
Analysis of Natural Language Sentences by Methods
of the Theory of Graphs and the Theory of Sets

Andrey Alyoshintsev
Moscow Technical University of communication and

informatics
Moscow, Russia

alyoshintsev@mail.ru,

Alexander Sak
Moscow State University of Civil Emgineering

Moscow, Russia
sak_inter@mail.ru

Abstract—Natural language sentence can be represented by
means of graphs, where words, groups of pixels or variants of
decisions are used as vertices, and as edges is the relationship
between words in a sentence, elements of images or decisions. In
most sentences, the relations of subordination and linear order
are related. The representation of the syntactic structure of the
sentence in the form of a subordination tree is used in generative
grammars of the language and in the algorithms of syntactic
analysis. The tree is built, starting from the distribution of lexical
units of the sentence by parts of speech, and then there is a
transfer from the subordination tree to the tree of the
components. A binary search tree is a kind of data structure that
corresponds to the representation of the sentence in the form of a
tree of components. When a tree graph is built it’s possible to
proceed to the analysis of a lexical expression by comparing the
intersection of sets representing it with the dictionary expressions
in order to reveal the maximum coincidence between them.

INTRODUCTION

Graphs are one of the most important areas of the theory of
computing systems. This is an abstract concept through which
you can describe a variety of real phenomena such as the
organization of transport systems, human relationships, and
representation of the data structure. In linguistics, graph theory
solves many problems associated with the representation
of formal relations between the components of a
sentence.

A binary decision tree is a data structure in the form of a
binary tree, each node of which is bound to the decision choice
function. The decision choice function is applied to an
unknown feature vector and determines which child node of
the current node should be processed further – the left one
or the right one. A similar algorithm is observed
when constructing a tree of components when analyzing
sentences.

A correct description of the sentence by means of the graph
allows to use to a certain extent, certain semantic links
between lexemes apart from the syntactic ones.

I. GENERAL IDEA OF THE TEXT AND SPEECH SYNTHESIS

WHEN CREATING SYSTEMS OF ARTIFICIAL I

NTELLIGENCE (AI)

Artificial Intelligence (AI) is an area of science and
technology, focused on the creation of software and hardware

for solving intellectual problems [7]. Such tasks include
interpretation and synthesis of natural language texts,
interpretation and synthesis of speech, control of robots, and
analysis of visual information and so on. Development of
knowledge-based systems prevails in the development of
intelligent systems, which construction is the main direction of
artificial intelligence. Knowledge-based or expert systems
develop in a fundamental direction in terms of models and
methods for processing natural language (NL) towards:

1) creation of methods, models and algorithms for
Semantic analysis and interpretation of
the NL;

2) processing of continuous texts;

3) processing of speech acts.

In the applied aspect, the Natural Language Systems (NL-
systems) also occupy a leading place in terms of research, such
as speech NL-systems, fused text processing systems and
others.

I. INTELLIGENT DIALOG SYSTEMS (IDS)

At present, the subsystems for processing text
information are increasingly included in the complex data
processing and analysis systems [4].

Fig.1 Purpose of our program variables

If such subsystems are designed to work with data in
several languages, they must tackle the task of automatically
translating from one language to another.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig.2 Form1interface with the implementation of a working example of
translation.

II. THE MAIN KNOWLEDGE REPRESENTATING MODELS IN

INTELLIGENT SYSTEMS

Once knowledge composition and structure are
determined, a representation model which is the most adequate
and effective in given area is selected. Examples of such
models can be:

1) Deductive model. The problem to be solved is written
down in the way of some formal system statements (for
example, in the calculation of first-order predicates).

2) Inductive model. There is a mechanism which is used in
order to obtain general conclusions from a set of
particular statements which can be either probabilistic
or logical, depending on the specifics of the
phenomenon studied.

3) Model of pseudo-physical logic. Zadé linguistic
variables or order scales are used as propositional
variables. They constitute a class of deductive formal
systems.

4) Models of functional networks. Reflecting some
decomposition of a certain computational or
informational procedure, where the arcs show the
functional connection between the parts the
decomposition results in (for example, a program block
diagram, etc.)

