
Program System for Object Models Deductive
Synthesis

Nataly Zhukova, Natalya Andrianova

St. Petersburg Institute for Informatics and Automation of
the Russian Academy of Sciences

St. Petersburg, Russia
nazhukova, natasha23062@mail.ru

NikolayKlimov
ITMO University

St. Petersburg, Russia
hocico16@gmail.com

Abstract—The paper considers the problem of dynamic

modeling of complex natural and technical objects. The objects
that have hierarchical structure are in focus. It is proposed to use
new multilevel relatively finite automata models as formal models
of such objects. A new algorithm based on deductive synthesis
that allows automatically build automata models is presented.
Automata models and the algorithm are implemented in program
system. A number of examples of building models in the domain
of Internet of Things are given.

I. INTRODUCTION

The problem of modeling complex natural and technical
objects in the dynamics begins to come to the fore.Machine
models of real objects are in great demand in all spheres of
human activity - social, economic and others. Such models are
needed to solve many new problems. Thus, the specialists in
the field of medicine justified the effectiveness of the
application of a systematic approach to the analysis of patients'
conditions [12]. This involves modeling the organism as an
integral system in order to assess the consistency of the
interaction of many subsystems of the organism. To do this, it
is necessary to carry out many diagnostic measures, to identify
the relationship between their results. In the field of education,
an individual approach to learning is implemented, in
accordance with which, an educational trajectory is built for
each student taking into account its individual characteristics,
existing competencies, and acquired skills [13], [14]. This
requires a targeted search and linking of units of the
educational information space within a single model. Simplier
examples can be found in the field of the Internet of Things
(IoT) [16]. IoT model, as a rule, contains three levels - sensing
layer, relay layer, convergence layer. The state of IoT changes
at each moment of time - some of the sensors fail, and new
ones are added. The IoT model should allow assessing the
state of the network as a whole and its readiness to solve
applied problems. Many hundreds of such examples can be
found in each area. The space of possible solutions of the
considered class of problems turns out to be extremely large,
the search for solutions in such a space requires large
computational resources. From the IT side, a number of new
technologies have been proposed for solving computationally
complex problems, from computing using multiprocessor
machines to cloud computing [15]. However, taking into
account the observed dynamics of the development of modern
society, the capabilities of the available technologies will soon
be insufficient. We need new cost-effective solutions that will
allow us to model complex objects in dynamics from the
standpoint of system analysis.

The article proposes a new approach to modeling, based on
the deductive synthesis of object models. In the second and
third sections, the proposed models and methods of synthesis
are considered. The fourth section describes the framework for
deductive modeling. In the fifth section, examples of model
synthesis for the field of IoT are considered.

II. SYNTHESIS BASICS

Dynamic models of an object are a sequence of
interconnected transitions of the observed object between
states. At each time, the object is in a state. Examples of such
states are a healthy state, a state in the presence of an error.
The state of an object at each moment of time is described by
its model, which is built on facts known about the object. Such
models are called static models. As a result of the binding of
static models, a dynamic model is formed.

Automata models can be used to describe static and
dynamic models of objects. To build models one can use
known methods of program automatic synthesis [1], [2], [3],
[4], [5].

When constructing static models, inductive synthesis
algorithms are required. These algorithms and examples of
their application are given in [6]. The binding of dynamic
models is provided by deductive synthesis.When linking, a
proof is made of the possibility of transition from one static
model to another. If the proof was successful, a connection is
established between the models. The proof is carried out at
many levels determined by the structure of static models of
objects. Connections established between models allow
conclusions to be drawn about the dynamics and direction of
changes occurring in an object.

An example of a dynamic model is shown in Fig. 1.

1SМ №

2SМ №

1L

2L

3L

SМ №N

In
fo

rm
at

io
n

co
nt

en
t

Time1t 2t Nt

1F

2F

3F

Fig. 1. Dynamic model

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 1 shows N static models SM-1, SM-2, ..., SM-N, built
at times t-1, t-2, t-N. All presented models have three levels.
The elements of the model are some facts about the observed
object. Each level has its own facts. The facts of adjacent
levels of static models are interconnected. Facts related to the
second level are determined on the basis of facts of the third
level, and facts of the first level are determined on the basis of
facts of the second level. The interrelationships between facts
define vertical relationships in static models. For example, if
sensors are located at the lower level that measure the values
of parameters of the observed objects, then at the second level
the total amount of data from sensors of a certain type can be
calculated, and at the upper level - the total information
content of all collected data.

