PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

A Prototype of Mininet-Based System EmStream

for Emulation of Dynamic Adaptive Streaming over
HTTP

Anatoliy Zabrovskiy, Evgeny Petrov, Evgeny Kuzmin, Mikhail Fomichev, Natalya Sokolova
Petrozavodsk State University
Petrozavodsk, Russia
{z_anatoliy, johnp, kuzmin, fomichevm, nsokolova} @petrsu.ru

Abstract—With the proliferation of media systems for content
delivery, there is a growing demand for sophisticated methods
to research emerging technologies in this field. For instance,
new solutions for streaming video can be studied using real
communication networks which is not always convenient or even
feasible. In this paper, we present EmStream a practical solution
to investigate the delivery of media content over the Internet
using a MPEG-DASH technology. In its core, EmStream combines
network emulation environment Mininet with a real hardware
client and a server from the IP-network. We describe the adopted
approach and demonstrate a prototype of our Mininet-based
system for the emulation of MPEG-DASH stream transmission
over a pre-set network topology. Specifically, we will show how
to embed the virtual Mininet environment into a real network
infrastructure and utilize the aforementioned setting to conduct
experiments. Based on our findings, we conclude that EmStream
built upon Mininet is a practical tool for testing DASH-based me-
dia streaming. Moreover, our Mininet-based system is considered
to be reasonably accurate for emulating DASH-content delivery
in pre-set topologies as well as software-defined networks.

I. INTRODUCTION

Dynamic Adaptive Streaming over HTTP (DASH), also
known as MPEG-DASH, is the first adaptive bit rate solution
based on HTTP which became an international standard in
2012 [1]. MPEG-DASH was specifically designed to deliver
data streams to a user with the highest possible bit rate
under the varying bandwidth conditions. It can also be used
for the on-demand live streaming and time-shifted delivery
[2]. The advantages of MPEG-DASH as compared to other
proprietary streaming solutions were shown in [2]. Currently,
the DASH standard is being widely deployed [3], especially
in live streaming video systems which means that the format
will play an important role in this field. It is viable that shortly
MPEG-DASH will be more actively used together with such
technologies as Software-defined Networking (SDN), Content
Delivery Network (CDN) and Content-Centric Networking
(CCN) [22], [23], [18].

In order to investigate new technologies for streaming
video existing communication networks can be utilized which
is not always convenient or even feasible. Thus, to overcome
the aforementioned obstacle network emulators are frequently
used one of which is open-source Mininet [4]. Mininet is
capable of building realistic virtual topologies consisting of nu-
merous network elements such as end hosts, switches, routers
and communication links. In a nutshell, Mininet implements

a concept of Software-Defined Networking (SDN). SDN is a
novel networking paradigm in which a control layer is imple-
mented in software and separated from a packet forwarding
plane [5]. It is expected that the future deployment of a new
SDN concept [6] will allow administrators to control network
services and hardware without having to know the intricate
underlying functionality.

As we expect, the rapid development of new approaches
to network establishment and maintenance together with tech-
nologies for media content delivery will eventually lead to their
complementary utilization. Enabling such functionality would
maximize the perceived quality of experience (QoE) while
watching video. With this in mind, we decided to estimate
the delivery efficacy of the real MPEG-DASH traffic through
Mininet.

To achieve the stated goal we developed a methodology for
setting the Mininet virtual environment with bandwidth shap-
ing functionality. Additionally, we built an experimental setup
that interconnects two parts: a virtual environment established
with Mininet and a real IP-network. In order to evaluate the
relevance of the proposed solution we compared the process
of transmitting DASH content via the Mininet-based system
and the specialized Linktropy 5500 equipment [7] under a
number of traffic shaping scenarios. Based on these experi-
ments we showed that both settings yield similar results by
applying methods of statistical data analysis [24]. Therefore,
our solution becomes a flexible and affordable platform for
researching and developing systems for adaptive streaming.
Inspired by this observation we extended the Mininet-based
system with a web management interface and a set of new
features. The newly presented EmStream prototype consists of
the following parts:

o Customized Mininet environment.
e Web management interface.
e MySQL database.