5) Script models. Homogeneous networks where the
relation of a non-rigorous order acts as the only
relation, which semantics may be different (for
example, all possible sequences of events are a network
schedule, etc.)

6) Models of semantic networks. An oriented graph with
marked arcs and states (i.e., the vertices of the network
can have different interpretations, and arc-relations
belong to different types: logical, linguistic, set-
theoretic, and quantified.)

7) Frame model. Formalized model for displaying an
abstract image or situation: F = {˂I, ʋj gj [pj],…, ʋk gk

[pk]>,

where I is the name of the frame; ʋj - the name of the j-th slot;
gj is the value of the j-th slot; pj - procedures attached to slot j.

The values of slots can be the names of other frames,
providing a link between them.

There are prototype frames stored in the Knowledge Base
(KB) and instance frames that are created on the basis of
prototype frames to display specific situations based on the
incoming data.

TABLE I. ANALYSIS OF AN EXAMPLE OF A FRAME PROTOTYPE FOR THE
SITUATION "TAKING AN EXAM AT THE UNIVERSITY"

Taking an exam at the university
An examined one (a student, a postgraduate

student, an applicant, a
group of students)

Examiners (a lecturer, a lecturer
assistant, a commission)

A subject/ discipline (name of a
subject/discipline)

Results (a mark, obtained points)
Place / time (exams schedule)

The example shows an important property of frames,
consisting on the fact that the removal of any actant from this
description leads to the loss of the properties determining the
essence of this “passing an exam at the university” situation.
8) Production model. The model is based on rules that allow
you to represent knowledge in form of sentences like: IF
{˂condition>} THAT {<action>} [ELSE {˂action>}]

III. EXPERT KNOWLEDGE

Expert knowledge will be information about possible
actions taken to shift from one projected situation to another,
as well as a sequence of actions to transform the project,
which a designer or a design system is recommended to
perform in order to achieve a given goal [11] . The production
and frame method of knowledge representation is used in the
construction of intellectual systems, that is, systems based on
various aspects of the formalization of the concept of
“knowledge” and logical inference.

When building intelligent systems, 4 groups of methods for
representing knowledge became classical.

1) A logical representation based on the first-order
predicates logic uses, as a rule, the means of the
PROLOGUE language and numerous extensions of this
language.

2) Network representation, in which a set of knowledge is
represented as a graph, the vertices of which are objects
of the domain, and the arcs are different relations
between objects. Apart from the term "network
representation", the term "semantic network" is also
often used. Further in work we will describe it in more
detailed way.

3) A hierarchical representation based on a hierarchy of
concepts related to each other by means of inheritance
bonds. Hierarchical views include frame views, scripts,
etc.

4) Production representation, in which knowledge is
encoded by sets of elementary actions, which
application can lead to a solution of the problem.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 557 --

IV. SEMANTIC NETWORKS

Semantic networks are an important model of knowledge
representation. The concept is introduced to represent
semantic links between words. Semantic networks are not a
homogeneous class of representation schemes. A common
feature of semantic networks is the similarity of a formal
notation (a directed graph with marked vertices and edges) and
the main principle consists on elements of knowledge stored
adjacent if they are semantically related.

By a semantic network, we mean a directed graph with
labeled vertices and arcs, in which the vertices correspond to
specific objects, and the connecting arcs reflect relationships
between them.

 The problem of finding a solution in a semantic network
knowledge base is reduced to the problem of finding a
fragment of a network corresponding to a certain subnet
having to do with the question posed.

 There are several classifications of semantic networks:

1) by the number of types of relations (homogeneous
ones are categorized by a single type of relationship;
heterogeneous ones are categorized by various types
of relations);

2) by types of relations (binary ones where relations
connect two objects; n-ary ones connecting more than
two concepts).

Semantic networks relations can be divided as follows:

1) linguistic ones, which include relations such as “object”,
“agent”, “condition”, “place”, “tool”, “goal”, “time”,
etc .;

2) attributive ones, which include the shape, size, color,
etc .;

3) characterization of verbs, i.e. gender, tense, tilt, pledge,
number;

4) logical ones, ensuring the execution of operations for
calculating statements (disjunction, conjunction,
implication, denial);

5) quantified ones, using quantifiers of community and
existence;

6) set-theoretic ones, including the concepts of "element
of the set", "subset", "superset" and others.