In order to establish links between static models, first
consider the elements of the top level. If such a link is
established, then the corresponding horizontal top level link is
established. In fig. 1 such a connection is designated as F-1.
For example, when establishing a connection, such a criterion
can be considered - the total amount of data decreased by no
more than k%. If the connection fails, the transition to the
second level is performed. At the second level, the amount of
data on sensor types is investigated and F-2 type connections
are established. If necessary, the transition to the third level is
possible.

Automata models that allow describing static and dynamic
models of observed objectsare considered below.

A. Automaton models of observed objects
Let us consider a formal model of observed objects. They

can operate according to different programs. The states of any
object with fixed structure can be described by the final state
automate [7, 8]. For formal description of objects including
self repairing and self reproductive objects it is necessary to
take into account a number of additional conditions. These
objects can be formalized by means of relative finite state
operational automata.

Each automate ܴܣܨ in r-th moment of time can be
described in terms of 10 parameters,

ܣܨܴ ൌ ሼ݀̅ೝ, ݀̅ೝ	, ݀̅ೝ	, ܨ
, ,ܨ ,ሺ݀̅ೝషభሻሽܣܦ

,൫݀̅ೝషభ൯ܤܦ ,൫݀̅ೝషభ൯ܥܦ ,൫݀̅ೝషభ൯ܤܨ ൫݀̅ೝషభ൯, (3)ܥܨ

where: ard

- input data vector; brd

- vector of internal state

parameters; crd

 - vector of output state parameters. Functions

of transitions b

rF in (3) define automata transitions from one

internal state to another internal state,

 1 (,)b
b a brr r rd F d d

Function of states of output c

rF can be described as

 (,)c
c a brr r rd F d d

States brd

, crd

, ard

, and functions b

rF , c

rF , which define

automate in r-th moment of time, must satisfy following
conditions:

 1()a br rd DA d

 1()b br rd DB d

 1()c br rd DC d

 1()b
br rF FB d

 1()c
br rF FC d

Condition (6) says, that state of automate in r-th moment of

time is limited by the set 1()brDA d

 allowed states, defined for

r-1 moment of time. According to (7) internal state of
automate for r-th moment of time must be a member of the set

1()brDB d

 of allowed internal states. Expression (8) defines

limitations for allowed states of automate outputs. These states

must be members of the set 1()brDC d

 . According to the

condition (9) transition function b

rF for r-th moment of time

must be a member of the set 1()brFB d

 of allowed functions

for r-1 moment of time. The set 1()brFB d

 of transition

functions defines the instruction set of the automate for r-th

moment of time. b

rF is defined by the vector brd

, which

describes parameters of internal states of automate. According

to (10) function of outputs с

rF at r-th moment of time must be

a member of the set 1()brFC d

 of allowed functions, which are

active at r-1 moment. Transition from automate ܴܣܨ to
automate ܴܣܨାଵ at r+1 moment of time one can describe as

,ܣܨܴ	:ܨ ard

→ .ାଵܣܨܴ	

To build models of complex hierarchical objects that
comply with real objects, multilevel relatively finite
operational automata are required. The process of their
construction has following steps: i) definition of the basic sets
of allowed parameters of automata, ii) marking these sets by
upper index «о», not taking into account their correlations
with internal states. Let us define the complex of the basic sets
as

ܣܨܴܦ ൌ ሼܣܦ, ,ܤܦ ,ܥܦ ,ܤܨ ሽ (11)ܥܨ

From elements of these basic sets (11) one can form

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 804 --

allowed sets of parameters of higher i-thlevels,	ܣܨܴܦ ൌ
ሼܣܦ, ,ܤܦ ,ܥܦ ,ܤܨ ሽ. As a result the automate may beܥܨ
characterized by allowed sets of parameters on different
hierarchical levels,
ܣܨܴܦ ⇔ ଵܣܨܴܦ ⇔. . . .⇔ ܣܨܴܦ ⇔. . . .⇔ ܣܨܴܦ

Taking into account that automate for current moment of
time is described by ܣܨܴܦ ൌ ሼܣܦ, ,ܤܦ ,ܥܦ ,ܤܨ ሽ thisܥܨ
complexes in general case are changing in time. They can be
described as a function of its internal state

ܣܨܴܦ ൌ ሺ݀ܣܨܴܦ
ି

ೝషభሻ.

