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Abstract—An autonomous self driving platform receives infor-
mation about environment using only its onboard sensors. And
it seems obvious that using several sensors could provide more
certain information with reduced measurement error [1]. But a
general question is how to fuse measurements from different kinds
of sensors (like a camera and an accelerometer) to get refined
data about a platform or world state. This paper presents a
theory based on groups that proves a possibility of correctness of
error extraction from a moving model. And there are results of
application this theory on fusing measurements from two sensors:
odometer and scan matcher.

I. INTRODUCTION

A task of sensor fusion is to refine a state of an object
using observations from several different sensors. A human
uses five senses and fuse them to get his best estimation of
a world state. That means that a mobile platform could refine
the world state too using several sensors, but it should rely on
a determined algorithm. And one of the main faced issue is
to find a way how to reduce errors and provide more accurate
estimation about a world state from mobile autonomous self
driving unit via sensor fusion.

There exist solutions and algorithms that illustrates how
to reduce measurement error using several observations of one
characteristic [2], for example distance or volume. It could use
an average value or a weighted average. But the most chal-
lenging task is to combine data from pretty different sensors.
Often this task is solved individually and there is no global
idea for every sensor combination. For example very popular
sensor combination is an accelerometer and a gyroscope. First
sensor provides measures of current unit acceleration and
second provides current changes of orientation angles in space.
This fusion does not clarify measurements of sensors with
other sensor data but provides more information than using
only one of them. Another example of sensor fusion is a
combination of data from a camera and an IMU sensor. This
is a popular sensor set for autonomous driving or flying units
and there exist solutions [3],[4], how to fuse these sensors to
reduce measurement errors of both sensors. But all considered
approaches of sensor fusion depends on exact type of sensors
and it is a very challenging or impossible task to expand this
approaches to every sensor set.

One way of refining sensors data in general is Kalman
filter [5]. This filter tries to fuse data from sensors with prior
knowledge about dynamic of process that is called model.
There are some requirements to a model and observations
in Kalman filter. For example it is claimed that the model
and the observations have added linear error of every variable

from process state. So this error could be easily extracted
from equations. There is an extension to Kalman filter that is
named EKF [6] that could handle unlinear model by expanding
it to Taylor series. But this approximation has increasing
error because of dropping a reminder. Moreover Kalman filter
increases its complexity in dependence of a variable amount
like O(n3), so if the amount of variables is increased during
an observation process, Kalman filter becomes more complex
much faster.

Kalman filter equations start from a minimization of an
error functional that presents a sum of square norms of a model
error and an observations error. This idea could be applied for
any base of sensor fusion. The main issues of this idea could
be presented with a following list:

1) Find out formulas describing observations of the
selected sensors;

2) Mathematically extract error values for every ob-
served variable;

3) Clarify formulas of error norms;
4) Find the minimum of a sum of square norms of errors.

The challenging problem is defined in item 2 of the
previous list. It appears when observation error is not added
and is involved in more complex way. In this case the first
question is “is it possible to extract this error without loosing
a correctness”. The answer is that it is possible if there exist
a group with some operator ⊕ and it is possible to present the
error with this operator [7]. In other words the error could be
extracted without loosing a correctness if the error is presented
in an equation via ⊕ function that is an operator of a group
and this group consists of elements with the same type as
considered error (i.e. if an error is from Mn×m, a group should
have elements from Mn×m).

In this paper two types of measurements are considered.
First one is global measurements – regular measurements that
provide a full state of observed characteristic and don’t rely
on any previous states. An example of there measurements
is 3D coordinates of a mobile platform observed with GPS,
landmark markers, localization algorithm etc. Second type of
measurements is iterative measurements – that kind where
every new observation relies on a previous one, so without any
refining total error increases. An example is 3D coordinates
observed with odometry, i.e. a movement from a previous ob-
servation. In general case the second type of sensors measures
characteristics that are derivatives from observations measured
by the first sensor type. In this case during a transformation
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from differential equations to linear difference equations there
appears a dependency from previous states.

