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Abstract—Spontaneous speech full parsing still remains an
unsolved task for the Russian language although a great amount
of theoretical work has been done in the field of spontaneous
speech syntax. The paper presents results on probabilistic context-
free grammar induction from the unlabelled corpus of Russian
spontaneous speech using the algorithm proposed by James
Scicluna and Colin de la Higuera in 2014. The corpus contains 40
hours of speech (250 000 tokens). The exact task of the experiment
was to learn syntactic structure of elementary discourse units
that occur in spontaneous speech, make a benchmark for further
development of spontaneous speech parsing algorithms and get
statistics about elementary discourse units length and structure
in spontaneous speech.

I. INTRODUCTION

Voice control systems, dialogue systems and natural lan-
guage interfaces consume spontaneous human speech. This
results in the doubly noisy input: the noise comes from ASR
systems and it also comes from feeble speech “understanding”
algorithms that mostly use deadly simple approaches (n-grams
or pattern search, keyword extraction, etc.) declaring that
natural language understanding is performed. The last problem
arises from the fact that spontaneous speech is very hard
to parse and analyze, because it contains a large number
of speech disfluencies, breaks, interruptions, unfinished and
ellyptical phrases, grammatical mistakes, etc. This is the reason
why NL parsers, trained on “written” texts, fail when given
a spontaneous input. Spontaneous speech full parsing still
remains an unsolved task for the Russian language although a
great amount of theoretical work has been done in the field of
spontaneous speech syntax. Spontaneous syntax characteristics
and principles of speech generation demand a set of parsing
rules which differs considerably from the set of rules used in
the parsers processing “written” text.

To bridge this gap, we currently work on development of
the parser for Russian spontaneous speech combining methods
of grammar inference with semantic resources (knowledge
bases and ontology of lingustic metadata that contains deriva-
tional, taxonomic and semantic relations between words of
the Russian language). Ontology of linguistic metadata is now
being developed using existing Tuzov semantic dictionary (in
English see [1].

The whole project demands considerable efforts on spoken
corpus design, evaluating and improving methods of speech
repairs identification and removal, applying and evaluating
existing supervised and unsupervised algorithms of learning
a pool of dependency and constituency grammars, algorithms
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of semantic parsing, etc. For the Russian language no data and
results have been published about quality of parsing procedures
evaluated on spontaneous speech, therefore, we started the
research with parsing spoken language using unsupervised al-
gorithms in order to make a benchmark for further comparison
of parsing procedures and algorithms applied to the spoken
language. It seemed reasonable to start with the unsupervised
algorithm running on the morphologically annotated corpus
with minimal preprocessing to estimate the correctness of the
parsing rules obtained on the unlabelled data. We used the
algorithm for unsupervised probabilistic context-free grammar
induction proposed by [2]. It is frequently mentioned in the
literature that dependency grammars model syntactic structures
of the languages with free or flexible word order (like Russian)
better than phrase-structure grammars, but in the considered
case the choice between dependency and constituent grammars
is quite irrelevant, because, as it is mentioned above, the long-
term goal is to consequently combine and evaluate different
approaches to Russian spontaneous speech parsing running
them on spoken corpora that undergo from none to thorough
preprocessing to find the optimal way to generate valid syn-
tactic/semantic structures for disfluent and noisy speech.

A. Experiment setup and paper structure

Main part starts from brief explanation of grammar infer-
ence principles and its general approaches (section 2). The
experiment on testing COMINO for grammar inference for
Russian spontaneous speech splits into three evident steps: 1)
sample preparation, 2) adding modifications to the algorithm
and its implementation, 3) evaluation. Sample preparation is
discussed in section 3, where corpus annotating and algorithm
input preparation (splitting the corpus into elementary dis-
course units) are described. Section 4 concerns the original
COMINO algorithm and its implementation in the current
experiments, evaluation and results are given in section 5.