In a number of cases by means of expending of the set of
automate internal states from (3) - (10) one can exclude
functions (5) and correlated with them conditions (8), (10). As
a result we receive automate reduced by parameters (4), (6),
(7), (9), but with saving ability for reconfiguration.

∗ܣܨܴ ൌ ሼ݀
ି

ೝ, ݀
ି

ೝ, ܨ
, ሺ݀ܣܦ

ି

ೝషభሻ, ሺ݀ܤܦ
ି

ೝషభሻ, ሺ݀ܤܨ
ି

ೝషభሻሽ

While using logical variant of presentation function of
automate transition (4) has a view

 1(,)b
a b br r r rF d d d

 . (14)

If the set of internal states is expended not only by output

states but also with input states then in (14) function ()b

rF

from ard

maybe not shown.
Distinguishing feature of the described above relatively

finite state operational automate is that the set of allowed
parameters are true only on one stage (transition) and they are
defined relatively to previous state. There is a possibility to
change in a full automate not only the set of allowed input,
output and internal states, but also the sets of transaction and
output functions of automate. In particular cases full automate
can be reduced to other automate, with allowed sets of
parameters which do not depend upon previous internal states.

Automate (3) – (10) can be considered as a model of a fully
reconfigurable object. Each such automate can be conceded as
a complex of coupled automate of lower level. Migration
between the levels from the formal point of view can be
conceded as a process of tuning of the set of allowed
parameters. The length of the record about the same
functionality in the form of relatively finite state operational
automate depends essentially upon the level of hierarchy used
for automate operation description.

The distinguishing feature of multilevel models is that the
synthesis of such models can be reduced to solving a small

number k K of simple problems. A low complexity of each
problem is caused by a small number of analyzed conditions at
each level.

Below the methods of multilevel dynamic model synthesis
is described.

B. Synthesis algorithm of dynamic models
Automata models provide a description of the input and

output data, conditions and functions of the automaton
transition from one state to another. In the software

implementation of the models, the high-level language
(notation) JSON (JavaScript Object Notation) is used to
describe therelative finite state operational automata.

Input and output data are a set of initial and resulting facts.
They are specified as an array of arbitrary variables. For
example, the input data can be: [a1, b1, c1], where a1, b1, c1
are some facts.

Transition conditions are specified as logical expressions
and can be either static (initially set) or dynamic, i.e. redefined
at each step of the synthesis.

The transition functions F from one state to another are
specified as a JSON object of the following structure:

{
 "args": ["a1", "b1"],
 "conditions": "a1 < 10",
 "result ": "c2"
}

whereargs is the input to the function. They define the facts
that are necessary to complete the transition; result - the result
of the function. The result of the execution may be one or
more new facts; conditions - conditions in the form of a logical
expression that determine the possibility of using the function.

Simulation levels are defined as a hierarchical graph
structure (“tree” or “forest”) in the following form:

[{"functions": [F1, F2],
"id": "baad85ac-1733-4f25-9609-e335807bbb4c",
"level": 1,
"number": 1,
"parent": null
}]

where functions is a set of transition functions defined at
the level; id - the unique identifier of the element level; level -
the ordinal number of the level; number - the sequence number
of the item; parent is an optional identifier of the parent
element from a higher level.

In multilevel modeling, the output facts proven at the child
levels can be used as input facts when describing transition
functions at their own level as well as at the parent levels.

Thus, the problem of synthesizing dynamic models is
reduced to finding such functions F that allow one to prove the
facts determined by the output data, in the presence of facts
given as a set of input data. Let the initial facts be determined
by a static model

ti
SM built at the time ti, and the output facts -

by a static model ti k
SM

, i.e. considered a sequence of k

models.

