n is the number of machines.
Optimization parameters:

Maximization of J

min max
KG™" < Ko <K

min max
I =T,; <Tyj

min max
T3 < Ty < T

IV.

Jellyfish’s food searching behaviour is taken as inspiration
for the JSA. It is a relatively new algorithm developed in 2021
by Dinh-Nhat Truong and Jui-Sheng Chou [32]. Fig. 2 shows

JELLYFISH SEARCH ALGORITHM

the flowchart of JSA. Three strategies guide the
implementation of the JSA:
e Depending on their “Time control mechanism,”

Jellyfish may migrate with the sea waves or within the
swarm.

Jellyfish search for areas with a greater supply of food
than their present position.

The position and its objective function affect the amount
of food found.

A jellyfish bloom is created by the Jellyfishes’ rapid active
and passive motions inside the swarm, and Food availability
differs in jellyfish-visited areas. Comparing food sizes may
help to determine optimal places, i.e., the FF’s best value.

The population is first initialized using the Logistic chaotic
map describedin Eq. (6) [37], and the ocean current is
constructed using Eq. (7). As recommended in [32], the value
of n is considered 4.0.

Xy =1X;(1-X), 0<X,<1 (6)
X;(t+1) =X;(t) + rand(0,1) X (X* — B X rand(0,1) X p)
(7
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The movements of Jellyfish in a swarm are governed
by passive and active motions. Jellyfish move about their
locations in passive motion and update their positions
according to Eq. (8), and the active motion is defined using the
formula shown in Eq. (9).

X;(t+1)=X,t) +y xrand(0,1) X (U, — L) (8)
X;(t+ 1) = X;(t) + rand(0,1) xDirection Q)

For active motion, the direction of each Jellyfish is always
towards the best foodstuff. The direction is represented by Eq.

(10)

X,(0) = X,(0) if FX) = f(X))

X0 - %@ if f&x)<fx) 1O

Direction = {

The transition between passive and active motion in ocean
currents is governed by the time control variable C(t). It is
given by Eq. (11):

ety =|a- ) (2% rand(0,1) - D]

Max;t

Set parameters:
NPop " Maxite,, Ub: l'b

Initialize population X; using logistic chaotic map.
Evaluate fitness at each location of X;

»| For t=1: Maxje,

| Store best location & Fitness |

Calculate C(t) [Eg. 11]

|Move inside the swarm| | Follow ocean current [Eq. 7]

Passive motion [Eq. 8]| |Ar.t|ve motion [Eq. 9]‘

| No |

Evaluation, Boundary check & Update
i pusuhon

Update best solution

/ Output the best result

Fig. 2. Flow chart of JSA
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V.  SIMULATION RESULTS AND DISCUSSION

A MATLAB-based simulation ofthe linear model of an
IEEE-39 bus ten-machine system, and a two-area four-machine
system are used to test the efficiency of the JSA in MMPS
networks. The JSA optimized PSS simulation results are
compared against other PSS based on PSO, BSA, and
conventional/without PSS, where all the parameter values
remain the same for all algorithms. For each generator, the
problem dimension is 5, the size of the population is 100, and
the maximum iteration is 1000. T, is set to 10 seconds in the
reset block. K., Ty;, T3; are optimized using JSA in this
paper. K,; limit is set as [0.0 to 50.0], and Ty;, T,;, Ts; and Ty;
limits are set as [0.01 to 1.00].

