PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Improving Recovery Block Method for More Reliable
Client-Server Communication

Daniil Ageev, Nikita Voinov
Peter the Great St. Petersburg Polytechnic University
Saint Petersburg, Russia
ageev.dyu@edu.spbstu.ru, voinov@ics2.ecd.spbstu.ru

Abstract—Nowadays high availability and reliability are
essential characteristics of any enterprise client-server
architecture. This primarily requires a stable and fault-tolerant
operation of the server side which can hardly be guaranteed
without possibility to select an appropriate server depending on
specific client needs. In this case fault-tolerance is provided by
the client side. One of the main principles used for such approach
is Recovery Block. Described in this paper is a new algorithm for
increasing fault tolerance in client-server communication. It is
based on Recovery Block method and allows ranking of available
servers with their stability factor and making decision of
removing unstable servers considering previous connection
attempts.

I. INTRODUCTION

Fault tolerance is the most important criteria of a software
system to prevent unscheduled outage of dependent
applications. In client-server architectures to provide high
level of fault tolerance a failover approach is usually used
which means that a client switches to a reserve server in case
of any issues with a primary one. Failover can be implemented
using Recovery Block method [1]. In this case the probability
of a client failure depends on the probability of a server
failure.

In this work a new method is proposed which improves
standard Recovery Block. The method is based on the
algorithm for selecting a specific server among available ones
by considering previous failures occurred during the operation
of applications.

The described method can be applied for the client-server
architecture consisting of the following components:

1) A client permanently connected to a single server. Client
stability is defined by results of requests to the server.

2) A set of communication servers located in different data
centers worldwide with different intervals for updates and
technical maintenance.

Such architecture may lead to unstable operation of the
whole system due to possible failures on the server side such
as DNS issues for a specific region, database corruption,
internal server errors, human mistakes, update issues, etc. The
proposed method is aimed to reduce the probability of the
communication failure and downtime of the client side.

II. RELATED WORKS

The considered topic is focused mostly on the aspect of
client-server communication but fault tolerance is an
extremely broad area providing various algorithms that cover
different problem domains.

Jhawar R. et al. [2] introduces innovative perspective
aspect of managing without focus on implementation details,
but using service layer instead. This allows to satisfy user
requirements for fault tolerance. Moreover, clients do not need
to adjust their applications for specific environment.

Kumar A. et al. [3] investigates different techniques of
fault tolerance which are used in real time distributed systems.
This paper is focused on failure types for distributed systems
and the mechanism of their detection. Based on the type of a
failure different fault tolerance techniques can be used to
reduce downtime.

Dhingra M et al. [4] makes the comparative analysis of
fault tolerance models and their challenges in cloud
computing. Pros and cons of existing techniques of fault
tolerance used in cloud are discussed. In general handling
system errors while computing in a cloud is a real challenge
for software developers.

Verma A. et al. [5] considers modification of classical N-
Version systems. The main difference between classical
solution is a weight factor for each version. It provides
opportunity for a system to rank versions for voting module.
The voting mechanism in this case is based on trust factor for
each version.

Existing methods often cannot be applied for
communication between server and client. Proposed in this
paper is a modification of Recovery Block method that can be
applied to existing client-servers architectures to increase their
reliability.

IIT. STANDARD RECOVERY BLOCK METHOD

Recovery Block is one of the fundamental techniques used
for client-server communication. Its standard model is shown
at Fig. 1.

When failure occurs, the client either sends a repeated
request to the same server or breaks the connection with the
current server and makes a new connection to another server.
This is a common approach used in many frameworks (Spring,

ISSN 2305-7254

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

etc.) In this solution the probability of a system failure is
calculated as follows:

i-1

pP,= I_l (e+ 1)+ I_l et iy)
k=1

i=1

(M

Z tye(
<

where

€, —the probability of the i-th server failure;

— the probability that for the i-th attempt the correct

1i . . .
' results is considered to be incorrect;

— the probability that for the i-#h attempt the incorrect

2i . .
' results is considered to be correct.

