
An Approach to Generating Ontology–Based Object
Model for Smart-M3 platform

Kirill Kulakov, Sergei Marchenkov
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia
{kulakov, marchenk}@cs.karelia.ru

Sergey Tishkov
Karelian Research Centre of the

Russian Academy of Sciences (KarRC RAS)
Petrozavodsk, Russia
insteco 85@mail.ru

Abstract—The developing of software agents for the Smart-
M3 platform requires a deep knowledge of specific details from
the developer. The important task is to provide the developer with
high-level programming tools. This work presents an approach
to generating ontology-based object model for the Smart-M3
platform. The ontology-based object model is implemented as
a source code generator (SmartJavaLog) for the Java language.
SmartJavaLog generates Java classes for objects and the neces-
sary infrastructure for interacting with the semantic information
broker (connection, query, subscription). The proposed approach
is demonstrated on a small smart service consisting of three
software agents.

I. INTRODUCTION

Based on the smart spaces approach to developing a
service-oriented environment [1] the information service is
represented as a semantic information broker (SIB) and set
of knowledge processors (KP) [2]. The semantic informa-
tion broker stores data of the smart space and provides the
possibility of interaction between KP’s through a low-level
programming interface (insert, remove, query, subscribe). The
agents interact in the smart space over the shared information
storage to construct a semantic network based on the available
information objects and their semantic relations obtained from
various sources. At the same time, the interaction between
KP and SIB has no limitations. This leads to the need for
interaction rules: which knowledge objects and object relations
can be available in the SIB, how to add, remove or update a
knowledge object and notify other KP about it.

One way to define interaction rules is to construct an
ontological model [2]. The ontological model allows describ-
ing objects, relationships between objects, data properties,
instances of objects, etc [3]. There are generally accepted
models for a number of areas and a service ontology model
may include parts of third-party models. For example, location
data can be represented using Basic Geo (WGS84 lat/long)
Vocabulary (https://www.w3.org/2003/01/geo/).

The knowledge objects are represented in the SIB as triplets
“object–predicate–subject”. The programming interface of the
semantic information broker allows to input a set of triplets that
describes an inserted, updated or removed knowledge object.
The output of the SIB is also a set of triplets, which describes
modifications of the smart space. Therefore, the KP developing
requires the implementation interaction with SIB programming
interface: convert internal objects into set of triplets for sending
to SIB and convert a set of triples received from SIB to the
internal objects.

Basically, KP implements a programming interface using
a library with “low level” functions (e.g. kpi low [4], java
KPI [5], python KPI [6]). This library implements the SSAP
protocol and allows to access the basic functions of the
SIB: add or remove triplets, send queries and subscribe on
notifications. Control over the correct representation of data
in the form of triples, the correspondence of the ontological
model, and the determination of the interaction between KP’s
rests with the KP developer.

There is also an approach to the development a high-
level interaction of KP with SIB based on ontologies. In
this case, the library includes some additional functions, for
example, reconciliation with the dictionary or representation
data in the objects or structures [1]. The most known library
is SmartSlog [7], [8]. The Smart-M3 platform also contains
Smart-M3 ontology to C-API generator and Smart-M3 on-
tology to the Python generator [9]. As a rule, a library that
implements a high-level interaction is represented as a source
code generator. The resulting code can contain information
from the ontological model: dictionary, objects, instances.

Unlike other popular programming languages there are
no known library for Java with a high-level interaction im-
plementation. Typically, a Java developer uses the low-level
interoperability feature through the Java KPI or Java Native
Interface (JNI): implementation interaction with the SIB as
a C module and connection to the Java application [10].
Unfortunately, in the first case, the developer must control
the correctness of interaction with the SIB manually, and in
the second case the result is not a Java-only application. In
addition, if an error occurs in the JNI module, a KP failure
occurs.

This paper describes an approach to generating an object
model for the Java language based on an ontology. Low-
level tasks, such as converting triples to and from an object,
sending change notifications and tracking changes in object in-
stances, are included in the generated object code and executed
automatically. Thus, the KP implementation is performed in
the traditional object model using the capabilities of the Java
language.