Overall, we consider the application of Mininet to emulate
the delivery of media content with adaptive streaming as a
direction which has considerable practical potential. The rest
of the paper describes the building blocks of EmStream, its
underlying functionality as well as the use case scenarios and
feasible extra features.

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

II. MININET OVERVIEW

In its core, network emulator Mininet uses a mechanism
of Linux lightweight containers which allows configuring and
running a virtual network within a single OS kernel [8].
The Mininet topology consists of various instances that can
be set such as communication links, hosts, network switches
and controllers. The host within Mininet behaves like a real
computer. Therefore, it is possible to use SSH connections to
remotely access a particular node and run real programs on
it such as a network protocol analyzer (e.g. Wireshark [9]) or
a web server. Additionally, Mininet provides a capability to
configure and tune numerous parameters of a communication
channel such as throughput, delay, jitter, etc.

To accommodate a large number of networking instances
(e.g. hosts and switches) Mininet uses process-based virtual-
ization within a single OS kernel [4]. On top of that Mininet
supports user interaction (e.g. using ping or traceroute utility)
with a virtual network environment by means of a command
line interface (CLI). Furthermore, Mininet can be interfaced
with real networks, for instance, wired or wireless local area
networks (LANSs). In order to start with Mininet a laptop
or a desktop running a Linux operating system is required.
Moreover, a straightforward and extensible Python API is
provided for network establishment and development [10].

Being designed in such a way, Mininet follows the concept
of Software-Defined Networking (SDN). The main difference
between the SDN and a traditional network is the separation
between control and forwarding planes which results in more
flexible and agile network configurations. The control layer is
usually represented by so-called network controllers such as
POX, ONIX, VAN SDN Controller [11], [12], [13] and others
which are responsible for centralized control (e.g. a decision
whether to drop, forward or buffer a particular packet) and
network monitoring. The forwarding plane consists of various
networking devices such as a switch, router and access point.
Both layers communicate through some interface protocol such
as OpenFlow [14].

A vital feature of SDN is its capability to be adjusted

according to specific user or application requirements after
the network has been set. That gives network administrators
and developers an opportunity to design and implement their
own application functionality to work with SDN controllers.
For instance, various applications of HP VAN SDN Controller
can fulfil actual end-to-end service requirements for network
performance, monitoring, quality of service and security [15].

Due to its rich emulation capabilities and scalability, the
application domain of Mininet is much broader than just SDN.
A good example of using Mininet functionality for researching
new network technologies is a Mini-CCNx project [17]. Mini-
CCNx is a tool for fast prototyping of Information Centric
Networks (ICN) based on the CCN model [16]. It extends
Mininet to support the emulation of CCNx hosts and routers
by running the customized ccnd daemon [17]. The main idea of
the CCN network paradigm is to label certain content and make
it directly addressable and routable throughout the network. In
this case endpoints use for addressing the marked data instead
of IP addresses. It is worth emphasizing that the CCN concept
has received great attention from the research community,
also in the directions related to MPEG-DASH [18]. Currently,
Mininet together with Mini-CCNx can be used for the rapid
prototyping of CCN networks.

III. EMSTREAM DEMO

In this section we will describe our EmStream system
which consists of three interconnected blocks: Mininet PC,
Server PC and Client PC. To start with, the Mininet PC
is represented by a computer supplied with two network
interfaces (Inz_I and Int_2) and running Mininet software. In
addition, a web server (the Server PC) which contains MPEG-
DASH content is connected to the Mininet PC via the Inz_I
interface. It should be noted that the media content stored on
the server side was generated in advance using the Bitcodin
service [19]. Moreover, a client computer (the Client PC)
which receives the information from the server is connected to
the second network interface of the Mininet PC (Inz_2) which
is configured as a virtual switch port in the Mininet topology.
It is important to emphasize that the Client PC is assigned an

Mininet PC

Mininet environment

T

Switch

Int_

Client PC

I
]

MysaL

Server PC

Fig. 1. EmStream demo setting

394

Database

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

IP address from the range of Mininet network. Therefore, in
the presented setting the client computer is considered as a
part of the Mininet virtual IP-network. Whereas, the Server
PC belongs to another (external) network which should be
reachable from the Mininet network. The high-level overview
of the described setup is depicted in Fig. 1.