Exocution Envirement kth Recovery Block For Particular
(EE} Server

Connection

==

Succes:
L T Result choker ——————»

.

Rocovery Stato

Connection

Attempt N 1 failed

Fig. 1. Recovery Block standard model

One of the main methods used to select the next available
server is Round Robin. It goes through all available IP
addresses one by one until either the list is over or successful
reconnection. There are also modifications of this method,
such as ibnamed, which provide servers based on client
location and server load.

The proposed method allows to consider additional
information stored at the client side for selecting a specific
server with maximum probability for successful reconnection.

IV. THE PROPOSED IMPROVEMENT OF RECOVERY BLOCK
METHOD

According to (1), successful reconnection at the i-th
attempt means that the downtime depends only on the total
number of all reconnections and can be calculated as follows:

n
tdnwntime_ Z t i

=1

2

where

f; —downtime while reconnection to the i-t/ server.
To reduce the downtime the number of reconnections shall
be minimized. This can be achieved by increasing the
probability of successful transfer to the new server.

Investigation of the reason of unstable client-server
connection at the specific moment is a very complicated task
which may consume a lot of resources. Alternative way
provided by the proposed method is a special algorithm for
tracking and ranking available servers according to the
probability of their failures.

As the main task is minimization of reconnection attempts,
the client shall keep historical data of all previous attempts.

386

This can be implemented either by storing it in client local
database, local file or on the servers. Further considered is data
storage in a local file to simplify the method description. A
special JSON format is used to keep information about all
available servers (Fig. 2).

Fig. 2. Data stored for a specific server

Based on this data a client can find servers with less
failures according to connection history. This allows to reduce
the number of unsuccessful attempts and consequently the
overall downtime. Besides that, the stored information
contains types of operations which failed. As each operation
may involve different functionality of a server application
(which can be temporary unavailable or unstable for other
operations), it is proposed to split the ranking by operation
types, so that the client can use the most appropriate server at
specific time.

Assuming that failures in client-server communication
occur on the server, their distribution can be tried to be
predicted based on the results of requests execution. Thus the
proposed solution based on the statistics of communication
with servers may help to reduce downtime and failures due to
selection of the most appropriate servers among the available
ones.

The proposed algorithm is shown at Fig. 3 and contains the
following steps:

1) Create a new event which requires a request to the
server and specify the type of this event.

2) Select the first server in the list of available servers.

3) Connect to the server. If successful, go to step 9.
Otherwise go to step 4.

4) Define type of the failure received from the server.

5) Increment the counter of specific failure type for the
server and overall failure counter, and update the file with
connections history.

6) Create a new object for the server in accordance with
specific failure, if this object does not still exist.

7) Select a new server with maximal probability of
successful connection for a specific operation from the list of
available servers. If all servers with historical data about
failures of this type were tried, connect to other servers
starting from those which have maximal overall probability of
successful connection.

8) In case of failure of all operations, the event is put into
retriable state. In this state each N time slots the client tries to
repeat the algorithm until successful implementation of the
operation. After some limit K is reached, the event is removed.

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

9) In case of successful operation, its data is stored in the
file with connections history. The current server is used until
any further failure.

10) Each T time slot update ranking of servers in
accordance with probability of successful communication with
specific client.

Server pool New request

Server

S
Select another
server

New attempt

A/

IF failure IF success

Define Error
type

connection

Save error

Response Request

History of attempts Server

Increase success counter

Change server
order

Periodically
reorder

Fig. 3. Scheme of the proposed algorithm

Servers ranking is calculated based on probability of
successful requests and failure types in response on specific
requests. Specifying of a failure can be implemented either
dynamically based on the server response or statically at the
client side where a specific function corresponds to each
operation. For example, operations can be grouped by modules
used in server infrastructure, such as NFS volume (send/delete
files), database operation (add/remove system), etc.