The rest of the paper is organized as follows. Section II
presents an overview of related work. Section III introduces
the main approaches of data presentation: triples, structures
and objects. Section IV contains a description of the main ways
to interact with the SIB. Section V describes the SmartJavaLog
implementation: the source code generation process, the high-

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

level architecture and the source code templates used. Sec-
tion VI shows the results of SmartJavaLog for the smart service
“GeoCode”: ontology and code fragments used. Section VII
ccontains a discussion of the pros and cons of SmartJavaLog.
Section VIII concludes the paper.

II. RELATED WORK

There is a large number of works aimed at developing
computer-aided programming tools used to automate simplify
the task of ontology-driven software development. One of the
popular related research areas is mapping between ontologi-
cally derived concepts and object-oriented language constructs.
Evermann and Wand [11] propose mapping rules to guide
the construction of object-oriented conceptual models from
ontological conceptual models. This work indicates that object-
oriented languages are expressive enough to model real-world
application domains. Batanov and Vongdoiwang [12] consider
the similarities and differences between object models and
ontologies. The most substantial difference is while ontologies
represent well structured description of mutually related terms,
the object model is to represent a system as structure of objects
ready for implementation in software.

Another popular research area is to create software based
on code a generation approach. This approach is commonly
used for dynamically typed, interpreted, and object-oriented
program languages (e.g. Java). The Protéjé source code gen-
erator [13], [14] is a module for Protéjé open-source ontology
editor. It generates factory that serves as the entry point to
the generated code providing access to existing individuals in
the ontology and the ability to create new individuals in the
ontology. The Vocabulary class collects all used IRI’s. Each
object represents as interface with list of methods.

The OWL-DL to C(glib) API generator [9] generates a
C API, abstracting the ontology and the SIB communication.
The KP template can be used by the developer to easily
start using the generated API. It contains all needed code to
join the SIB. The code can be inserted into the kpMainLoop.
The generated code includes functions and structures for the
KP developer for accessing the generated ontology mappings
(generic.h, generic.c, etc.), mediator for accessing the SIB that
also contains a local triplestore (mediator.h, mediator.c).

RDFReactor [15] is a open-source code generator which
transforms a given ontology in RDF Schema into a famil-
iar, dynamic, object-oriented Java API (classes and etc). At
runtime, objects of these classes act as stateless proxies on
the RDF model. This enables developers to interact with java
proxy objects, thus allowing them to stay in their own world
and at the same time to make use of the advantages RDF
capabilities.

SmartSlog (Smart Space Ontology) [16], [8] is a soft-
ware/application development kit (SDK or ADK) for pro-
gramming Smart-M3 agents (Knowledge Processors, KPs) that
consume/produce smart space content according with its high-
level ontological representation . SmartSlog applies the code
generation approach: given an OWL ontology description, the
ontology programming library is produced. The latter provides
API to access the smart space via a Smart-M3 Semantic
Information Broker (SIB) and data structures and functions to

represent and maintain locally in KP code all ontology classes,
relations, properties, and individuals.

III. OBJECT MODEL

KPs in smart space applications are consumers or producers
of a shared information storage, that is is organized as an RDF
graph. The development of smart space applications follows
the principles of ontology-driven software development, when
the design phase is reduced to creating a specification of
a certain problem domain and services as an OWL/RDF
description [17], [18]. Ontologies are used to share common
understanding of the structure of information among KPs, to
enable reuse of domain knowledge, and to analyze knowledge.
This design approach is used in various problem domains
such as collaborative work [19], e-Tourism [20], and smart
cities [21]. In this case, the process can be accompanied by
the use of tools for rapid developments of ontologies, such as
Protégé [14], in which designers can instantly create classes,
properties, and individuals of their ontology and experiment
with semantic restrictions.