The rest of the paper is organized as follows: Section II
gives a description of used mathematical algorithms and mod-
els. A description of considered environment is considered
in Section III. A sensor fusion algorithm is described in
Section IV. The application of math is presented in Section V.
Finally, Section VI concludes the paper.

II. MATHEMATICAL PRELIMINARIES

This section presents considered mathematical models with
explanations and some proves. There is a model of iterative
odometry measurements, explanations of global measurements
and group theory that proves a correctness of used models.

A. Groups theory

There is a definition of a group and some properties that
could be useful below.

A group is a set G equipped with a binary operation ∗ that
satisfy following rules [8]:

• closure: ∀g1, g2 ∈ G : g1 ∗ g2 ∈ G;

• associativity: ∀g1, g2, g3 ∈ G : (g1 ∗ g2) ∗ g3 = g1 ∗
(g2 ∗ g3);

• identity: ∀g ∈ G, ∃!e ∈ G : g ∗ e = e ∗ g = g;

• invertibility: ∀g ∈ G, ∃!g−1 ∈ G : g∗g−1 = g−1∗g =
e.

An example of a group is square matrices with nonzero
determinant and regular matrix multiplication as a group opera-
tion. This set and operation satisfy the axioms of group because
multiplication of two square matrices is a square matrix, the
identity matrix is neutral by multiplication, for every square
matrix with nonzero determinant there exists an invert matrix
and matrix multiplication is associative.

A group that is considered in this paper presents 3D vectors
that consist of “x” and “y” coordinates on a plate and “θ”
orientation angle on XOY plate [9]:

X = (x y θ)
T ∈ R

3. (1)

A group operation ⊕ between elements is “an addition in a
direction” mathematically could be described in the following
way:

X1⊕X2 =

(
x1

y1
θ1

)
⊕
(
x2

y2
θ2

)
=

⎛
⎝
(
x1

y1

)
+R(θ1)

(
x2

y2

)

θ1 + θ2

⎞
⎠ . (2)

where R(θ) – a anticlockwise rotation matrix of an angle θ.

Geometrically this operation could be interpreted as usual
addition of 2D coordinates but with changed angle of coordi-
nate basis vectors.

Note that this operation is not commutative and in general:
X1 ⊕X2 �= X2 ⊕X1.

It is possible to check that chosen operation and set of
vectors generate a group. So there are important group specific
properties:

• Operation (2) is bijective;

• For every element X from (1) there exists X−1.

B. Process dynamic

As it was mentioned above in Section I we consider two
types of measurements that are going to be fused. First of them
are direct “global” measurements. This observations are got
independently from time. It means that observations collected
at a moment ti are independent from observations collected at a
moment tj . So the general equation of this kind of observations
could have following structure:

Zi = HiXi + Γiζi (3)

where Zi – vector of values – global observations of a state,
Xi – a measured state, Hi – a matrix of observation that
describes correspondence between the state and observations,
ζi – error of measurements, Γi – a matrix of error that describes
correspondence between the state and measurement error.

We have an assumption that observations could be pre-
sented in (3). In general influence of a state Xi and an error
ζi are not linear, but we consider only this linear case. In other
case this model could be linearized by Taylor series.

Using formula (3) it is possible to extract an error value
ζi:

ζi = inv(Γi) (Zi −HiXi) (4)

where inv(Γi) = Γ−1

i if Γi is a square matrix or inv(Γi) =(
ΓT
i Γi

)−1
ΓT
i – a pseudo-invariant matrix in another case.

Now it is possible to use this formula for minimization the
error ζi and find an estimation of Xi that provides minimum
norm of the error.

Second type of measurements – iterative measurements – a
case when a new observation does not provide full information
about the state without previous observations. Example of that
measurements could be gyroscope observation that provides an
angle change, but not a result angle. This type of observations
has increasing error because if there is an error on a previous
step, this error affects following steps.