II. GRAMMATICAL INFERENCE APPROACHES

Grammatical Inference (grammar learning) is a subfield
of theoretical computer science. It ’provides principled meth-
ods for developing computationally sound algorithms that
learn structure from strings of symbols. The relationship to
computational linguistics is natural because many research
problems in computational linguistics are learning problems
on words, phrases, and sentences” [3]. Grammatical inference
methods are applicable to any discrete sequences of symbols
or strings, therefore, they can be used in the broadest range of

ISSN 2305-7254



PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

research tasks, from pattern recognition in computer vision
to process mining. Heinz, de la Higuera and van Zaanen
brilliantly remark, that ’there are many other ways to look at
the learning of (natural language) grammars”. For instance, one
area of research aims to develop cognitive models of language
learning. In this area, properties of theoretical models are
compared against the performance of human learners. It still is
not clear exactly what a cognitively realistic model of language
learning should include [3]. In respect to the development
of natural language parsers grammar inference models are
crucial to build an adequate set of parser rules, which can rely
on any available annotation or perform on unlabelled data.
The grammar inference algorithm should be given access to
an annoated corpus or unlabelled data. With this information
the algorithm tries to build a formal representation capable
to analyze the structure of sentences (analysis) in natural
language and generate sentences in natural language (synthe-
sis). Two typical scenarios of grammar learning is learning
from text where only strings from the language are given to
the learner (this approach is known as batch learning), and
learning from an informant where the strings from which one
is to learn are labeled with 1 or O depending on the fact that
they belong or not to the language. These two approaches are
directly correlating with unsupervised and supervised learning.
Unsupervised approaches are usually less accurate, but time-
saving as they need no annotation which requires informant’s
efforts, which are sometimes burdening (syntactic tagging, as
well as parsing, is one of the most laborious and complex NLP
tasks especially in the part of relation labeling). Among the
unsolved problems of grammar inference remains the need of
algorithms that can deal with noisy data: the usual benchmarks
that appeared since the late 90s were concerned with learning
large automata from positive (sentences that are valid and
appear in the language) and negative (grammatically ill-formed
sentences) data, but in all cases this data has to be noise
free. Grammar inference algorithms share most algorithms and
techniques with data mining and applied statistics: machine
learning, pattern recognition, tabu search, sequence modeling,
etc.

III. SPONTANEOUS SPEECH CORPUS TAGGING

For the experiment a corpus of spontaneous phone con-
versations gently provided for the research by the Center
of Speech Technologies (http://speechpro.ru/) was used. The
corpus contains signal, phoneme tagging, pause borders and
transcripts of phone interviews (dialogues + monologues).
Speech disfluencies are not numerous in this corpus because
of the high professional and social status of the dictors. This
corpus is private and can not be freely accessed. Currently we
are building an open corpus of spontaneous Russian speech
with multilevel annotations (speech repairs, EDU segmenta-
tion, syntactic tagging, etc.) to ensure comparability of results
in future. Transcripts to 40 hours of speech from the above
mentioned corpus were manually segmented into elementary
discourse units and sentences. To fasten the process of splitting
into elementary discourse units each sound file with corre-
sponding transcription was segmented into smaller ones by
pauses. A more detailed procedure of splitting the speech into
elementary discourse units is given below.

Total number of elementary discourse units used in the
experiment is 84000. Then each EDU was pos-tagged using
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Mystem tagger (https://tech.yandex.ru/mystem/) that allows to
resolve homonymy. Speech repairs were left in the corpus
except those which could be qualified as hesitation fillers, like

‘o L L T4 T4

HY", “BOT", “Kak OBI‘, “KaK-TO Tak", “KaKOW-TO TaKOii",
“ram 9%, “99“, “a“. The last were removed before the pos-
tagging procedure. Even this simple preprocessing improved
the results of grammar inference, because these words influ-

enced contexts distribution.

A. Splitting the corpus into elementary discourse units

There is no unity between researchers on the definition
and principles of identifying elementary discourse units [4]:
“Researchers in the field have proposed a number of competing
hypotheses about what constitutes an elementary discourse
unit. While some take the elementary units to be clauses
(Grimes, 1975; Givon, 1983; Longacre, 1983), others take
them to be prosodic units (Hirschberg and Litman, 1993), turns
of talk (Sacks, 1974), sentences (Polanyi, 1988), intentionally
defined discourse s egments ( Grosz and S idner, 1986), or the
“contextually indexed representation of information conveyed
by a semiotic gesture, asserting a single state of affairs or par-
tial state of affairs in a discourse world,” (Polanyi, 1996, p.5)”.
Principles of segmenting disctor’s utterances into EDU were
adopted as in Kibrik and Podlesskaya [5]. These authors elabo-
rated the following cues to identify elementary discourse units:
pausing, tempo, loudness, intonation, and accent placement.
In the paper [6] Kibrik stresses that “identified EDUs display
a remarkable correlation with independently established se-
mantic and syntactic units, that is clauses” and provides data
on the percentage of clausal EDU in English (60%), Russian
(68%), Japanese (68%) and some other languages. In Table
I we provide a distribution of elementary discourse units by
the number of verbs in the EDU (evidence from the above
mentioned corpus of spoken conversations). In the processed
corpus percent of EDU containing at least one finite verb is
smaller - 44%, probably due to the large number of answers
like “yes” and “no” in the phone conversations.In Table II