One of the features of SmartJavaLog is to create a Java
object model for KPs from design ontology models. The object
model merges data and functionality into an abstract variable
type – an object. The object model provides a more realistic
representation of objects that the end user can more easily
understand. While an ontology structure contains definitions
of concepts (classes) and relationship between concepts and
attributes (properties, aspects, parameters), an object model
uses classes to represent objects and functions to model
relationships of objects and the attributes. The similarity of
concepts in an ontology with an object model determines
the applicability of an object-oriented approach to ontology
modeling [11], [12]. However, ontology represents a more
richer information model than Java objects by supporting such
distinctive features as inheritance of properties, symmetric/-
transitive/inverse properties, full multiple inheritances among
classes and properties [22].

Taking into account the above aspects and constraints,
Table I provides a summary of mapping rules used in Smart-
JavaLog during the generation of the object model source
code from ontology. This approach based on these rules to
generating ontologybased object model is convenient in such
class-based and object-oriented program languages as Java.
The main idea of the ontology-object mapping is to create a
set of classes and objects in such a way that each ontological
class with their instances, properties, slots, and facets has its
equivalent in a Java class/object.

Thereby, for implementation interaction between KP and
SIB it is necessary to determine objects and object properties.
In smart-m3 terms object represented as a ID (string) and
type (URI). Object property may have a simple data type or
complex type. The simple data types can be easily determine
in ontological model: it supports owl and owl2 data types like
xsd:long or xsd:string. The complex data type may be aggre-
gation of simple data types, another object and so on. There
may also be restrictions on data types, for example, facets
for reals. Summing up KP developer needs an opportunity to
create object or load object from SIB, set object properties
with data type checking mechanism and remove object.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 671 --

TABLE I. SUMMARY OF MAPPING RULES (INPUT: ONTOLOGY;
OUTPUT: OBJECT MODEL)

Rule notation Explanation
Ontology classes
→
Object classes

Classes in an ontology are close to object classes in an object
model representing abstract groups of physical or logical
objects. Whereas a object class may be viewed as a type
definition for objects. Ontology classes are mapped as object
classes.

Instances
→
Objects

Ontology instances are used to represent specific elements
of classes. Object class serves as a pattern of describing its
object. Ontology instances are mapped as objects.

Data type properties
or slots
→
Data attribute
variables & get/set
methods

Data type slots represent the data type properties (attributes)
of the ontology class. These slots are described by primitive
types (integer, boolean, string, etc.) and sets of values of those
types. attribute variables. Data attribute variables describe
the characteristics objects by various data types. Data type
properties or slots are mapped as data attribute variables
along with a combination of get/set methods.

Object type
properties or
slots
→
Object attribute
variables & get/set
methods

Object type properties or slots are used to describe a rela-
tionship between two concepts. The first must be an instance
of the class that is the domain of the slot; the second
must be an instance of the class that is the range of the
slot. Object attribute variables represent the relation between
object classes from an object model. Object type properties
or slots are mapped as object attribute variables along with
a combination of get/set methods.

Value-type/space
facets
→
Attribute variables
types & if-then-else
statements in set
methods

A value-type/space facet in an ontology is some kind of
binary relation, that is attached to the slot and describes
what types of value can fill in the slot and what value-space
restrictions it has. These facets are applicable to attribute
variables in an object model, for example, xsd:type facets
can be used to designate a variable type, and xsd:lenght facets
can be represented by a set of if-then-else statements in a set
method of a corresponding attribute variable constraining its
value space.

Cardinality facets
→
Additional attributes
& if-then-else state-
ments in set meth-
ods

Cardinality facets define how many values a property or
slot can have distinguish single cardinality (at most one
value) and multiple cardinality (any number of values). Some
cardinality facets allow specifying a minimum and maximum
cardinality to describe the number of slot values more pre-
cisely. Additional attribute variables in a object model can be
introduced to specify cardinality facets. Some of these facets
can be represented by a set of if-then-else statements in a set
method of a corresponding attribute variable constraining its
cardinality.