The demonstrated EmStream setting works as follows.
Initially, Python scripts are used to automatically create the
specified virtual Mininet topology and interconnect it with
a real-IP network. On to top of that we implemented func-
tionality that allows varying channel characteristics such as
bandwidth, packet loss and delay according to a predefined
scenario. Particularly, the channel properties of any virtual
link (e.g. linkl in Fig. 1) can be tuned at certain moments
in time. Thus, the video streams destined for the Client PC
can be influenced and the corresponding effect observed and
estimated.

On the client side we opted for the Bitmovin bitdash player
[20] as a media player for the video streams playback. The
player is embedded into the EmStream management interface
and configured to send application playback parameters di-
rectly to a MySQL database. Among the parameters that we
capture are the bit rate of the currently played video segment
(videoBitrate in kbps) and the bit rate of the downloaded
video segment. For instance, videoBitrate values are obtained
through the player’s API provided by the developer [21]. At
the present time, EmStream supports only the Bitmovin bitdash
player, although the integration of other playback solutions is
also possible.

The EmStream management interface is illustrated in Fig.
2. As can be seen the interface is built in a user-friendly manner
which enables to design an experiment in a convenient way and
easily run it. Additionally, such functionality as monitoring
playback parameters and displaying the results in real-time
is also supported by the EmStream interface. Throughout the
whole experiment the playback parameters are recorded each
second and stored in the MySQL database. The current version
of our prototype allows configuring the following parameters
and options:

o the duration of an experiment and the overall number
of experiments in succession;

o link selection: choosing a Mininet virtual link to which
the specified parameters would apply;

e link characteristics:bandwidth, delay and packet loss;

e a bandwidth shaping scenario;

e settings of MySQL database connection;

With EmStream we designed several experiments which
we are going to demonstrate. One of the examples can be
described using the setting presented in Fig. 1. The whole
experiment takes 120 seconds during which the bandwidth of
a communication channel (i.e. linkl) is varied according to a
predefined scenario that we set with the EmStream manage-
ment interface. Specifically, each 30 seconds the bandwidth
changes according to the following sequence: 1 Mbps, 2 Mbps,
3 Mbps and 1 Mbps. Such a pattern of bandwidth shaping
inevitably causes the bit rate switch of various DASH-based
streams which we can observe with our system. More details
regarding the experiments and capabilities of the EmStream
system will be provided during the demo session.

IV. CONCLUSION AND FUTURE WORK

Our results show that the EmStream system based on
Mininet can be viably used for emulating content delivery
using Adaptive Streaming over HTTP.

In our future research we are planning to incorporate
complex network topologies within the Mininet environment.
Hence, we could conduct more sophisticated experiments in
the delivery of DASH-based content that would reflect large
heterogeneous infrastructures typical for real-life scenarios. On
top of that we consider integrating the network emulation
profiles recommended by the implementation guidelines [25]
into the future versions of EmStream. Yet another direction
that we deem fruitful is the development of EmStream features
which could simultaneously communicate with the Mininet
environment and APIs provided by the vendors of media
players. Systems with such functionality would be able to

Experiment info
buration:
a0
Number:
4
Description:
New stream
Video source

ntip:

Player:
® bitdash © dashjs

Protocol
® MPEG-DASH © HLS 6000

Link characteristics/ Bandwith shaper

— dIVideoBitrate — videoBitrate

Fig. 2. EmStream management interface

395

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

automatically conduct experiments for the delivery of MPEG-
DASH content, taking into account different network impair-
ments and various test profiles. Thus, having such capability
built-in opens new opportunities for testing adaptive control
algorithms implemented in current media players as well as
developing new algorithms.