The basis of the semantic network is events, attributes, sets
of features and procedures.

Events are judgments, facts, results of observations,
recommendations. They can be represented by word
combinations and numbers, grouped thematically or
functionally into sections, divided into characterized ones and
characterizing ones (events-features: for example, “it is
raining” for the event “rainy weather”).

An attribute is a characterizing event that has several
meanings (for example, “weather” is an attribute of “season”).
Several features can be combined into a complex
characterizing an event to a greater extent than a single

feature. A procedure is a specific component of network that
performs conversion of information. It allows you to calculate
the values of some attributes on the basis of others, operating
with both numbers and symbols

Fig.3 A semantic network describing simplest arithmetic operations

Fig. 3 presents an example of a semantic network that
describes the simplest arithmetic operations. The expressive
power of semantic networks is somewhat weaker than that of
the logic of predicates. However, compared with logic of
predicates, semantic networks take advantage of placing all
well-known information about this or that concept around a
corresponding vertex. A predicate is able to take over some
participants of the situation expressed (verbalized) by given
predicate and binary links between the predicate and each of
its actors, i.e. participants involved in the situation, represent
linguistic relationship (valence in Russian and deep cases in
English linguistic tradition).

Knowledge that information about these properties is kept
in certain place of a dictionary article as a verb regime model
eases NL processing. The semantic network indicates, as a
rule, three types of main vertices:

vertex situations (states, processes, etc.), expressed by
predicates;

vertex concepts (abstract and physical);

vertex-characteristics (optional).

Semantic network uses the following types of relationships:

1) set-theoretic relations ("element-set", "part-whole",
"set-subset", etc.);

2) logical relationships (AND, OR, NOT);

3) quantified relations (�, �);

4) linguistic relations (binary named relations between a
predicate, reflecting a specific situation in the problem area
and situation actors, that is, "roles" or participants.

More often, the following deep cases are used to define
linguistic relationships:

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 558 --

- agent (A) is an animated initiator of action;
- counterparty (C) is a force which the action is directed
against;
- object (O) is a thing that is an action target;
- addressee (D) is a person who is done good or damage as a
result of this action;
- tool (T) is an inanimate object or force causing given action
or given state;
- result (R) is a thing that occurs as a result of actions, etc.

Fig.4. An example of a fragment of a semantic network for the “screwing”
situation

The Fig. 4 shows an example of a fragment of a semantic
network describing the “screwing” situation, for which the
following types of relationships are used:

A corresponds to an animated initiator of the action;
O corresponds to the object of action;
I corresponds to an instrument of action;
L corresponds to a place of action;
E corresponds to an element of the set;
U is a subset of a set;
H corresponds to a "made of" characteristic.

There are simple semantic networks (their vertices do not
have their own structure) and hierarchical networks (their
vertices have some structure). The difference between
hierarchical semantic networks is the possibility of dividing
the network into subnets (subspaces) and establishing
relationships not only between the vertices, but between the
subspaces as well.

Semantic networks are convenient to use in systems of
understanding NL-texts and have found application, in natural
language processing systems, in question-answer systems, as
well as in systems of artificial vision. The latest semantic
networks are used to store knowledge of the structure, form,
and properties of physical objects. In the field of natural
language processing by means of semantic networks, special
emphasis is made on: semantic knowledge, knowledge of the
world, episodic knowledge (that is, knowledge of space-time

events and states). The main advantage of this model is in
accordance with modern ideas about the organization of long-
term human memory. The disadvantage of the model is the
complexity of finding the output on the semantic network [8].

V. WEB TECHNOLOGIES AND SEMANTIC SEARCH IN SEO

AND LSI TEXTS

There are many interesting possibilities of using NLL
systems with web technology. There are three main types of
web-based NL systems:

1) NL search information systems (Retrieval systems);

2) NL information extraction systems (Information
Extrieval systems);

3) NL understanding systems (Text / Message
Understanding systems).

IR type systems provide document search by information
request in documentary data bases.