Multiple inheritance
→
Single inheritance
& multiple interface
inheritance

Java does not support multiple inheritances in classes because
it can lead to diamond problem. However, the use of inter-
faces can solve this problem and single inheritance can also
be applied in simple situations.

IV. KP’S INTERACTION METHODS

The interaction between KPs is a key function of the IoT
service. The general approach offers interaction through a se-
mantic information broker (SIB) [2]. The semantic information
broker provides an application programming interface for two
interaction methods.

• “Query—Answer” interaction. KP sends a request for
the required data and the SIB receives all triplets
found.

• “Subscription—Notification” interaction. The KP sub-
scribes to a specific data set and the SIB sends all
changes until the KP unsubscribes.

The semantic information broker supports two types of
queries: a basic query (define a triple part) or an extended
query in the SPARQL language [2]. The basic query has a
strict limitation: the subject, the predicate and the object can be
precisely defined or have any value. A SPARQL query should
return the result as a set of triples i.e. the query should have
three return values.

The SIB provides subscription using a triple template or a

SPARQL query (not supported in some SIB implementations).
The subscription operation has the same restriction as the query
operation. After the subscription operation is completed, the
SIB sends the first notification with all the triples found (as
after the query operation). When data changes in the SIB, the
KP receives a notification. Each notification, except the first,
includes a set of new or modified triples and a set of deleted
triples.

In practice, the implementation of the subscription opera-
tion has additional restrictions. If the response or notification
contains a large set of triples (for example, after the query
“give me all triples”) the SIB can be overloaded [23]. A
knowledge processor also should not use a large number of
subscriptions because the SIB can be overloaded.

The one of solutions is to use “smart notifications” [24]
when KP sends to SIB additional “notification” triplets with
object changes. Other KPs can subscribe to receive “notifica-
tion” triplets. If the SIB notifies of new “notification” triplets,
then KP can make a query to obtain all individual data.

There are a number of studies devoted to the problem
of constructing smart spaces based on ontological models.
In paper [19] authors presents ontological representation of
SmartRoom system with e-Tourism services information space.
In paper [21], the authors present the ontological model for
Smart Planning of Urban Solid Waste Management service.
The paper [20] describes the ontological model of Cultural Trip
Planning Service. It can be noted that the most of ontological
models are represented in the form of a tree-like structure,
using the terms “object” and “object property”.

Based on architectural abstractions and the smart space
access primitives [25] we can determine the data flows between
KP’s and SIB.

• Insert object. KP generates object identifier and sends
to SIB one triple with object type definition and zero
or more triples with object property values.

• Update object. KP gets object identifier and sends to
SIB one or more triples with object property values.

• Remove object. KP removes all triples from SIB
matching the object identifier.

• Search one or more objects. KP sends request to
SIB based on triple template or SPARQL query. SIB
returns zero or more triples corresponding request.

• Object inserting notification. SIB notifies subscribed
KP about new objects in smart space.

• Object updating notification. SIB notifies subscribed
KP about object property changed.

• Data updating notification. SIB notifies subscribed KP
about data changes in smart space.

Thus, it can be noted that from a practical point of view, the
implementation of both interaction methods (“Query–Answer”
and “Subscription–Notification”) is required.

V. IMPLEMENTATION

The ontology-based object model is implemented by a
source code generator (SmartJavaLog) [26]. The ontology

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 672 --

description format is very flexible. Object properties can be
represented as a set of axioms. Therefore, we need a two-step
algorithm: analysis of data from ontology and generation of
source files. The generation process has the following steps
(see Fig. 1):

1) parse ontology file;
2) generate files with common Java source code;
3) generate files with ontology specific Java source code.

Fig. 1. Source code generation process scheme

We use the OWL API library [27] to parse ontology. The
library uses “Visitor” pattern (implements in OntologyVisitor
class, see Fig. 2) and presents ontology file as a set of nodes
and axioms. All gathered data is stored in a single instance
of OntologyFactory class (“Factory” pattern). OntologyFactory
includes Maps of objects (OntologyObject class), properties
(OntologyProperty class), types (OntologyComplexDataType
class) and comments. The IRI uses as a key in map structure.