Eventually, we aim for the mature EmStream system which
would easily allow implementing new test profiles related
to the delivery of MPEG-DASH content and incorporating
different networking paradigms such as SDN, CDN and CCN.

V. ACKNOWLEDGMENTS

This work was supported by the Strategic Development
Program of Petrozavodsk State University (2012-2016).

REFERENCES

[1] Dynamic Adaptive Streaming over HTTP,
Web: http://mpeg.chiariglione.org/standards/mpeg-dash

[2] Dynamic Adaptive Streaming over HTTP (DASH) - A Flexible and
Efficient Solution for Mobile Multimedia,
Web: http://www.qualcomm.com/media/documents/files/dynamic-
adaptive-streaming-over-http-dash-.pdf

[3] The State of MPEG-DASH Deployment,
‘Web: http://www.streamingmediaglobal.com/Articles/Editorial/Featured-
Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx

[4] Mininet Overview,
Web: http://mininet.org/overview

[S] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li: “Software
defined networking: State of the art and research challenges”, Computer
Networks, vol.72, 2014, pp. 74-98.

[6] M. Liyanage, A. Gurtov, and M. Ylianttila. Software Defined Mobile
Networks (SDMN): Beyond LTE Network Architecture. Wiley, 2015.

[71 Linktropy 5500 Hardware Guide - Apposite Technologies,
Web: http://www.apposite-tech.com/assets/pdfs/linktropy-5500-
hwguide.pdf

[8]1 B. Heller. Reproducible network research with high-fidelity emulation.
PhD thesis, Stanford University, 2013.

[9] Wireshark,
Web: https://www.wireshark.org

[10] Mininet Python API Reference Manual,
Web: http://mininet.org/api/annotated.html
[11] POX Wiki,

Web: https://openflow.stanford.edu/display/ONL/POX+Wiki

396

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inouye, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks”,
In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, 2010.

HP VAN SDN Controller Software,
Web: http://h17007.www 1 .hpe.com/us/en/networking/products/network-
management/HP_VAN_SDN_Controller_Software

W. Braun and M. Menth. Software-defined networking using openflow:
Protocols, applications and architectural design choices. Future Internet,
2014.

Technical
Controller,
Web: http://h17007.www 1.hp.com/docs/networking/solutions/sdn/4 AA4-
8807ENW.PDF

C. Cabral, C. E. Rothenberg, and M. F. Magalhdes. Mini-CCNx: Fast
prototyping for named data networking. In Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking, 2013.

Mini-CCNx,

Web: https://github.com/chesteve/mn-ccnx/wiki

Y. Liu, J. Geurts, JC. Point, S. Lederer, B. Rainer, C. Miiller, C. Tim-
merer, and H. Hellwagner. Dynamic adaptive streaming over CCN: A
caching and overhead analysis. In 2013 IEEE International Conference
on Communications (ICC), 2013.

white paper. HP Virtual Application Networks SDN

Video Encoding Service for Adaptive Streaming,
Web: https://www.bitcodin.com

Bitmovin bitdash player,
Web: http://www.dash-player.com

JavaScript API Documentation,
Web: https://bitmovin.com/player-documentation/player-api/

P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race.
Towards network-wide QoE fairness using openflow-assisted adaptive
video streaming. In Proceedings of the 2013 ACM SIGCOMM workshop
on Future human-centric multimedia networking, 2013.

C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate adapta-
tion for dynamic adaptive streaming over HTTP in content distribution
network. Signal Processing: Image Communication, 2012.

A. Zabrovskiy, E. Kuzmin, E. Petrov, M. Fomichev. Emulation of
Dynamic Adaptive Streaming over HTTP with Mininet. Proceedings
of the FRUCT1IS, 2016.

Guidelines for Implementation: DASH-AVC/264 Test cases and
Vectors,

Web: http://dashif.org/wp-content/uploads/2015/04/DASH-AVC-264-
Test-Vectors-v09-CommunityReview.pdf