The first step is to look at the facts at the upper levels of
the models. The search for transition functions that allow to
prove the target facts on the basis of the initial facts at the
upper level. If at some step it was not possible to prove the
necessary fact on the basis of the initial facts, the transition to
a lower level is made, where a new attempt is made to prove,
but already using functions defined at a lower level. Such a
descent can be made until the zero level is reached. In case of
successful proof of the transition from ti

SM to ti k
SM

, the

performed list of steps is reversed with the exception of

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 805 --

duplicate elements. The resulting path contains links that are
established between elements of the static models. Below are
the main steps of the algorithm for the synthesis of dynamic
models.

1. The search for a path is performed that allows to prove
the target fact at the top level of the simulation:

1.1. Among all the input level facts, a search is made for a
target fact. If such a fact is found, then control is returned;

1.2. If the target fact is not found, then among the
transition functions are those whose output includes the target
fact;

1.3. If the function is found, then the verification of its
application is performed. The applicability is determined by
the conditions of use specified for this function;

1.4. If the conditions of its application are met, the function
is added to the current path, and for each input fact of the
function, a similar recursive path search is performed.

1.5. If the conditions of application of the function are not
satisfied or the function is not found, a similar recursive search
for the path to the target fact is performed at all child levels.

1.6. If the path to the target fact at child levels is found,
then it is included in the current path. If not found, the search
ends. The result of the search is an empty path.

2. If a non-empty path is found that allows to prove the
target fact on the basis of the original facts, then the forward
move is restored - the order of the functions in the found path
is reversed with the exception of duplicate steps.

A fragment of pseudocode implementing the algorithm is
shown in Fig. 2 below.2. If a non-empty path is found that
allows to prove the target fact on the basis of the original facts,
then the forward move is restored - the order of the functions
in the found path is reversed with the exception of duplicate
steps.

A fragment of pseudocode implementing the algorithm is
shown in Fig. 2 below.

According to the proposed algorithm the synthesis problem
is solved starting from the top level problem. When solving a
problem at the K-th level, a rough synthesis from large blocks
of functions is realized. In this case, it is not required to
strictly prove the possibility of transition from input data to
output state parameters. Inconsistencies of the results at this
level are taken into account at corrective synthesis within
lower levels of the hierarchy. The multilevel approach to
synthesis significantly reduces the time complexity of

automatic synthesis. The upper bound of time can be

defined as , where c is a constant

coefficient; - the number of conditions of the problem at

the i-th level. Notice, that is significantly less than the total
number of conditions on which problems of program synthesis
are solved by traditional methods. This estimate is valid when
the number of conditions for multilevel and single-level

synthesis problems is the same. Whereas, at each top level,

one step of output is equivalent to steps of the lowest level,

we can estimate a lower bound for the time of multilevel

program synthesis: , where - the
number of elements of the i-th level relative to the base level.

function findPath(result) {
 localSteps = [];
 if (finalTarget.from.indexOf(result) > ‐1) {
 return localSteps;
 }

 lastFunction = getFunctionLeadsTo(result);
 if (lastFunction) {
 prevSteps =
lastFunction.args.flatMap(findPath);
 localSteps = prevSteps ++ lastFunction;
 } else {
 isFound = false;
 for (i = 0; i < chidlItems.length; i++) {
 prevSteps = process(chidlItems[i],
result);
 if (prevSteps) {
 localSteps = prevSteps;
 isFound = true;
 break;
 }
 }
 }
 return localSteps;
}

path = findPath(target);
path.forEach((f) => {
 if (resultPath.indexOf(f) === ‐1) {
 resultPath.push(f);
 } else {
 // feature already available
 }
});
return resultPath;

Fig. 2. Pseudocode of mulilevel synthesis algorithm

Most of previous researched of model / program synthesis
are built around idea of synthesis of programs / applied
structures on top of given formal structures. Our approach is
based on idea of dynamic synthesis of formal structures, that
can be used later for synthesis of particular algorithms and
programs (e.g. scripts).

III. PROGRAM SYSTEM FOR DEDUCTIVE SYNTHESIS

A. General structure

Consider a high-level modular scheme of a software system
capable of synthesizing multi-level dynamic models of observed
objects. The structure of such a modeling system includes
typical subsystems that provide data about objects and
interaction with users, as well as a new subsystem - a subsystem
of multi-level synthesis. The overall architecture of the
deductive modeling system is shown in Figure 3. Data is
received and results are output through a certain adapter layer

HT

2 2

1 1
()

K K

H i i
i i

T c m c m

im

im

in

LT
2

2
2

0 0

K K
i

L i
i ii

m
T c c m

n

in

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 806 --

through established communication channels (for example,
TCP/IP networks using arbitrary application protocols HTTP,
SOAP, WebSocket; receiving stream media data using the
RTSP protocol and etc.) The external systems can be
monitoring and control systems.

