PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

The Solution of the Profiling Problem Based on
Data Analysis

Vyacheslav Busarov

Saint Petersburg State University
St. Petersburg, Russia
VyacheslavBusarov@gmail.com

Abstract—This article describes the problem of profiling of
objects with varied characteristics. This is relevant for today
task, which requires working with large amounts of data and
cannot be solved manually. In this paper we describe a solution
based on search algorithms of frequent itemsets. The article also
presents the results of a comparative analysis of the algorithms
(which was the subject of a separate research). The main focus of
the article is aimed at substantiation of the choice of an
appropriate algorithm based on some characteristic of the source
dataset. The study is based on work with actual data of the
restaurant industry. Despite this, the results have a wide
application, as the approach described in this article can easily be
generalized to datasets in any other industry. This article is a
logical continuation of the article published in [5].

I. INTRODUCTION

There are a number of objects and an ordered set of
homogeneous common features characterizing these objects.
The input data are sets of signs. Each set of signs is specific to
a particular object and describes it. For each object we want to
find a set of signs which are most fully and succinctly
characterize the object. This set of signs will be called a
profile. In the general case it will be useful for:

e acquiring a brief and succinct characteristic of an
object;

e studying properties associated with the profiles of the
object;

e acquiring new knowledge about the object;

e forming of assumptions about the future behavior/use
of the object.

One particular case of this problem is the problem of
profiling the network of restaurants. Objects in this case are
restaurants, signs are dishes offered in the menus, sets of signs
are paid bills at the restaurants. If we solve the problem of
profiling, we’ll get the standard set of the most popular dishes
in each restaurant. This will help to optimize the purchase of
products, to manage prices and assortment, to generate
personalized recommendations, to plan advertising campaign,
etc.

To solve the problem of profiling of the network of
restaurants we decided to use the algorithm for finding
frequent itemsets, which is a part of the solution of the famous
problem of finding Association rules. The subject of
Association rules was introduced in 1993 by R. Agrawal [1]

Natalia Grafeeva

Saint Petersburg State University
St. Petersburg, Russia
N.Grafeeva@spbu.ru

for solving problems of market basket analysis. All the
algorithms solving this problem operate in two stages: the
search of frequent itemsets and the formation of Association
rules based on the frequent itemsets. The second part has long
been considered as the best and has a widely recognized
decision. All the research up to 2015 [9] aim to improve the
performance of the first part, because it is recognized as the
most computationally difficult.

We will try to find the most computationally efficient
algorithm among currently available algorithms.

II. COMPARATIVE ANALYSIS OF ALGORITHMS

Finding frequent itemsets was first considered critical to
mining association rules in the early 1990s. In the subsequent
two decades, there have appeared numerous new methods of
finding frequent itemsets, which underlines the importance of
this problem. The number of algorithms has increased, thus
making it more difficult to select a proper one for a particular
task and/or a particular type of data. All algorithms need to
work with large databases of source data. This circumstance
complicates the analysis, therefore, an important aspect of
these algorithms is the method of storing input data. The most
relevant solutions move from characteristics to symbols (or
sequences of characters of fixed length), and thus reduce the
task of storing the original samples to storage of the
vocabulary of transactions.

For the comparative study, we analyzed all known
algorithms for finding frequent itemsets. But we did not
consider algorithms with any specific assumptions.

Numerous scientific studies in the direction of fast search of
frequent itemsets can be divided into two classes [5].

The first is “candidate-generation-and-test”. A
characteristic example of the first category of algorithms is
Apriori (R. Agrawal, 1994[2]). This category also includes all
the subsequent variations of this algorithm based on the anti-
monotony principle (the support of a set of attributes does not
exceed the support of any of its subsets [1]). Such algorithms
generate a set of length £+ 7 based on the previous sets having
length k. Even though the anti-monotony property principle
allows us to disregard quite a few variants, such algorithms are
not efficient computationally if initial data is extensive (the
number of itemsets or the length of sets).

The second class is “pattern-growth method”. A good
example of the second category of algorithms is called FP-

ISSN 2305-7254

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Growth (J. Han2000 [10]).Algorithms of this type perform
search in a recursive manner by breaking down a database into
several parts and looking for local answers that are
subsequently combined into an overall result. The algorithms
of this type generate fewer candidates than the algorithms
described above, which allows to save a considerable amount
of memory. However, the productivity of such algorithms
largely depends on the homogeneity of initial data.