Fig. 2. SmartJavaLog high-level architecture

Common java source code uses JavaKPI library for in-
teraction with SIB and implements core mechanisms, like
asynchronous work, interfaces, factories. The common java
source code includes the following items:

• class BaseRDF — parent class for all ontology ob-
jects, includes triples store, work with listeners meth-
ods and methods for interaction with SIB;

• class KPIproxy — JavaKPI library wrapper, imple-
ments asynchronous add and remove triples, join,
leave and query processes;

• interface QueryListener — notification interface, in-
cludes add item notification;

• class SIBFactory — main point to work with one or
more SIBs, uses “Factory” template;

• class SIBQueryTask — parent class for asynchronous
access to SIB;

• class SIBSubscribeTask — parent class for subscrip-
tion processes;

• class SubscribeQuery — main point of subscriptions,
implements wrapper for JavaKPI subscriptions;

• interface SubscribeListener — subscription notifica-
tion interface;

• class TaskListener — parent class for all tasks;

• interface UpdateListener — object changes notifica-
tion interface.

SmartJavaLog uses template approach for source code
generation. Ontology specific templates includes the following
items (see fig. 3):

• class.java — template for object class based on Bas-
RDF;

• object-property.java — template for object property
methods (get, set);

• data-property.java — template for simple type data
property with common get and set methods;

• set-data-property.java — template for extended set
methods for simple type data property;

• complex-data.java — implements complex data type;

• update-data-property.java — fragment of code for up-
date data property value in triple store;

• update-object-property.java — fragment of code for
update object property value in triple store.

Fig. 3. Templates relationships

During the implementation of KP for Android, we were
faced with a significant limitation: any work with network
should not be in main thread. The original version of Java
KPI don’t use threads for communication with SIB. Therefore,
SmartJavaLog implements wrappers for Java KPI function.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 673 --

The wrapper creates SIBAsyncTask (extends AsyncTask class)
based thread and call Java KPI function. When Java KPI
function ends SmartJavaLog notifies all listeners.

Another problem is that non-android platforms has not
AsyncTask class. For this platforms we implement simple
similar class with single-thread work.

VI. USAGE EXAMPLE

The SmartJavaLog usage example was carried out on a
simple IoT service “GeoCode”. Service consisted of three KP:

• GeoCode test — geo point generation KP;

• GeoCode teacher — KP of adding geo-dependent
information to geo point;

• GeoCode android — KP for showing result to user.

GeoCode based on ontology with two objects: Place and
Point (see Fig. 4). GeoCode test generates pair Place–Point

Fig. 4. GeoCode ontology

with random coordinates, GeoCode teacher determines a di-
rection of the world based on Point coordinates and record it
to the Place instance.

The connection procedure is very simple, see code frag-
ment in listing 1. As interaction with SIB throw network is an
asynchronous process, we add a event listener.

Listing 1. Fragment of code to connect to SIB

SIBFac to ry . g e t I n s t a n c e () . g e tA c c e s s P o i n t () .
s e tAdd r (” l o c a l h o s t ” , 10101) ;

/ / r e g i s t e r used c l a s s e s b e f o r e c o n n e c t i o n
Po i n t . g e t C l a s sU r i () ;

/ / c o n n e c t t o SIB
SIBFac to ry . g e t I n s t a n c e () . g e tA c c e s s P o i n t () .

c onnec t () . a d dL i s t e n e r (new Ta s kL i s t e n e r () {
@Override
p u b l i c vo id onSucces s (SIBResponse

r e s p on s e) {
/ / i n t e r a c t i o n w i t h SIB was here
}
@Override
p u b l i c vo id onE r r o r (Excep t i on ex) {
/ / do s o m e t h i n g when c o n n e c t i o n was

n o t e s t a b l i s h e d
}

}

The fragment of source code for adding Point and Place
object instances is shown on listing 2. It is ay be noted the
presence of abstraction from implementation details, i.e. the
developer does not delve into the intricacies of implementing
RDF triples.