One more issue appears if this error is not added in
considered model. In this paper model with that kind of error
is presented:

Xi+1 = f(Xi, Ui) ∗ ξi (5)

where Xi – a unit state, Ui = (Δx Δy Δθ)
T

– a measured

shift, ξi = (ξx ξy ξθ)
T

– an error of measurements, ∗ – a
group operation, and f – a function of two arguments f :
R

3 × R
3 → R

3.

If it is possible to use a model presented with (5) and there
exist a group (R3, ∗), an error ξi could be correctly extracted.
In general way it is presented with a following formula:

ξi = [f(Xi, Ui)]
−1 ∗Xi+1 (6)

The existence of the group (R3, ∗) provides an existence of

[f(Xi, Ui)]
−1

, so it is possible to calculate the error using (6).
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C. Error minimization

Considered error values have a similar structure: it depends
on a measurement value and a unit state. A measurement
value is fixed and unit state is required to be estimated. The
main requirement for a unit state estimation is to reduce error
as much as possible. So now it is necessary to clarify what
“reducing an error” means. Mathematically it means that it is
required to find a minimum of a function that presents the
error. An example of such function considered in this paper is
a norm of vector:

‖ε(X,W )‖2 → min
X

(7)

where ε – a full error, X – an unit state, W – an observation,
‖·‖ – norm of a vector.

A norm of vector could be presented in different ways. In
this paper a Mahalanobis norm [10] is considered:

‖ε‖2 = εTQ−1ε (8)

where Q – a covariation matrix of the vector ε.

III. ENVIRONMENT DESCRIPTION

The focus of this paper is to fuse two types of sensors:
iterative that is presented by odometry and global that is
presented by scan matcher. This task appears as an issue in a
SLAM problem (simultaneous localization and mapping) [11]
– a task for self driving autonomous unit to orient in unknown
environment and build a map of this environment using only
onboard sensors. In this paper it is considered 2D laser SLAM
problem [12] where laser rangefinder is used for environment
observation. This sensor provides a set of points where each
one of them is corresponded with a distance to an obstacle that
is reached by a laser beam for every angle. Another sensor is an
odometer that provides an estimation of an unit displacement
and rotation.

A mobile unit has no predefined map and one hypothesis
about its structure: indoor environment. So the task of sensor
fusion in this case is a subtask of SLAM that provides more
clear estimation of a unit pose that helps to build more correct
map of an environment.

A. Laser rangefinder and map builder

A laser rangefinder provides a set of distances {di}Ni=1
to

obstacles for every angle generated with a step – laser scan.
A geometric interpretation of these distances is presented in
Fig. 1. This sensor could not track its orientation so in one
time the first distance from the set could correspond to for
example straight north direction and in another time orientation
angle could be changed and this observation could correspond
to some another direction. Some other sensors (like compass)
could be used to provide orientation but they are out of the
considered task.

It is required to convert observations of laser randefinder
(scan) to another view that describes a unit position. One
approach is to use a probabilistic grid map. A simplest example
how to integrate a scan into this map – to increase in this map
a probability in that cells where laser beam founds an obstacle
and decrease it in free spaces.

Fig. 1. Example of a laser randefinder work

Using that kind of map it is possible to estimate orien-
tation and position of a view point of laser rangefinder and
consequently a position and orientation of a mobile unit. A
handler that finds the most suitable position of an input scan
into the map is called scan matcher. There are many different
approaches [13] how to match scans and for this research
there was chosen a Monte-Carlo scan matcher [14] which
randomly chooses a set of several positions of scan on a map
and estimates which of them is more suitable – which doesn’t
break a map structure and clarify a map more correct. An
algorithm of that estimation is another challenging task which
requires to clarify what does it mean “more correct map that
another”. This algorithm is called “scan cost estimator” and
an example is described in [13]. This choice of scan matcher
is explained by known random parameters so it is possible to
estimate a dispersion of error. That will be useful in a sensor
fusion.