 Systems of type IE, unlike IR systems, allow not only to
find relevant documents, but also to extract units of
information that meet the information needs of users.

 In systems like TMU, the understanding of text means:

1) understanding a text means to translate it into another
language so that it is correctly interpreted by external
"observers";

2) a text is understood correctly if the answers to the
questions on it are evaluated by external “observers” as
correct.

The problem of extracting information over the data (if you
have access to the database scheme) has been solved (for small
PDOs) at a practically applicable level.

Latent semantic indexing (LSI) is an indexing method,
enabling the Yandex and Google search robots to pay attention
to the general meaning of the text as a whole, and not only to
the uniqueness and richness of key words. LSI copywriting is
writing texts based on hidden semantic indexing technology.
That is, such texts in which it is important not the presence of
the keyword, but the content.

 The difference between traditional SEO copywriting and
LSI copywriting consists on:

SEO copywriting

 Writing text based on the list of keywords (with their
obligatory entry into tags, headings, first paragraphs).

 Work with keyword density in the text.
 Work with technical uniqueness.

LSI Copywriting

 Writing text based on a list of keywords (with an
emphasis on meaning, and not on the entry of these
keys).

 Adding words related to basic queries on the text.
 Working out the utility and semantic uniqueness of the

material.

U
E

U

H

I

E

L A O

E

U Workers
People

An adjuster

A screw driver

Equipment

A screw

Plastic

A
phone
box Screw in

A spare piece

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 559 --

Stages of LSI development

Latent-semantic analysis was patented in 1988.
Search engines have begun to implement LSI since 2013.

In 2011, Google began to use the Panda search algorithm.
His goal is to deal with poor quality texts. Panda assesses the
user interaction with the site as well as the level of human
involvement in the study of a particular page.

When forming the opinion of the person about the page,
the main role is played by the text. Therefore, with the
introduction of the Panda, hanging out process got rid of a
heap of sites with poor-quality content - publications that were
created not for people, but for entering keywords.

In 2013, Google launched the Hummingbird algorithm.
Search queries were processed not only by keys, but also by
meaning. In 2016, the search process was improved, a
RankBrain ranking signal was introduced, a kind of artificial
intelligence that should be able to understand not the whole
meaning of each word or even the general content, but the
essence of the whole phrase.

The innovation is connected with the fact that people
began to enter concise inquiries with keys into the search bar,
and also began to use “natural” queries - phrases from
colloquial speech, sometimes long and complex.

A similar situation is observed in Yandex. In November
2016, Yandex launched the Palekh algorithm. As a result, the
interest in writing LSI texts has increased dramatically.

 Search engines increasingly pay attention to content,
rather than technical indicators (presence of keys, number of
entries, etc.). Now it’s time to talk not only about the
“relevance of benchmark words”, but also about the
“relevance of meanings”. This is the latest trend in semantic
search [9].

VI. GRAPHS

When translating from English into Russian at the first
stage of the sentence analysis, special attention is paid to the
problem of polysemy / homonymy of lexical units in the
sentence. In English, a set of words can have one meaning, but
belong to different parts of speech like “to go” which is a verb
and “to have a go” is a noun, or be expressed with one part of
speech, but can have many unrelated meanings like, for
example, the verb “to draw. For this reason, the problem of
determining to which part of the speech each lexeme belongs
in the sentence [1] is solved.

Each lexeme gets a set of parts of speech that the given
word can match in the sentence. Every possible sentence, i.e. a
combination of parts of speech, can be regarded as a path in a
graph whose vertices are a complete set of possible parts of
speech corresponding to a given word [2]. Each possible part
of speech corresponding to the i-th word is connected by an
edge with every possible part of speech corresponding to (i +
1) -th word. Using the statistical data of linguistic
environment, for example, a noun is less likely to join other
nouns, if they do not perform the function of an adjective,
which in turn must be reflected in the dictionary, you can
assign a certain weight to each part of speech corresponding to

the word. The cheapest path through this graph will be the best
interpretation of the sentence in terms of determining its words
belonging to parts of speech.