Listing 2. GeoCode test source code

P l a c e gp = P l a c e . g e t I n s t a n c e () ;
P o i n t p t = Po i n t . g e t I n s t a n c e () ;
gp . s e tH a s P o i n t (p t) ;
gp . setName (” Gene r a t ed p o i n t ”) ;
p t . s e t H a s L a t i t u d e (Math . random () ∗ 180 − 90) ;
p t . s e tHa sLong i t u d e (Math . random () ∗ 180 − 90) ;

/ / u p d a t e p o i n t
p t . upda t e () . a d dL i s t e n e r (new Ta s kL i s t e n e r () {

@Override
p u b l i c vo id onSucces s (SIBResponse

r e s p on s e) {
/ / u p d a t e p l a c e
gp . upda t e () . a d dL i s t e n e r (new

Ta s kL i s t e n e r () {
@Override
p u b l i c vo id onSucces s (

SIBResponse r e s p on s e) {
/ / i t ’ s OK
}
. . . .
}
. . . .

}
. . . .

}

Implementation of subscription to class is shown on list-
ing 3. This code structure is similar to the approaches offered
in the platforms like Firebase.

Listing 3. Subscription source code

Subsc r i b eQue ry . g e t I n s t a n c e () . a d d S u b s c r i p t i o n (
P l a c e . g e t C l a s sU r i () , new Su b s c r i b e L i s t e n e r<
Place >() {

@Override
p u b l i c vo id addI tem (P l a c e i t em) {

/ / i t e m was added t o SIB
}

@Override
p u b l i c vo id removeI tem (P l a c e i t em) {

/ / i t e m was removed from SIB
}
@Override
p u b l i c vo id onE r r o r (Excep t i on ex) {

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 674 --

/ / s o m e t h i n g happen
}

}) ;

Also developer can track changes in the object. The exam-
ple of source code is shown on listing 4. This approach looks
logical and does not require the developer to know about the
features of the subscription implementation.

Listing 4. Subscription source code

i t em . a d dL i s t e n e r (new Upda t eL i s t e n e r () {
@Override
p u b l i c vo id onUpdate () {

/ / i t e m p r o p e r t i e s was upda ted
i n SIB

}
@Override
p u b l i c vo id onE r r o r (Excep t i on ex) {

/ / s o m e t h i n g happen
}

}) ;

VII. DISCUSSION

The SmartJavaLog implements object-oriented source code
generation based on the ontology description. This approach
has its pros and cons. The first advantage is that a KP uses
identical communication mechanism. Most of the code for
“Subscription–Notification” interaction is generated by Smart-
JavaLog. The second advantage is that the developer uses
familiar objects and code structures. Working with the SIB
occurs at a higher level and does not require the developer to
know the features of the low-level implementation. The devel-
oper has the opportunity to use low-level access to JavaKPI
for specific tasks. The main disadvantage is the impossibility
of describing all the required tasks using object models. For
example, the usual placement of a triple with data without
specifying the type of object violates the object model. Also,
the task of presenting the results of a SPARQL query in the
form of objects and properties requires additional research.
The second disadvantage is that ontology is very flexible and
can include a variety of domain knowledge. Some of them are
very difficult to use in the object model, for example, transitive
property.

The proposed approach to generating ontologybased object
model can be extended to generate program code for smart
space M3 services. Rather than directly coding up executable
programs for software agents (KPs) and their services, the
developer can provide an ontology with a problem domain
and service specification allowing code generation algorithms
to create the object model with correct code functions with in-
ternal logic by API to access a smart space information storage.
This ontological model should determine the implementation
of a service based on the multi-agent approach, providing
agents with a common view on the service purpose, the model
of its construction, and how to interact with it. The basic idea
to create such a comprehensive specification is the use the
OWL-S as upper ontology [28].