TABLE I. EDU DISTRIBUTION BY THE NUMBER OF VERBS IN THE EDU

N verbs | frequency
0 47020

1 30696

2 5376

3 762
4
5
6

126
10
10

distribution of EDU by its length is shown (evidence from the
same corpus) which can be used in the algorithms of automatic
speech segmentation into EDU/clauses/sentences.

IV. PROBABILISTIC CONTEXT-FREE GRAMMAR
DEFINITION IN THE COMINO ALGORITHM

Probabilistic context-free grammars (also called some-
times Stochastic) are CFG with probabilities added to rules.
C.Manning and H.Schiitze write that "PCFGs are the simplest
and most natural probabilistic model for tree structures, the
mathematics behind them is well understood, the algorithms
for them are a natural development of the algorithms employed
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TABLE II. EDU LENGTH DISTRIBUTION

N tokens | frequency
19389
16845
15779

12357

with HMMs, and PCFGs provide a sufficiently general com-
putational device that they can simulate various other forms of
probabilistic conditioning [7]. Scicluna and de la Higuera use
the standard notion of CFG: “a context-free grammar (CFG)
is a 4-tuple (N, X, P, I), where N is the set of non-terminals,
. the set of terminals, P the set of production rules and / a set
of starting non-terminals (i.e. multiple starting non-terminals
are possible). The language generated from a particular non-
terminal A is L(A) = {w | A = w} and the language
generated by a grammar G is L(G) = UgerL(S). A CFG
is in Chomsky Normal Form (CNF) if every production rule is
of the form N — NN or N — X.” [2, p. 1353].

A probabilistic context-free grammar (PCFG) is a CFG
with a probability value assigned to every rule and every
starting non-terminal [2, p. 1354].

Scicluna and Higuera apart from the notion of CFG and
PCFG start from introducing the cornerstone notion of their
approach to grammar inference - notion of a “congruence
relation”. Below is a broad citation with the formal definition
of the congruence relation and its accessible explanation: ” A
congruence relation ~ on X* is any equivalence relation on
>>* that respects the following condition: if uw ~ v and x ~ y
then uz ~ vy. The congruence classes of a congruence relation
are simply its equivalence classes. The congruence class of
w € ¥* wrt. a congruence relation ~ is denoted by [w]..
The set of contexts of a substring w with respect to a language
L, denoted Con(w,L), is {(I,r) € ¥* x * | lwr € L}. Two
strings u and v are syntactically congruent with respect to L,
written uw, if Con(u, L) = Con(v, L). This is a congruence
relation on X*. The context distribution of a substring w w.r.t.
a stochastic language (L, ¢), denoted " s a distribution
whose support is all the possible contexts over alphabet o (i.e.
>* x ¥*) and is defined as follows:

¢ (lwr)

(L,#) -
Cw (l7 T) T 3y ess (Uwr!)
Two strings u and v are stochastically congruent with
respect to (L, ¢), written u = (L, ¢)v, if o) s equal to
C,(,L’Qs). This is a congruence relation on X* ” [2, p. 1354]”.

Generally saying, two substrings # and v are congruent if
their sets of left and right contexts are the same, and these
substrings are stochastically congruent if the distributions of
these contexts are also the same. Here arise two essential
moments to discuss: 1) what is the context size and 2) which
criterion to choose to affirm that contexts distributions are
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the same? Authors of the algorithm note, that “due to the
problem of sparsity with contexts (in any reasonably sized
corpus of natural language, very few phrases will have more
than one occurrence of the same context), only local contexts
were considered in their experiments. The local contexts of
substring w are the pairs of first k£ symbols (or words for
natural language) preceding and following w. The lower k
is, the less sparsity is a problem, but the empirical context
distribution is less accurate. For natural language corpora, k is
normally set to 1 or 2” [2, p. 1355]. Context’s length can
be increased for artificial languages. To test the algorithm
on Russian spontaneous speech corpus, we set the left and
right context to 1. We used Mann-Whitney-Wilcoxon test to
determine whether contexts’ distributions of any two substrings
come from one population without assuming them to follow
the normal distribution.