Fig. 5. Determining parts of speech by using a weighted graph

The determining of parts of speech of the sentence is the
first step to interpret it and to find the subordination tree, i.e.
hierarchical structure of the sentence.

Several linguistic schools developed several completely
different ways of describing the syntactic structure of a
sentence. We are interested in two representations of the
syntactic structure that can be expressed by means of graphs:
a) a description of the sentence structure through the system of
its word combinations, i.e. through the relations of
subordination and b) a description of the sentence structure
through a hierarchy of its immediate components.

The description of the sentence structure by using the
subordination tree means dealing with the word-combination.
By word-combination we mean a syntactically related group
of sentence words consisting of two words, and its
components can be separated in the sentence by other words.
In the word-combination we distinguish the main and a
subordinate word, thus setting the subordination tree. The
subordination tree can be considered as an adequate
representation of the syntactic structure of the sentence, if the
sentence doesn’t have any formal or semantic links not
reflected in the tree. Such a representation is not always met
and is called an ideal tree [3]. If the subordination tree is not
considered to be ideally hierarchical, connections and
dependencies not reflected in the tree must be specified
separately. The representation of the syntactic structure of a
sentence in the form of a subordination tree is used in building
up generating grammars and in algorithms for syntactic
analysis. It is convenient that the tree graph reflects not only
the relation of subordination, but also the order relation
corresponding to the linear arrangement of words in the
sentence, which are connected in a certain way. This
connection is called projectivity. Properties of the
subordination tree: no two branches intersect each other and
no branch derived from some point а intersects perpendiculars
dropped from the top points.

As an example of a subordination tree, let's take the
previous example with already determined parts of speech.

Fig.6. A subordination tree

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 560 --

The syntactic position of the identified parts of speech will
allow us to build up a subordination tree, depending on, for
example, the position of the verb with respect to names or
nominal groups, as in our case, where one nominal group
consisting of an article, an adjective and a noun stands before
a verb, and the other comprised of similar components is
placed after a verb. In accordance with the linear structure of
the sentence, the first group should be considered as a subject,
and the second one as the predicate of the sentence.

The concept of a component is the basic concept of
descriptive linguistics. The concept of a component is closely
related to the notion of immediate components. Components
of a sentence are joined from smaller groups to larger ones.
Connection of the subject group and the predicate group is the
last stage of building a sentence. The sentence is the maximum
component, and the word is the minimal one. The group of the
subject and the group of the predicate are immediate
components.

If these groups consist of more than one word, it means
that they also include their immediate components. The
immediate components are similar in their properties to
strongly connected components of a graph. Although strongly
connected components correspond to cycles, and there are no
cycles in the tree, nevertheless, they have one common
feature: if an element of one component (for example, a word)
is included into another component, then one of them is
completely integrated in the other one. It turns out that in the
tree of components, although there is a one-way connection
from a subordinating node to a subordinated one, there is also
an inverse informal semantic connection that limits the
compatibility of the dependent element and the determining
one. It is most convenient to represent the tree of components
in the form of a binary system. The binary tree provides a
quick search for nodes, easy tree traversal, simple insertion
and removal of an element.

Now it's important to make a transition from the
subordination tree to the binary components tree. In order to
pass from each sentence subordination tree on to its
component system, it is necessary for each branch in the
bushes with a fork to be assigned a certain number (weight),
expressing the degree of proximity of this dependent element
with respect to the determining element. If the branch with the
number n is included in this segment, then all branches with
weights less or equal to n must also be included in this
segment. Assignment of numerical values to branches can be
carried out, taking into account the belonging of each lexeme
to a certain part of speech and its position in the sentence.

In our example, the verb-predicate of the sentence is the
source vertex, and all the components belong to the same
bush. Weighted edges are traced to the right and to the left
from the axis coming from the top of the bush, which weights
increment and no number is repeated twice, which makes it
possible to obtain a binary system of components for a given
tree. The following figure shows the binary tree of the
components in their normal form.

Fig. 7. Transition from a subordination tree with weighted edges to the
component tree

Fig. 8. A components tree

Fig. 9. Building syntactic relations in a sentence

Sometimes, to optimize the graph, it’s necessary to mark
out the main component. The main component is usually
allocated by double lines in higher-level component.