Constructing a M3 service can be viewed as a collection
of KPs procedures calls. OWL-S-based markup provides a
declarative, computer-interpretable description that includes
the semantics of the IOPEs (inputs, outputs, preconditions,

effects) model to be specified when executing these calls.
The process entities (AtomicProcess and CompositeProcess
classes) from the OWL-s process ontology can be used to
generate a Java object model methods. The IOPEs process
model corresponds to the concept of Java functions/methods.
The main internal logic of methods can be implemented
using SPARQL queries generated from SWRL conditions and
expressions. The control constructs of CompositeProcess entity
(If-Then-Else, Repeat-While, etc) can be transformed into the
corresponding statements of Java. The additional Interaction-
Model class can be used to determine KPs roles in the process
of constructing a M3 service based on the publish/subscribe
model. For this purpose in the code of each KP a block
is formed with the necessary subscription operations using
objects, internal functions, handlers, and API functions.

VIII. CONCLUSION

This paper presents an approach to generating ontology–
based object model for the Smart-M3 platform. The ontology-
based object model is implemented as a source code generator
(SmartJavaLog) for the Java language. The SmartJavaLog gen-
erates Java classes for objects and the necessary infrastructure
for interacting with SIB (connection, query, subscription). The
SmartJavaLog will be useful for Java developers, especially
in the use on the Android platform. This approach can be
extended to other object-oriented languages, such as C# and
PHP.

ACKNOWLEDGMENT

The research was financially supported by the Min-
istry of Education and Science of Russia within project
2.5124.2017/8.9 of the basic part of state research as-
signment for 2017–2019. The reported study was funded
from Russian Fund for Basic Research according to research
project # 19-07-01027. The results were implemented by the
Government Program of Flagship University Development for
Petrozavodsk State University in 2017–2021.

REFERENCES

[1] D. G. Korzun, S. I. Balandin, V. Luukkala, P. Liuha, and A. V. Gurtov,
“Overview of Smart-M3 principles for application development,” in
Proc. Congress on Information Systems and Technologies (IS&IT’11),
Conf. Artificial Intelligence and Systems (AIS’11), vol. 4. Moscow:
Physmathlit, Sep. 2011, pp. 64–71.

[2] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[3] J. Davies, R. Studer, and P. Warren, Semantic Web technologies: trends
and research in ontology-based systems. John Wiley & Sons, 2006.

[4] “Download KPI low software for free at SourceForge.net,” Oct. 2012.
[Online]. Available: http://sourceforge.net/projects/kpilow/

[5] “Smart-m3 java kpi library,” Oct. 2014. [Online]. Available: https:
//sourceforge.net/projects/smartm3-javakpi/

[6] “Download smart m3 python kpi iddi/sofia wiki,”
Aug 2012. [Online]. Available: https://github.com/iddi/sofia/wiki/
Download-smart-m3-python-kpi

[7] A. A. Lomov, “Ontology-based KP development for Smart-M3 applica-
tions,” in Proc. 13th Conf. of Open Innovations Association FRUCT and
2nd Seminar on e-Tourism for Karelia and Oulu Region, S. Balandin
and U. Trifonova, Eds. SUAI, Apr. 2013, pp. 94–100.

[8] “SmartSlog: free development software downloads at SourceForge.net,”
Dec. 2011. [Online]. Available: http://sourceforge.net/projects/
smartslog/

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 675 --

[9] “Smart-M3: Free development software downloads at SourceForge.net,”
Release 0.9.5beta, Dec. 2011. [Online]. Available: http://sourceforge.
net/projects/smart-m3/

[10] “Java native interface specification: Contents,” 2017. [On-
line]. Available: https://docs.oracle.com/en/java/javase/11/docs/specs/
jni/index.html

[11] J. Evermann and Y. Wand, “Ontology based object-oriented domain
modelling: fundamental concepts,” Requirements engineering, vol. 10,
no. 2, pp. 146–160, 2005.