COMINO (this is the name of the algorithm developed
by Scicluna and de la Higuera) induces the grammar from a
positive sample S. It includes the following basic steps [2,
p- 1355]:

1)  Inducing the stochastically congruent classes of all
the substrings of .S; At the beginning, each substring
(or phrase for natural language) in the sample is
assigned its own congruence class (line 2). Then,
pairs of frequent congruence classes are merged
together depending on the distance between their
empirical context distribution, which is calculated on
local contexts (that is, on contexts set to 1 or 2).

2)  Selecting which of the induced classes are non-
terminals and subsequently building a CFG. This is a
crucial step when the algorithm knows nothing about
the alphabet of the language or it is desirable to
consider an n-gram or a collocation as a terminal. In
our experiment, the set of terminals is known since
the very beginning, therefore, the step of discriminat-
ing terminals from non-terminals was skipped. While
building the context-free grammar probabilities are
assigned in such a way that the smallest possible
grammar is built.

3)  Assigning probabilities to the induced CFG. This step
was done using the Inside-Outside algorithm as in the
cited paper.

In the next section details about the algorithm implemen-
tation, modifications and the explanation of choices is given.

A. COMINO Algorithm implementation and modifications

Each elementary discourse unit of the corpus has unger-
gone automatic POS-tagging with Mystem tagger. The input
of the algorithm are sequences of part-of-speech tags corre-
sponding to the the word forms in the elementary discourse
unit. For example, the utterance ” KTo 3HAET, YITO BOT HA MCHS
TaK BOT MIPOM3BEJIO BreuaTcHne Takoe bosbimoe” (English
approximate translation: “who knows, well, what impressed
me at that time so much, a big impression though”) will be
rewritten as POS-tags sequence the following way: ”SPRO
V CONJ PART PR SPRO ADVPRO PART V S APRO A”.
Then, each input POS-tag sequence was split into all possible
substrings and left and right contexts and their probabilities
were generated for each generated substring. As a result,
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we got an array of substrings assigned with their contexts
and contexts’ probabilities. At the next step we determined
which substrings were stochastically congruent and merged
them into one congruence class. Contexts’ distributions were
compared using Mann-Whitney-Wilcoxon test while Scicluna
and de la Higuera used used L1-Distance and Pearson’s chi-
squared test. Our choice is explained by the fact that there
is no evidence that contexts are distributed normally and it
is preferable to use a non-parametric test. The next step -
frequent congruence classes selection - differs from Scicluna
and de la Higuera approach. COMINO’s authors define a
frequent congruence class as “one whose substring occurrences
in the sample add up to more than a pre-defined threshold
n. Infrequent congruence classes are ignored due to their
unreliable empirical context distribution. However, as more
merges are made, more substrings are added to infrequent
classes, thus increasing their frequency and eventually they
might be considered as frequent classes” [2, p. 1355]. As
it can be concluded from this definition, the very task is
to filter out frequent congruence classes from the array of
congruence classes, but nothing is said about the procedure of
threshold choosing. Therefore, we decided to rank elements of
congruence classes according to their frequency in the sample
and analyze their rank distribution. The distribution can be
seen in Fig.1.