Example of such failures specification is shown at Fig. 4.
In case of a specific operation failure, the most appropriate
server is firstly searched for in the list of ranked probabilities
of this type of operations. If the list for specific operation
expires, then return to the general server list. Such ranking
allows to select the most appropriate servers for current tasks
and avoid requests to irrelevant servers.

V. RESULTS

The proposed method was compared with standard Round
Robin method while modeling failures for miscellaneous
system components during 1 hour and calculating system
downtime.

Obtained results shown in the Table I prove effectiveness
of the proposed method. It can be even more significant when
failures occur systematically for the same servers on a long
time slot lowering their position in the ranking list.

387

However the current algorithm contains a drawback. While
collecting a large number of operations, occurrence of new
systematic failures with servers in the top of the list may lead
to the situation when their probability of successful
communication will reduce very slow even with a large
number of such failures. This is because of large number of
accumulated requests. This can be solved by resetting
information about number of requests, but storing the current
probability value.

= General Server List

IP #1 probability 0.871
IP #2 probability 0.643

IP #3 probability 0.51

IP #N probability 0.2

=] =]

AMPQ Operations
|P #4 probability 0.64

NFS Operations
IP #1 probability 0.91

|P #3 probability 0.64 IP #2 probability 0.74

IP #1 probability 0.41 IP #5 probability 0.41

=/ NOSQL Database Operations e

IP #3 probability 0.61

SQL Database Operations

IP #2 probability 0.76

IP #1 probability 0.44 IP #1 probability 0.74

|P #2 probability 0.41 IP #3 probability 0.64

Fig. 4. Grouping available servers by operation types

TABLE I. EXPERIMENTAL RESULTS

. Downtime for Round
System Downm‘ne for proposed Robin method,
component algorithm, seconds
seconds
NES 2742 301.7
SQL
Database 253.6 2730
NOSQL
Databasc 253.1 261.3
AMPQ 281.7 306.2

VI. CONCLUSION

The paper describes a new method improving standard
Recovery Block solution for reliable client-server
communication. The improvement consists in selecting a
specific server among available ones by considering previous
failures occurred during the operation of applications. This is
implemented based on servers ranking which is calculated
based on probability of successful requests and failure types in
response on specific requests. Experimental results were
compared with existing approach and proved effectiveness of
the proposed method for reduction of client downtime.

However the proposed approach has a limitation for the
client - it cannot be thin and should store server statistic to
provide more accurate data. Furthermore, the ranking process
creates extra work for the client in addition to its main
functionality.

A possible way to improve the proposed method is to share
the statistic of server failures with a set of similar clients. It

shall allow clients to use the most relevant servers, but it also
creates a challenge for servers at the top of the list to hold new
workload without failures that may affect corresponding list.

REFERENCES

[1] B. Randell, “System Structure for Software Fault Tolerance”, in
IEEE Trans on Software Engineering, vol.1(1), June 1975, pp.220-
232.

[2] R. Jhawar, V. Piuri, and M. Santambrogio, “A comprehensive
conceptual system-level approach to fault tolerance in cloud

388

(3]

(4]

(3]

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

computing”, in Systems Conference (SysCon), Mar.2012, pp. 1-5.
A. Kumar, R.S. Yadav, and A.J. Ranvijay, “Fault tolerance in real
time distributed system”, Int. J. Comput. Sci. Eng., vol.3, 2011, pp.
933-993.

M. Dhingra, and N. Gupta, “Comparative analysis of fault
tolerance models and their challenges in cloud computing”, in
International Journal of Engineering and Technology, vol.6(2),
2017, pp. 36-40.

A. Verma, A. Ghartaan, and T. Gayen, “Review of Software Fault-
Tolerance Methods for Reliability Enhancement of Real-Time
Software Systems”, International Journal of Electrical and
Computer Engineering, vol.6(3), Jun.2016, pp. 1031-1037.