Below, the main subsystems are discussed in more detail.

Fig. 3. Multi-level synthesis architecture

The adapter (driver) subsystem provides a communication
facade between the modeling system and external systems. At
the adapter subsystem level, specific mechanisms are
implemented in terms of information acquisition and transfer of
results: support of transport and application information
protocols (specific, including proprietary), primary analysis and
semantization of data, testing communication with external
systems, etc. This facade allows unifying flows data entering the
modeling system, and also to bring data flows from the
modeling system into a specific format used in external systems.

The event receiving subsystem collects all possible
information about a simulated object in the form of “events” -
atomic units of information characterizing changes in one or
another aspect of the functioning of the observed object. These
events can carry as fragments of high-level (general) and low-
level (private) information about the functioning of the object as
a whole and its components. Examples of such events are:
“Voltage drop at the power transmission line”, “Arming of the
premises”, “Restoration of communication with the video
surveillance subsystem”. The event receiving subsystem
implements the mechanisms of primary accumulation of such
events in the data accumulation subsystem, as well as the
function of aggregating information about various elements of
the observed object in order to form a higher-level
representation of information about the current state of the
object. For example, a “Trend Graph” can be built.

The data accumulation subsystem stores all information
about the object being modeled, including its state and behavior

observed at previous time intervals. (events) and the monitoring
process (snapshots of previous states / current state). This
information can be placed in a relational / non-relational
database.

The query generation subsystem provides automatic or
initiative (at the user's command) formation of high-level
requests for the synthesis of object models. The subsystem uses
not “raw” data about the observed objects, but previously
processed by the event receiving subsystem. For tasks of
automatic query generation, simplest designs of the “signal-
trigger” type can be implemented, or more complex ones based
on a tree of logical conditions. Initiative query formation
implies the presence of a group of end users who are able to
manage the modeling processes, collect clarifying information,
enrich the information received from the event receiving
subsystem. For example, the validity of calling a response team
or determining the composition of measures for the restoration
of the video surveillance subsystem can be assessed.

The subsystem of synthesis of models of objects
implements a deductive synthesis of models of observable
objects. The observed object is described in the formalized
language of the synthesis subsystem. The elements of the
observed object are lined up in a multilevel hierarchy, in which
each level is characterized by a certain possible set of states at a
given level, and the state at the upper level depends on the set of
states at the lower level. The subsystem defines all possible
transitions between states. Any high-level query is presented in
the form of a model of the final state of the observed object.
Having a model of the current state, a set of transitions between
all states and a model of the final state, the subsystem
synthesizes a dynamic model of the object. Example of a chain
of steps: “CCTV Health-check; check each of the 20 cameras;
for each camera, check and compare with the target power
control input, tamper input”.

The results generation subsystem provides the conversion
of simulation results to standard formats or formats that are
consistent with external systems. External systems can transmit
both all new information about an object obtained as a result of
modeling, as well as its individual fragments.

Elements of the considered system are loosely coupled and
can implement support for any communication protocols,
various deployment and scaling mechanisms. This allows the
system to be integrated into existing infrastructures without
significant costs.

IV. CASE STUDY

Consider an example of synthesizing dynamic object models
for the Internet of Things area. In order to solve complex
business problems that are set before IoT [8], it is necessary to
provide a reliable technical basis for the operation of these
networks. Given the large number of elements that make up the
IoT networks, as well as their continuous change, there are a
number of problems associated with their monitoring.
Monitoring processes can be built and rebuilt based on dynamic
models of these networks.

The structure of the simulated IoT network is shown in Fig. 4
[8]. It has three levels, i.e. The main conditions for the

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 807 --

application of the deductive synthesis algorithm are fulfilled. In
accordance with the figure, sensors are located at the lower
level, translators are at the middle level, the upper level is a
generalizing level. In this model, vertical links between all
levels are allowed, and horizontal links are only between the
elements of the first and second levels.