1200+

frequency

0 100 200 300 400
rank

Fig. 1. Rank distribution of congruence classes

Apparently, this is a long-tail distribution, where typically
about 75-80% of elements have minor absolute frequencies
(5 or less). Distributions like this can be separated using
the h-point criterion, introduced to quantitative linguistics by
Altmann and Popescu in 2009 [8]. The h-point is defined as
the point at which the straight line between two (usually)
neighboring ranked frequencies intersects the » = f(r) line
[8, p. 24], see Fig.2:

L[ if 3r=f(r)
T ey i 3= 10)

In other words, the h-point is that point at which r = f(r)
(r —rank, f(r) — absolute frequency of the token having rank
r). If there is no such point, one takes, if possible, two f(i)
and f(j) such that f(¢) > r; and f(j) < r; (i, j are indexes
for the neighboring frequencies and neighboring ranks). The
h-point seems to be an important indicator in rank-frequency
phenomena. In respect to lexical statistics, h-point shows the
border between autosemantics and synsemantics. Regarding
the problem of choosing frequent grammatical contexts, we
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speculated, that h-point will separate contexts involved in
building sentence syntactic structure, from contexts involved in
conveying stylistic and pragmatic characteristics of the utter-
ance (anyhow, this is a way to set the threshold automatically,
but the interpretation of the idea needs further experiments).
Enlarged part of the congruence classes distribution can be
seen in Fig.3.

frequency

h—point

9900000, .

0 10 20 30 40 50 60 70 80 90 100
rank

Fig. 2. Enlarged part of the congruence classes distribution

For the considered distribution A-point equals 55, it means
that only 55 congruence classes were selected to build the
grammar. However, these 55 classes solely cover 74.5% of
occurrences of congruence classes elements in the sample.
The process of building rules for PCFG starts with splitting
congruence classes elements, which are non-terminals, using
terminals and smaller elements of congruence classes. This
process is described quite clearly in the paper of Scicluna and
de la Higuera [2, p. 1356]: "for every congruence class [w] and
for every string w in [w] (jw| = n), the following conditional
statement is added to the formula:

vw) = (w(wig) Av(wey)) V (v(wsy)) Vo o.. V
(U(wl,nfl) A ”(wnn))

where v(z) is the variable corresponding to the congruence
class [z] and w; ; is the substring of w from the i*" to the j**
symbol of w. This statement is representing the fact that if
a congruence class [w] is chosen as a non-terminal then for
each string in w € [w] , there must be at least one CNF rule
A — BC that generates w and thus there must be at least
one division of w into wy kWg41,, such that B corresponds to
[w1, k] and C corresponds to [wy, 1 ,,]. The grammar extracted
from the solution of this formula is made up of all the possible
CNF production rules built from the chosen non-terminals”.
For example, let’s consider an element of the congruence class
”ADJ PR N ADJ” (ADJ - adjective, PR - preposition, N -
noun). It can be split as following:

ADJ PR N ADJ = ADJ + PR N ADIJ

ADJ PR N ADJ = ADJ PR + N ADJ

ADJ PR N ADJ = ADJ PR N + ADJ
When the loop runs for all terminals and all non-terminals
constituting nonterminals, frequency of all splits is count. The
most frequent split is written to the list of grammar rules. The

loop stops when all splits have equal frequency. Examples of
the generated rules are given in the next section.
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V. RESULTS AND DISCUSSION
A. Evaluation approaches to grammar inference algorithms

Grammar inference algorithms can be evaluated in different
aspects (formal, logic, empirical, etc.). In this exact task we
have to evaluate parsing accuracy.

According to van Zaanen and Geertzen [9], evaluation
methods “can be divided into four groups: looks-good-to-
me approaches analyze the output of GI systems manually.
Rebuilding a-priori known grammars use, often small, “toy”
grammars to generate sequences, which are used as input
for the GI system. The output of the system is then com-
pared against the original grammar. The language membership
method measures the ability to classify sequences based on lan-
guage membership. This measures language equivalence (weak
equivalence). The performance in this method is expressed by
two metrics: precision, which shows the effectiveness to decide
whether a sequence is in the language or not and recall, which
measures coverage. Finally, comparison against a treebank
uses a treebank, a collection of sequences with their derivation,
as a “gold standard”. The plain sequences (generated by
removing the structure from the treebank sequences) are used
as input and the output of the GI system is compared against
the original structure”. In this task we will use comparison
against a treebank and compare the annotation produced by
the algorithm to the manual annotation of the gold standard.