A. Network 1: Two-area four-machine network

The test network-1 is represented in Fig. 3. It is comprised
of eleven buses and two areas, which are coupled via a weak
link between buses 7 and 9. At buses 7 and 9, the system is
subjected to two loads in total. As indicated in Fig. 3, two shunt
capacitors are also connected to buses 7 and 9. Reference [3]
provides more information about the network data. For a
particular base case [3], the JSA technique is used to carry out
the optimization process for three parameters K,;, Ty; and Ts;.
T,; and T,; values are set to 0.0500. This MMPS network is
tested with different optimization techniques, and the damping
ratios are given in [23]. The optimized parameter values are
shown in Table-I. Fig. 4 illustrates the objective function
variations regarding the iteration numbers for the JSA-tuned
PSS. It provides a maximum value of 0.7376 within 1000
iterations, and reaches its optimal value around 600 iterations,
indicating that the JSA-based technique has a faster
convergence. The MDR for conventional, BSA, PSO, and JSA-
tuned PSS are listed in Table II. It shows JSA-tuned PSS
provides 4.7 times, 2.3 times and 1.5 times better damping ratio
than conventional, PSO and BSA-tuned PSS respectively.
Damping ratio analysis demonstrates the overall effectiveness
of JSA in optimizing the parameters of PSS in two area four
machine network. Bus 7 is subjected to a 3-¢ fault for 0.1
second which begins at 0.5 second. The whole process is
simulated for 5 seconds. Fig. 5 demonstrates angular frequency
variations for four machines, where the oscillations are
dampened using the conventional PSS. CPSS can not stabilize
the system within the simulated time period. Fig. 6 shows the
variations in G;’s rotor angle for the same fault using CPSS and
JSA-based PSS. It shows JSA-based PSS can stabilize the rotor
angle oscillation within 2.7 seconds, which is much faster than
conventional PSS. The JSA technique has a substantially
shorter settling time than conventional PSS.

L9

Fig. 3. Two areas four-machine network
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Fig. 4. Changes in the objective function for JSA-tuned PSS.
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TABLEI. JSA-TUNED PSS PARAMETERS FOR NETWORK-1
Gen Parameters
No. Kc T1 T3
Gl 18.8305 0.0209 0.0250
G2 429914 0.0594 0.0796
G3 30.7775 0.0906 0.1241
G4 19.4093 0.0594 0.0860
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TABLE II. MDR FOR DIFFERENT OPTIMIZATION TECHNIQUES FOR
NETWORK-1
Conventional PSO-tuned BSA-tuned JSA-tuned
PSS PSS [23] PSS [22] PSS
0.1558 0.3220 0.5038 0.7376

Fig. 7 shows the control signal of G; where percent
overshoot is smaller, and settling time is shorter for the control
signal for JSA tuned PSS as compared to conventional PSS.
Angular frequency of Gj is illustrated in Fig. 8, which shows
JSA-tuned PSS can damp out the oscillation within 3 seconds,
but conventional PSS can not stabilize the signal within 5
seconds. Similar response can be observed for other generators.
This indicates that the JSA-optimized technique performs
better than the CPSS, PSO and BSA-based methods in two area
four machine network.

Control Signal wrt time
T T
----- Conventional PSS
| JS based tuned PSS
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Control Signal
T
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Fig. 7.
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Fig. 8. Angular frequency of G;.

B. Netwark 2: IEEE-39 Bus netwark

The IEEE-39 bus ten-machine MMPS network is used in
this example, as shown in the single line diagram of test
network-2 in Fig. 9. 12 tap-changing transformers, 19 loads, 10
generators, 39 buses and 36 transmission lines comprise the
system. Generator-1 represents the collection of a number of
different generators. Reference [4] contains a detailed
description of the system data. For a particular base case [4],
the JSA-based technique is used to tune the PSS parameters.
Table III illustrates the minimum damping ratio for different
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methods used with the same configuration of the test network-2
[22]. For the same system configuration, the JSA-based
technique provides 7.4 times and 6.3 times better minimum
damping ratio compared to PSO and BSA-optimized
techniques respectively, which is a significant improvement
over two well-known optimization techniques. Table-IV
summarizes the JSA-optimized parameters. The objective
function variations of JSA-optimized PSS for the IEEE-39 bus
system is shown in Fig. 10. It delivers a maximum value of
0.1949 within 1000 iterations, and reaches its optimal value
around 700 iterations, which indicates the faster convergence
capability of the JSA-based technique. Bus 29 is exposed to a
three-phase fault that starts at 0.5 second, and lasts for 0.1
second. The fault is simulated for 5 seconds.