Fig. 4 The structure of the simulated IoT network

As functions defining vertical connections, we will consider
the information content of sensors, sensor groups and the
network as a whole. Horizontal links show the consistency of
data related to different elements of the same level. For
example, an increase in temperature should lead to an increase
in pressure in the fuel tank. If this dependence is not observed,
then two situations are possible: the failure of one of the sensors
or the malfunction of the object, the parameters of which are
measured.

Consider the synthesis of a dynamic model of the IoT
network in the case when the network is fully operational and
ensures the collection of all the necessary data. Let the source
and target models have the form (Fig.5).

Fig. 5. Model of regular system

With next given facts: s, w, B1, B2, B1_1, B1_2, B1_3, B2,
P1_1_1. P1_1_2. P1_1_3, P1_1_4, and next given transitions
between then (in the formal language of subsystem):

[
 {
 "id": "1", "parent": null, "level": 1, "number": 1,
 "functions": [
{ "args": ["s"], "result": "B1", "conditions": "" },
{ "args": ["B1"], "result": "B2", "conditions": "pB1==0" },
{ "args": ["B2"], "result": "w", "conditions": "pB2==0" }

]
 },
 { "id": "1_1", "parent": "1", "level": 2, "number": 1,
 "functions": [
{ "args": ["B1"], "result": "B1_1", "conditions": "" },
{ "args": ["B1_1"], "result": "B1_2", "conditions": "pB1_1==0" },
{ "args": ["B1_2"], "result": "B1_3", "conditions": "pB1_2==0" },
{ "args": ["B1_3"], "result": "B2", "conditions": "pB1_3==0" }
]
 },
{ "id": "1_1_1", "parent": "1_1", "level": 3, "number": 1,
 "functions": [{ "args": ["B1_1"], "result": "P1_1_1", "conditions": "" },
{ "args": ["P1_1_1"], "result": "P1_1_2", "conditions": "pP1_1_1==0" },
{ "args": ["P1_1_2"], "result": "P1_1_3", "conditions": "pP1_1_2==0" },
{ "args": ["P1_1_3"], "result": "P1_1_4", "conditions": "P1_1_3==0" },
]
 },
]

, synthesis process may be look like this:
F(s) ->B1; //fact not known
F(B1) ->B1_1 ; //fact not known
F(B1_1)->P1_1_1; ; //determining the amount of information P1_1_1
F(P1_1_1)->P1_1_2 (pP1_1_1==0); //determining the amount of
information P1_1_1 + P1_1_2
F(P1_1_2)->P1_1_3 (pP1_1_2==0); //determining the amount of
information P1_1_1 + P1_1_2 + P1_1_3
F(P1_1_3)->P1_1_4 (pP1_1_3==0); // determining the amount of
information P1_1_1 + P1_1_2 + P1_1_3+ P1_1_4
F(P1_1_4)->B1_2 (pP1_1_4==0); // determining the amount of information
B1_1+ B1_2
F(B1_2) ->B1_3 (pB1_2==0) // determining the amount of information
B1_1+ B1_2 + B1_3
F(B1_3) ->B2 (pB1_3==0) // comparison of information in B1 andB2
F(B2) ->w (pB2==0) //the amount of information has not significantly
decreased

In case of failure of some data acquisition systems (fig. 6),

the overall amount of data could not be retrieved.

Fig. 6 Model in case of failure of some data acquisition systems

Synthesis process in this case may be look like this:

F(s) ->B1;
F(B1) ->B2 (pB1==0); // comparison of information in B1 andB2
F(B2) ->B2_1; //the amount of information has decreased significantly
F(B2_1) ->B2_2 (pB_2_1); // determining changes in the amount of
information B1_1 иB2_1; the amount of information has decreased
significantly
F(B2_2) ->P2_2_1; // determining changes in the amount of information
B1_2 иB2_2; the amount has decreased significantly
F(P2_2_1)->P2_2_2 (pP2_2_1==0); // on the elementP2_2_2 there’s no data
Next proof is unavailable

Given example show very simple case of dynamic synthesis of
IoT system models, that allows to achieve automatic or semi-
automatic monitoring and correction of running processes.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 808 --

This approach can be easily scaled to much larger systems and
appears to be loosely coupled, allowing to be integrated in
existing systems seamlessly: it is distributed by design, and
different subsystems could be implemented on separated
computing platforms and different form-factors: from single
cloud / microservice systems to fog-like clusters in LAN.