Fig. 10. Selecting main elements in the components tree

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 561 --

The main elements in the constituent parts of the sentence
form a proposition: play is draw, which is not part of this
sentence.

Representation of a sentence with a binary tree is good
because in modern programming languages data is represented
by linked lists that easily turn into binary trees and vice versa.
Another advantage of the binary tree is a proven algorithm for
comparing binary trees (a powerful tool for comparing the
syntactic structures of two sentences).

Let’s compare the sentence with an arithmetic expression.
An arithmetic expression is represented by operators and
numbers corresponding to the terminal elements. The problem
is to represent the arithmetic expression in this way by leading
it to such a form, so that it can be compared with another
arithmetic expression based on a formal surface structure
(without recourse to calculations).

At the first stage, we use the algorithm to express an
expression using a binary tree. First, we give each operator a
certain weight:

Algorithm 1 Assigning weights to sentence components
 for (int m=0;m<11;m++)
 {
 mas = mmm[i1, m];
 if (mas == "*")
 rlinq.AddLast(new point(mas, 4, s));
 else
 if (mas == "/")
 rlinq.AddLast(new point(mas, 3, s));
 else
 if (mas == "+")
 rlinq.AddLast(new point(mas, 5, s));
 else
 if (mas == "-")
 rlinq.AddLast(new point(mas, 5, s));
 else
 if (mas!="")
 rlinq.AddLast(new point(mas, 1, s));
 s++;

 We define the operator with the greatest weight and its

place in the expression. We split the expression into the left
and right sides with respect to the operator with the maximum
value. The terminal elements are assigned minimum values.
We have a representation class consisting of a vertex (the
maximal element) and a part of the expression corresponding
to the left and right parts, if any, that are stored in a linked list
that operates on these elements.

Algorithm 2 Building up a binary tree
 while (!stop)
 {
 sak = vvv.First;
 left.Clear();
 right.Clear();
 xxx.Clear();
 for (int i = 0; i < 20; i++)
 if (sak.Value.GetX(i) != null)
 xxx.AddLast(sak.Value.GetX(i));

 digit(xxx); f = 0;
 current = xxx.First;
 s = xxx.First.Value.GetNumber();
 xxx.RemoveFirst();
 node = xxx.First;
 f = node.Value.GetNumber();
 if (xxx.Count() == 1)
 left.AddLast(node.Value);
 else
 while (node != null)
 {
 if (f < s)
 left.AddLast(node.Value);
 if (f > s)
 right.AddLast(node.Value);
 f++; node = node.Next;
 }
 str = "";
 if (current.Value.GetSymbol() == "*")
 str = "Mult";
 if (current.Value.GetSymbol() == "/")
 str = "Div";
 if (current.Value.GetSymbol() == "+")
 str = "Add";
 if (current.Value.GetSymbol() == "-")
 str = "Subst";
 if
Char.IsDigit(Convert.ToChar(current.Value.GetSymbol()))
== true)
 str = "Numb";
 for (int i = 0; i < 5; i++)
 {
 if (matrix[0, i] == str)
 {
 str=str+ Convert.ToString(Convert.ToInt32(matrix[1,
i]) + 1);
 matrix[1,i]=
Convert.ToString(Convert.ToInt32(matrix[1, i]) + 1);
 break;
 }
 }
 if (left.Count() > 0 &&
str.IndexOf("Numb")==-1)
 vvv.AddLast(new representation(str,
current.Value.GetSymbol(), left));
 if (right.Count() > 0 &&
str.IndexOf("Numb")==-1)
 vvv.AddLast(new representation(str,
current.Value.GetSymbol(), right));
 ggg.AddLast(new tree(sak.Value.GetPoint(),
sak.Value.GetSymbole(), str, current.Value.GetSymbol()));
 nedor.AddLast(new image(str,
current.Value.GetSymbol()));

 vvv.Remove(sak);

 if (vvv.Count() == 0)
 break;
 }

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 562 --

Operators are replaced by vertices with appropriate
notation.