B. Evaluation, results and discussion

The algorithm produced a grammar of 94 rules modeling
the structure of elementary discourse units, most of them are
adequate (rules for parsing verb phrases, noun phrases and
prepositional phrases). Below are rules generated at the first
10 iterations of the algorithm:

.PR+ N — PP

.SPRO+V —= S

.A+N— NP

V+ADV - VP

.APRO+ N = NP

.N+V =S

.PART+V = VP

. PR+ SPRO — PP

.CONJ+ SPRO — false phrase / elliptical phrase
10. ADVPRO+V = VP

Among the wrong rules are rules joining adverbial pronouns
and nouns, sequences of particles into one phrase. Some of
the generated rules are either applicable to describe ellyptical
sentences or can be considered wrong, i.e rule joining personal
pronoun and adverb in a phrase (like ”s 6pIcTpO”, a sentence
with verb ellypsis in Russian).

To evaluate the algorithm performance a manually tagged
sample of 1000 elementary discourse units from the corpus
described above was used. Immediate constituents’ borders and
types were annotated for each elementary discourse unit in the
sample. An example is shown below:

Russian text: Xoresmocs 661 B Benenuio / Meura gercrsa...
English translation: I would like to Venice / A childhood
dream...

Manually annotated phrase structure: (S (VP V PART) (PP PR
N)) / (NP N N)

336

Morphological analysis was performed using mystem
tagger (https://tech.yandex.ru/mystem/), types of constituents
were annotated using the Penn Treebank annotation scheme.
In the example above N - noun, PR - preposition, PART -
particle, V - verb ; VP - verb phrase, NP - noun phrase,
PP - prepositional phrase, S - sentence. Unfinished phrases,
speech repairs, sentences and phrases with ellypsis appeared
frequently in the tagged dataset and additional annotation
tags were ascribed to them: UP - unfinished phrase, SR -
speech repair, EP - phrase with ellypsis. When comparing the
COMINO algorithm tagging against the manual tagging wrong
tags given by the algorithm to these three types of phrases were
not considered as mistakes. Such easing of requirements was
made due to the inability of the current algorithm to classify
such phrases.

The evaluation was done using the Unlabelled brackets
F1 (UFl) score as given in the paper of J.Scicluna and
Colin de la Higuera [2, p. 1358]. We obtained the 69.2 UF1
score that is lower than 85.1 upper bound result given by
COMINO algorithm. This upper bound COMINO result was
obtained on Wall Street Journal corpus, not on the corpus
or spontaneous dialogues or monologues Still, this resulresut
hedefinilts scan not be directly compared.etely seems important
for several reasons, therefore, t. Firstly, we obtained a baseline
for unsupervised grammar learning for Russian spontaneous
speech. Also, taking in consideration the fact, that speech
repairs and other disfluencies influence the parsing quality
badly, 69.2 parsing quality is an admittable result. Mistakes
generated by COMINO algorithm are mainly arise from wrong
parsing parentheses, phrases with ellypsis and coordinative
compounds. Sequences of particles and hesitation fillers are
also parsed improperly since they convey mainly pragmatics
rather than syntactic relations.

It is a well-known fact that both immediate constituents and
dependency structures have different limitations on syntactic
structure modeling. Immediate constituents model, that is used
in formal grammars, is unsuitable to describe discontinuous
syntactic relations, but can easily describe coordinative com-
pounds in comparison to dependency structures. The results we
obtained show that hybrid structures (combining phrases and
dependencies in one parse tree [10]) are more appropriate for
spontaneous speech. However, for some utterances it is better
to generate semantic and pragmatic representations skipping
the parsing stage because surface syntax constructions are too
elliptical and vague. In further work we plan to combine phrase
structure and dependency annotation to ensure its appropri-
ateness for evaluation algorithms which implement different
models of syntax and experiment with evaluating the parsing
quality after speech repairs removal.

VI. CONCLUSION

This part presents results of making a benchmark for the
task of testing grammar inference algorithms applied to Rus-
sian spontaneous speech. This problem is considered important
because there in no parser for Russian spontaneous speech,
from one side, and there is no data about performance of
different grammar inference algorithms on Russian corpora,
especially on spontaneous speech corpora. Future work in this
domain is really large, because algorithms can be developed
and evaluated not only in respect of performance, but also in
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respect to time efficiency (that is a critical point for dialogue
systems development), syntactic structure models (dependency
trees, immediate constituents), metadata the parser uses (it can
rely on grammar, semantics, or both), noisiness of the input
(input transcripts may contain speech repairs, or the last may
be removed). Obtaining precise results on each of these factors
will allow, as we hope, to build a parser, capable to analyse
spontaneous speech accurately and effectively.
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