Using Monte-Carlo scan matcher that gets laser scan as
input, it is possible to estimate a unit position. And a corre-
spondence between a unit state and scan matcher estimation
is very simple and describes with the following formula:

Z = X + ζ (9)

where Z – scan matcher estimation, X – real unit state, ζ –
estimation error with a covariation matrix O.

B. Odometer

Odometer is a sensor that estimates a unit position using
information about its movements. One of possible ways to do it
– to measure amount of full circles that a wheel of a platform
made. Using extra knowledge about this wheel radius it is
possible to measure a velocity and a traveled distance. One
of greatest disadvantage of this sensor is that it has increasing
measure error – for long distance it measures with huge error,
so very often odometer is used for estimate a change of a
position in a short period of time. This approach doesn’t reduce
an error in global view but with sensor fusion it is possible to
refine a state at every time moments.

Dividing a whole time period on short intervals creates
multiple coordinate bases. It is possible to calculate with a little
error an offset (Δx Δy Δθ) in a basis at a start position or
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at an end position (Fig. 2b). Or it is possible to track a position
in the global coordinates if there is an observer (Fig. 2a). In this
paper we consider a task when there is no external observer
that could help to track a pose of a mobile unit (Fig. 2b).
For example we don’t use GPS because of its inaccuracy. It
is said that GPS has error that is in bound of 5 meters [15].
This error is very huge when a unit in an indoor environment
is tracked. Another global observer could be presented with
landmarks but this approach is not considered too because the
task of SLAM is to orient in unknown environment, so there
is no ability to put landmarks.

(a) Global coordinates (b) Local coordinates

Fig. 2. Odometry measurements

The difference between mathematical model views pre-
sented on a Fig. 2 is described with formulas below. The
first equation describes global coordinate measurements and
the second – local measurements.

Xi+1 = Xi + Ui (10)

Xi+1 = Xi +RX0Y (θi)Ui (11)

where Xi = (xi yi θi)
T

– a unit state at i time moment,

Ui = (Δx Δy Δθ)
T

– a measured shift, RX0Y (θ) – an
anti-clockwise rotation matrix of an angle θ in the X0Y plate.

The equation (11) is more complex than (10) but it could
be implemented in situations when there is no global observer.

There are two notices about equation (11):

1) A unit state Xi is involved as nonlinear variable
because of θi.

2) A measurement error appears in Ui and in spite of
statement 1 it could be expressed.

An existence of this expression is proved by group theory
described in Section II. So the equation (11) could be updated
with the ⊕ operator mentioned in equation (2):

Xi+1 = Xi ⊕ Ui ⊕ ξi (12)

where ξi – measurement error of iterative observations.

Using existence of an invert element and closure properties
of a group G it is possible to extract an error value from the
previous equation:

ξi = [Xi ⊕ Ui]
−1 ⊕Xi+1

where Xi – a unit state at a previous step, Ui – measurements
of changes between states, Xi+1 – a unit state at a next step.

IV. APPROACH DEFINITION

In previous sections we consider two types of sensors
that provide global measurements (laser rangefinder and scan
matcher) and iterative measurements (odometry). Scan matcher
provides an estimation of a unit position and orientation as it is
presented in equation (9) and odometry estimation is described
like (11). These error representations correspond with common
error structure mentioned in equations (4) and (6). So the task
is to estimate an optimal unit pose X in a case when this
estimation provides a minimum of error values in the both
equations. The idea of this task was mentioned in equation (7)
and the considered case could be rewritten as the following
functional minimization:

‖ξi‖2Qi
+ ‖ζi‖2Oi

→ min
Xi

(13)

where ξi and ζi – measurement errors from (12) and (9),
Qi and Oi – covariation matrices of these errors, ‖·‖ –
Mahalanobis norm defined in equation (8).