[12] D. N. Batanov and W. Vongdoiwang, Using Ontologies to Create
Object Model for Object-Oriented Software Engineering. Boston,
MA: Springer US, 2007, pp. 461–487. [Online]. Available: https:
//doi.org/10.1007/978-0-387-37022-4 16

[13] H. Knublauch, “Ontology-driven software development in the context of
the semantic web: An example scenario with Protege/OWL,” in 1st In-
ternational workshop on the model-driven semantic web (MDSW2004),
2004, pp. 381–401.

[14] A free, open-source ontology editor and framework for building
intelligent systems. [Online]. Available: https://protege.stanford.edu/

[15] M. Volkel and Y. Sure, “Rdfreactor – from ontologies to programmatic
data access,” in Poster Proceedings of the Fourth International Semantic
Web Conference, 2005.

[16] D. Korzun, A. Lomov, P. Vanag, J. Honkola, and S. Balandin, “Gen-
erating modest high-level ontology libraries for Smart-M3,” in Proc.
4th Int’l Conf. Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2010), Oct. 2010, pp. 103–109.

[17] C. W. Yang, V. Dubinin, and V. Vyatkin, “Ontology driven approach
to generate distributed automation control from substation automation
design,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2,
pp. 668–679, Feb. 2017.

[18] S. Isotani, I. I. Bittencourt, E. F. Barbosa, D. Dermeval, and R. O. A.
Paiva, “Ontology driven software engineering: a review of challenges
and opportunities,” IEEE Latin America Transactions, vol. 13, no. 3,
pp. 863–869, 2015.

[19] A. Vdovenko, S. Marchenkov, and D. Korzun, “Enhancing the smart-
room system with e-tourism services,” in Proc. 17th Conf. Open
Innovations Framework Program FRUCT, Apr. 2015, pp. 237–246.

[20] K. Kulakov and O. Petrina, “Ontological model of multi-source smart
space content for use in cultural heritage trip planning,” in Proc. 17th
Conf. Open Innovations Framework Program FRUCT. IEEE, Apr.
2015, pp. 96–103.

[21] V. Catania and D. Ventura, “An approch for monitoring and smart
planning of urban solid waste management using smart-m3 platform,”
in Proceedings of 15th Conference of Open Innovations Association
FRUCT, April 2014, pp. 24–31.

[22] W. V. Siricharoen, “Ontologies and object models in object oriented
software engineering,” IAENG International Journal of Computer Sci-
ence, vol. 33, no. 1, pp. 19–24, 2007.

[23] A. S. Vdovenko, D. G. Korzun, and I. V. Galov, “Simulation per-
formance evaluation of Smart-M3 applications for Internet of Things
environments,” in Intelligent Data Acquisition and Advanced Comput-
ing Systems: Technology and Applications (IDAACS), 2017 9th IEEE
International Conference on, vol. 2. IEEE, 2017, pp. 994–999.

[24] I. Galov and D. Korzun, “A notification model for Smart-M3 ap-
plications,” in Proc. 14th Int’l Conf. Next Generation Wired/Wireless
Networking and 7th Conf. on Internet of Things and Smart Spaces
(NEW2AN/ruSMART 2014), LNCS 8638, S. Balandin, S. Andreev, and
Y. Koucheryavy, Eds. Springer-Verlag, Aug. 2014, pp. 121–132.

[25] D. Korzun, “Service formalism and architectural abstractions for smart
space applications,” in Proc. 10th Central & Eastern European Software
Engineering Conference in Russia (CEE-SECR 2014). ACM, Oct.
2014, pp. 19:1–19:7.

[26] “Smart spaces ontology java code generator,” 2018. [Online]. Available:
https://github.com/seekerk/smartjavalog

[27] “Owl api main repository,” 2018. [Online]. Available: https://github.
com/owlcs/owlapi

[28] (2004) Owl-s: Semantic markup for web services. [Online]. Available:
https://www.w3.org/Submission/OWL-S/

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 676 --