] 19 23

Fig. 9. IEEE 39-Bus Power System network.
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10° 10 10? 10°
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Fig. 10. Changes in the objective function for JSA-tuned PSS

The rotor angle response of G5 with time is represented in
Fig. 11. It indicates that JSA-tuned PSS stabilizes the signal in
4.5 seconds, whereas conventional PSS is unable to achieve
stability over the simulated duration, and instead destabilizes
the signal. The network exhibits stable behaviour with JSA-
based tuned PSS. Fig. 12 illustrates the angular frequency for
G5 with respect to time. The network with CPSS has a varying
angular frequency, and it can not stabilize the oscillation.
However, the network with JSA-tuned PSS can stabilize the
angular frequency within 2 seconds. The control signal’s

percent overshoot is smaller, and the settling time is faster.
Besides, The JSA-based technique stabilizes the control signal
in 4 seconds, whereas the CPSS technique destabilizes it.
Similar responses can be seen in other generators. This
indicates that the JSA-based PSS design is more compatible
and robust.

TABLEIII.  MDR FOR DIFFERENT OPTIMIZATION TECHNIQUES FOR
NETWORK-2
Conventional PSO-tuned BSA-tuned JSA-tuned
PSS PSS [22] PSS [22] PSS
-0.0334 0.0264 0.0312 0.1949
TABLE IV. JSA-TUNED PSS PARAMETERS FOR NETWORK-2
Gen Parameters
No.
K, T, T;
G, 0 0 0
G, 36.2517 0.6845 0.7004
G; 42.9155 0.6991 0.5929
Gy 44.9636 0.6921 0.9241
Gs 17.5877 0.2540 0.4606
G 37.1972 0.7953 0.7464
G, 14.9012 0.2394 0.1075
Gy 33.1334 0.9423 0.9506
Gy 25.3069 0.5592 0.1156
Gio 49.3066 0.9866 0.9524

Rotor Angle wrt time
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Fig. 11. Rotor angle of Gs.
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Fig. 12. Angular frequency of Gs.
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Fig. 13. Control signal of Gs.
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Various types of disturbances constantly impair the stability
of electric power systems by creating LFOs. PSSs are
integrated with synchronous generators to enhance the stability
of the system. This paper proposes a new PSS design method
for the multimachine power system (MMPS) network based on
a new optimization algorithm called the artificial jellyfish
search algorithm (JSA). The suggested method is tested on two
multimachine power systems models with different system
configurations. In both cases, the technique’s robustness is
demonstrated by its convergence independent of the initial
guess. Time-domain simulations of angular frequency, rotor
angle, and control signal show that JSA-tuned PSS can stabilize
the system much faster than conventional PSS. Furthermore,
for the identical system design, the damping ratio study of two
MMPS networks shows that the JSA-based method provides
better damping ratio than the PSO and BSA-optimized
techniques. Also, the JSA-based approach requires fewer
iterations to achieve convergence. After introducing 3-¢ faults,
the suggested PSS design significantly improves system
stability, as shown by time-domain simulations. However, this
system can be enhanced in the future by integrating FACTS
devices with PSS. Renewable energy sources may also be
included in the test network, owing to their widespread use in
today’s world.

CONCLUSION

APPENDIX

NOMENCLATURE
T, T,, T3, T, = Time constants for CPSS

K¢ = Gain of the CPSS; VE; = Field excitation
K; — K¢ = Fourth order model constants

T, = Time constant of the open circuit field

Ky = Excitation system gain

Ty = Excitation system time constant

T, = Washout block time constant

Vs, Uy = Reference and terminal voltages

Vg, Vg = Voltages of the quadrature and direct axes
i, tq = Currents of the quadrature and direct axes

x[,, x, = Transient reactance of the quadrature and direct axes
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X4, xq = Reactance of the quadrature and direct axes

w, = Base angular frequency;M = System inertia coefficient
P, = Damping Coefficient; upgs = Control input

P,, P,, = Output electrical power and input mechanical power
eq = Internal voltage of the generator

6, w = Rotor angle, Angular frequency
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