These functional presents a quadratic form, so there exist
a minimum point and this point is unique. To find this point
it is possible to take a derivative for Xi+1 from a left part
from (13) and to equal it to the zero:

RX0Y (θi +Δθi)Q
−1

i ξi −O−1

i+1
ζi+1 = 0

This equation is calculated using a general rule of taking a
derivative of matrices:

((Kx+ b)TA(kx+ b))′x = KTA(Kx+ b)

where K,A – square matrices K,A ∈ Mn×n, x, b – vectors
x, b ∈ R

n.

So the last point is to put theoretical values of ξ and ζ
in the formula above and express Xi+1 variable. The general
formula for expression:

RX0Y (θi +Δθi)Q
−1

i [Xi ⊕ Ui]
−1 ⊕Xi+1−

−O−1

i+1
(Zi+1 −Xi+1) = 0

(14)

where Xi = (xi, yi, θi)
T

– a unit state (position and orientation

on a 2D space), Ui = (Δxi,Δyi,Δθi)
T

– an odometry offset

from ti to ti+1 time moments, Zi+1 =
(
Zx
i+1

, Zy
i+1

, Zθ
i+1

)T
–

a scan macther estimation of pose, Qi – a covariation matrix of
odomery errors, Oi+1 – a covariation matrix of scan matcher
errors, ⊕ – operation of vector sum by direction explained
in (2).

There appears the main algorithm how to fuse sensors and
get a refined unit state. This algorithm is presented in alg. 1.

Algorithm 1 Algorithm of sensor fusion

1: for every sensor do
2: if measurements are direct then
3: Extract error ξ(X) via equation (4);
4: else
5: Extract error ε(X) via equation (6);

6: Build an error functional
∑ ‖ξi(X)‖2 +∑ ‖εi(X)‖2;

7: Find a minimum by X of the functional from a step 6;
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(a) Separate fusion (b) Common fusion

Fig. 3. Sensor fusion scheme

One more idea to get more clear estimation consist of a
fact that now the algorithm 1 presents a case of using laser
rangefinder and odometry like a scheme presented on a fig. 3a.

There two pieces of sensors data come to the sensor fusion
block separately. Scan matcher gets as an input a scan and a
map of an environment and returns a pose estimation, which
is provided to map builder with the scan. And only after
that the scan matcher pose estimation comes to sensor fusion
simultaneously with an odometry pose measurement.

This current architecture could be upgraded if a map
builder gets a pose refined after sensor fusion block as it is
presented on a Fig. 3b. In this case map will be built more
carefull, so on a next step scan matcher could provide more
accurate result with less dispersion. But this improvement is
specific to considered set of sensors and is not mentioned in
the algorithm 1.

V. EVALUATION

To test this approach MIT dataset is used [16]. The
sequences presented there consist of a set of laser scans and
odometry measurements, so it suits for considered approach.
This dataset was used for Monte-Carlo scan matcher testing, so
there are many collected results about its accuracy. Moreover
this dataset has its groundtruth – a real trajectory of a mobile
unit, so it is possible to estimate quantitatively the accuracy
of sensor fusion. But it is important to mention that this
groundtruth is built using an automatic localization method
based on a known map of an environment. That means that
this trajectory is not perfect and sometimes fails.

All tests are done using tinySLAM algorithm [17] which is
a part of slam framework in ROS [18]. All its parameters like
cell discrepancy, way of map building, estimation rule of the
best position of a scan on a map are out of bounds from this
topic because the main idea is to measure improves of sensor
fusion application.

The results are presented in a Table I where root mean
square error values are presented. These RMSE are calculated
between an output unit path provided by chosen algorithm and
the groundtruth trajectory.