Links between vertices are displayed using contiguity lists.
For greater clarity, expressions 1) 2*3+4*3-4/5; 2)
2*3+4/3+4/5; 3) 3*4+3*4-5/3; 4) 2+3+4+3; are given shapes
as follows:

1)
Mult1 Add Subst1
Numb1 Mult1 Numb2
Mult2 Subst1 Div1
Numb3 Mult2 Numb4
Numb5 Div1 Numb6
2)
Mult1 Add Add1
Numb1 Mult1 Numb2
Div1 Add1 Div2
Numb3 Div1 Numb4
Numb5 Div2 Numb6
3)
Mult1 Add Subst1
Numb1 Mult1 Numb2
Mult2 Subst1 Div1
Numb3 Mult2 Numb4
Numb5 Div1 Numb6
4)
Numb1 Add Add1
Numb2 Add1 Add2
Numb3 Add2 Numb4

Even if the operators coincide or the leaves of the graph
coincide, each of them is assigned a separate index, depending
on the order of appearance in the graph.

At the next stage, optimization is performed to more
clearly visualize the tree to simplify comparison with the other
binary graph.

There are two approaches. It seems that the search for a
backbone tree using the Kruskal algorithm could be suitable
for this task. This algorithm looks for the cheapest edges
connecting the connected components of the graph, i.e. cycles.
The algorithm operates on weighted graphs, determining in the
first stage whether both endpoints of the candidate edge are in
the same connected component. In the case of a positive test
result, such an edge is discarded, because by adding it it would
create a loop in the future tree. If the endpoints are in different
components, the edge receives and connects the two
components into one. The structure of data storage is
important. It is advisable to first group the vertices into
connected components, and then search for the cheapest edges
between the components.

In the arithmetic expression used as the model of the
sentence, there are no cycles, therefore, there are no connected
components, and there are only vertices with different degrees
of their edges. In the approach to optimization, we consider
the search for a vertex cover of a graph. The vertex cover does
not coincide with the independent set, because a vertex cover
can contain vertices belonging to one edge.

We get the following expression optimizations:

1) Mult1 Subst1 Mult2 Div1
2) Mult1 Add1 Div1 Div2
3) Mult1 Subst1 Mult2 Div1
4) Add1 Add Add2

As the method of comparing expressions, we use the
remainder of sets intersection. The greatest coincidence is
observed in the first and third expressions. The same approach
can be used to compare the syntactic structure of sentences.

VII. SETS

Fig. 11 Representation of a lexical construction by means of the intersection
of sets

Turning to the proposition, one can figure out the meaning
of the semantic construction as the intersection of the sets and
its constituent elements. In semantics, this corresponds to the
concept of intensional, in contrast to the extensional, where all
elements of the set are considered. Let’s compare the
expressions: (keep ∩ down ∩ a living organism); (keep ∩
down∩ a material thing)
To check the definition of this expression as a whole, we can
use the union of intersections E=(keep ∩ down ∩ a living
organism)U(keep ∩ down∩ a material thing)=(keep ∩
down∩(a thing U a living organism)=(keep ∩ down ∩ u),
where (a material thing U a living organism)=u, because if a
material thing=a , then a person= ac, а a U ac=u. Hence, one
concept corresponds to the set, and a broader one - the generic
concept corresponds to the complement of the set, that is, one
can figure out this union of intersections as follows:

Fig.12 Intersection of the set and its complement

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 563 --

An English expression can be expressed in Russian by
different verbs, although with similar features. The
representation of the values of lexical constructions using the
intersection of sets seems to be the right approach to formalize
the meaning of an expression by means of variables connected
with the help of a union, intersection, and addition operations.
When comparing our original sentence with a few examples, if
each of them contains all the variables appearing in the
original expression, then there is no need to do
transformations, and if there are some variables that are not in
the original one, it will be necessary to bring the original
expression to full normal form in order to size it up with other
ones.

There is an expression “put it away”. Let’s represent it as
an implicant: (put ∩ away ∩ it).