V. CONCLUSION

Dynamic synthesis of object models allows to design very
complex systems with built-in feedback mechanism and self-
control abilities. The developed systems for the synthesis of
dynamic models were tested in two areas - the field of IoT and
the field of medicine. In both cases, the new solutions were in
demand, and the results showed their practical value. In the
future, it is planned to conduct testing in a number of other
subject areas, in particular, in the field of education, urban
economy.

REFERENCES
[1] J. A. Robinson. A machine – oriented logic based on resolution

principle, Journal of the ACM. 12 (1965), pp. 23 – 41.
[2] C. Chang, R. Lee. Symbolic Logic and Mechanical Theorem Proving,

New York: Academic, 1973.
[3] S. Yu. Maslov. Teoriadeduktivnykh system ieeprimeneniya (Theory

of Deductive Systems and Its Applications), Moscow: Radio I
Svyaz’, 1986.

[4] E. Kh. Tyugu, M. Ya. Kharf. Algorithms for structural synthesis of
programs, Programmirovanie. 4 (1980), pp. 3 – 13.

[5] G. Giacomo, F. Patrizi, S. Sardina. Automatic behavior composition
synthesis, Artificial Intelligence. 196 (March 2013),
pp. 106 -142.

[6] Osipov V., Lushnov M., Stankova E., Vodyaho “A Inductive
Synthesis of the Models of Biological Systems According to Clinical
Trials”, International Conference on Computational Science and Its

Applications (ICCSA 2017). Lecture Notes in Computer Science,
vol10404. Springer, Cham. pp. 103-115.

[7] Osipov V.Y.”Automatic synthesis of action programs for intelligent
robots”. Programming and Computer Software,vol. 42, Issue 3, April
2016, pp. 155-160.

[8] Osipov, V.Y., Vodyaho, A.I., Zhukova, N.A., Glebovsky, P.A.
“Multilevel Automatic Synthesis of Behavioral Programs for Smart
Devices”, Proceedings - 2017 International Conference on Control,
Artificial Intelligence, Robotics and Optimization, ICCAIRO 2017,
2018-January, pp. 335-340.

[9] V. Osipov, E. Stankova, A Vodyaho, B. Zeno “Finding motifs in
Medical Data”, 17th International Conference, Computational
Science and Its Applications (ICCSA 2017) /Trieste, Italy, July 3-6.
Lecture Notes in Computer Science, Part 5. vol 10408. Springer,
Cham. pp. 371-386.

[10] Jun Huang and Kun Hua, Managing the Internet of Things.
Architectures, Theories and Applications. The Institution of
Engineering and Technology, 2016.

[11] Cisco Research: IoT Value: Challenges, Breakthroughs, and Best
Practices, Web: https://www.slideshare.net/CiscoBusinessInsights/
journey-to-iot-value-76163389

[12] Kurapeev DI, Lushnov MS, OsipovVYu, Vodyaho AI and
ZhukovaNA.Synthesis of Integral Models of System Dynamics of an
Acid-Base State (ABS) of Patients at Operative Measures // Acta
Scientific Volume 3 Issue 3 – 2019, 16-
29.2019https://actascientific.com/ASMS-Article-Inpress.php

[13] BorislavLazarovAPPLICATION OF SOME CYBERNETIC
MODELS IN BUILDING INDIVIDUAL EDUCATIONAL
TRAJECTORY International Journal "Information Models and
Analyses" Vol.2 / 2013, Number 1

[14] Technological Platform for Realization of Students’ Individual
Educational Trajectories in a Vocational SchoolEvald F.
ZeeraandAlexsey V. StreltsovIEJME—MATHEMATICS
EDUCATION2016, VOL. 11, NO. 7, 2639-2650

[15] Computing Networksfrom cluster to cloud computingPascale Vicat-
Blanc, Sébastien Soudan, RomaricGuillier, Brice Goglin ISTE Ltd
and John Wiley & Sons, Inc2011

[16] Jun Huang and Kun Hua - Managing the Internet of Things.
Architectures, Theories and Applications-The Institution of
Engineering and Technology, 2016

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 809 --