TABLE I. RMSE VALUES

Sequence Length, m Trajectory RMSE, m

scan matcher sensor fusion

2011-01-19-07-49-38 68 1.280 ± 0.640 1.194 ± 0.558

2011-01-20-07-18-45 76 0.254 ± 0.045 0.237 ± 0.039

2011-01-21-09-01-36 87 0.242 ± 0.005 0.227 ± 0.004

2011-01-24-06-18-27 87 0.254 ± 0.006 0.233 ± 0.005

2011-01-25-06-29-26 109 0.260 ± 0.005 0.244 ± 0.003

2011-01-27-07-49-54 94 0.620 ± 0.030 0.586 ± 0.024

2011-01-28-06-37-23 145 2.280 ± 0.750 2.162 ± 0.693

2011-03-11-06-48-23 245 0.860 ± 0.390 0.764 ± 0.307

2011-03-18-06-22-35 80 0.103 ± 0.008 0.102 ± 0.008

2011-04-06-07-04-17 95 0.343 ± 0.025 0.307 ± 0.018

2011-10-20-11-38-39 264 5.486 ± 2.603 5.022 ± 2.247

A dispersion appears because of random component of scan
matcher. Monte-Carlo scan matcher picks randomly a lot of
possible hypotheses about the best position and provides that
one with the greatest weight. But it could fail and do not find
a good estimation, so RMSE value will be different from one
launch to another.

Measurements from column 3 that is marked with “scan
matcher” are collected on raw launches of tinySLAM with
Monte-Carlo scan matcher. Odometry in this case is used only
for prior knowledge of a neighborhood of the most suitable
position that is provided to the scan matcher. So, launched
algorithm has a distinction from a scheme on a Fig 3 that is
in an absence of a block “sensor fusion”. Measurements in
column 4 are collected in a case when that block is involved
in tinySLAM algorithm. So after the scan matcher provides an
estimation, it is fused with odometry using a formula 14.

In the Table I there are two sequences with high values
of RMSE. A result in the last line could be explained by a
distance of all trajectory. It is much bigger than others, there
are much more abilities for random scan matcher to fail. A
result in a first line could be explained by a map of a building.
There are long corridors on a way of the mobile unit, so there
are a lot of places where scans looks pretty the same one to
each others. In this case scan matcher could not provide valid
estimation because of lack of information. Moreover in case
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of similar scans automatic localization with known map could
fails too, so there are errors in a groundtruth too. But in case
of using sensor fusion it increases accuracy and provide less
error.

One more point is that sensor fusion decreases a dispersion
value in all lines of Table I. It happens because of using
odometry information which has not any random component
from one execution to another.

An example of one test execution is presented on a fig. 4.
There you can see that sensor fusion does not provide very
close to groundtruth result but it refines scan matcher estima-
tion so output trajectory becomes closer to the groundtruth.
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 12

-4 -2  0  2  4  6  8

y,
 m

x, m

groundtruth
scan matcher
sensor fusion

Fig. 4. Example of a test on 2011-01-27-07-49-54 sequence

This approach was tested on other sequences, for example
on willow garage dataset [19]. But there is no trajectory
groundtruth for that sequences and there is no ability to check
an accuracy increasing. There is only one way – to estimate
an output trajectory qualitatively, define where scan matcher
fails and some jumps and trajectory breaks appears and define
how sensor fusion handle this scan matcher behavior.

VI. CONCLUSION

In this paper the sensor fusion approach is presented. This
approach could be applied for autonomous mobile units which
move relying only on their onboard sensors without global
observer like GPS. Two kind of sensors are considered: sensors
that observe all variable directly and sensors that observes a
state iteratively, based on previous observations. As an example
considered in this paper there is a union of two sensors:
scan matcher and odometry. So there are two types of input
data: laser scan and offset of a unit in local coordinates from
previous observation.

The main idea is to reduce a sum of error norms. To rich
this goal group theory is used for proving an existence of
estimation for a unit state. In this paper group theory helps
to calculate a model dynamic where an error is not linearly
added. As an example of error norm the Mahalanobis norm is
used, so it calculates a weight average value of a unit state that
reduces simultaneously all errors. So there is a statement that if
one error has huge dispersion, an influence of the corresponded
measurements on the output is very little.

The approach was quantitatively tested on MIT dataset
were output trajectories were compared with a groundtruth.
And there is a result that illustrates how sensor fusion refines
an estimation and increases accuracy.
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