 The explanatory dictionary contains the following
implicants: (put ∩away ∩ something) = 1) put something into
the proper place; 2) ship-move away; (put ∩ away ∩ a
person)=1) get rid of someone; 2) put someone in prison or
asylum; (put ∩away ∩some ideas)=leave behind;

Therefore, it is necessary to bring the variable it to an
accordance with the implicants in the dictionary. Using it as an
abstract variable that does not imply an it - something relation,
we must embrace all the elements of a given set. Let’s
represent this variable as an implicant (C U CC), i.e. (a thing U
a person), thus we obtain the product E = (put ∩ away)∩(a
thing U a person)=(put ∩ away ∩ a thing) U (put ∩ away ∩ a
person), is to say, this work covers all vocabulary meanings,
which is good. There are no exceptions left uncovered. It is
usually a demonstrative pronoun indicating an inanimate
object, an animal, an event or fact. Thus, our expression is E =
(put ∩ away ∩ a thing); will match the expression E1 = (put ∩
away ∩ something).

CONCLUSION

When analyzing a sentence, two methods can be applied:
1) building the component tree for a general representation of
the syntactic structure of the sentence and optimizing the
resulting tree to minimize its elements; 2) representing the
lexical structure using intersections; telling the difference of
one expression from another. After checking the completeness

of the set, a correspondence is established between the
variable of the initial expression and the variable of dictionary
expressions.

That in general will have a beneficial impact on the
scientific background with further improvement,
modernization and optimization of the text information
processing subsystem.

REFERENCES
[1] Sak A.N. Identificacia chlenov predlojenia kak osnovnaia zadacha

mashinnogo perevoda. [Identification of the sentence members as the
main task of machine translation]. Moscow .: Scientific Review
Ed.14, 2015 (in Russian).

[2] Steven S. Skiena Algoritmy. Rucovodstvo po razrabotke[The
algorithm Design Manual]. St.Petersburg, BHV, 2011(in Russian).

[3] Paducheva E. V. Statyi raznyh let [Articles of different periods].
Moscow, 2009, Studia philologica, 20p.

[4] Alyoshintsev A. V., Bessonova E.V., Sak A. N. Modelirovanie
systemy machinnogo perevoda technicheskih tekstov v
telecommunicacionnoy sfere s ispolzovaniem objectno-
orientirovannogo yazika programmirovania C# [Modeling of the
machine translation system for technical texts of the
telecommunication field using the object-oriented programming
language C #] T-Comm, Telecommunications and transport 2017.Vol
11. №10. pp. 66-73(in Russian)

[5] Russel Stuart Iskustvennyi intellect. Sovremennyi podhod.[Artificial
intelligence. Modern approach]. Moscow/St. Petersburg/Kiev, 2006

[6] Alyoshintsev A. V., Jolodkov P.A. Obzor sovremennij tejnologiy
ispolzuemij pri postroenii zdaniy [Overview of contemporary
technologies used for smart-house design] T-Comm,
Telecommunications and transport 2009. № S2. pp. 159-163.

[7] Rybina G.V. Osnovy postroenya intellectualnih system. [Basics of
building intelligent systems]. - Moscow : Finance and Statistics;
INFRA-M, 2010.-432pp.

[8] Malysheva E.N. Ekspertnuye systemi.[Expert systems]: Studies
support– Kemerovo: Kemerov. state University of Culture and Arts,
2010. - 86 p.

[9] Shamina I.S. SEO copyrighting 2.0 Kak napisat’ teksti v eru
semanticheskogo poiska. [SEO-copywriting 2.0 How to write texts in
the era of semantic search]. - M.: Infra-Engineering, 2018. - 260 p.

[10] Alyoshintsev A. V., Sak A. N. Modelirovaniye informacionnih
system computernogo zreniya dlia machinnogo perevoda metodamy
teorii grafov. [Modeling computer vision information systems for
machine translation using graph theory methods] // T-Comm:
Telecommunications and Transport, Vol. 12, No. 10, 2018, P. 58-63

[11] Bibilo P. N.Logicheskoye proektirovaniye discretnih usrtroystv s
ispol’zovaniem productionno-freimovoy modeli predstavleniya
znanii. [Logical design of discrete devices using the production-and-
frame model of knowledge representation / P.N. Bibilo, V.I.
Romanov. - Minsk: Belarus. Navuka, 2011. - 279 p.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 564 --