Deep comparative analysis of algorithms for finding
frequent itemsets was made in [5]. In this work algorithms
published in [1-4], [6-13], [15,16] were examined. In order to
obtain an overall view of the compared algorithms, we
introduced binary directed relationships between the
algorithms to reflect improvement of productivity and
decreasing of memory used (based only on the experiments
described in the articles mentioned above). According to the
authors of the articles, each pair of algorithms was compared
under identical conditions pertaining to the hardware
characteristics, data, the language of realization, etc. Based on
the relationships introduced between the algorithms, we made
a chart of execution time (Fig. 1) and a chart of memory
requirements (Fig. 2).

It should be noted that there is a two-direction relationship
between some of the algorithms (for example, between
FPGrowth and LCMFreq v.2/v.3 in Fig. 1, EClat and dEClat
in Fig. 2), which means that, depending on the type of initial
data, such algorithms demonstrate approximately equal results
and are considered on a par in this respect.

In the same paper [5] we have described experiments on a
single platform with a common dataset Mushrooms with the
participation of all the currently known algorithms. The
experiment results (Table I) do not contradict the results given
above, which again confirms their authenticity. All the further
experiments were run on a computer with the following
processor: Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz,
12.0 Gb RAM. All the algorithms were realized on Java 8. The
average transaction length is 23, the glossary of attributes
consists of 119 elements, and the total number of transactions
amounts to 8124.

TABLE 1. EXECUTION TIME OF EXPERIMENTS WITH MUSHROOM DATASET

(SEC)

Minimal support

Relim 397,62| 372,18| 341,12|332,89(327,92
PrePost+ 401,15| 373,32| 351,87 337,6(328,12
FIN 412,45| 383,78| 362,91|349,45(340,11
PrePost 415,23 385,11| 365,12| 348,56|345,61
PPV 417,56 389,98 373,32|358,76/349,08
H-mine 419,35| 393,02| 374,79 360,16 350,38
dEclat 426,12| 403,43| 379,81| 373,14(359,26
FP-Growth 427,89| 404,14| 377,02| 375,51|362,97
LCMFreq 429,96| 409,07| 382,59|380,31|364,82
Eclat 434,92| 416,07| 391,19|390,69(375,19
Apriori Hybrid 437,53 419,23| 392,98|394,11(378,85
Apriori 438,24 422,91| 395,01|394,09(379,02

The fact that the results were obtained exactly from a
practical point of view is important since the performance of

308

the algorithms depends on real data, not from theoretical
estimates of complexity. The experiments show that Relim [4]
and Prepost+ [9] are the most effective. However, they are
representatives of different approaches: the “pattern-growth
method" and the "candidate generate and test". We continued
the experiments to choose the optimal algorithm for future
research. We got similar results on the Chess dataset (Table
I). The average transaction length is 18, the glossary of
attributes consists of 94 elements, and the total number of
transactions amounts to 14587.

improve
efficiency

Publication
date

]

Fig. 1.The relationships between
Source:[5]

algorithms in terms of execution time.

minimization of
volume of memory

O

Publication
date

dEclat

Fig. 2.The relationships between algorithms in terms of memory requirements.
Source:[5]

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

We see that there are no fundamental differences in the
relative efficiency of algorithms. The rating of the algorithms
in terms of execution time has not changed. What is common
in data structures of the selected datasets? It turns out that
they are similar in the terms of indicator, which is called
“average cover of a glossary". This concept for a dataset is
defined as follows:

Average cover of a glossary = 1/n *3 (|t|/|D]) * 100

where D - the glossary of attributes, 7— transactions, # - the
number of transactions.

TABLE II. EXECUTION TIME OF EXPERIMENTS WITH CHESS DATASET (SEC)

Minimal support

Relim 788,24| 735,39 682,24| 675,43| 647,38
PrePost+ 807,21| 740,64| 703,74| 678,12 648,24
FIN 825,82| 753,93| 723,85 698,99| 672,26
PrePost 838,84| 778,92 742,24| 709,12| 672,22
PPV 833,61| 773,23| 736,64| 705,52| 690,16
H-mine 840,74| 787,78| 749,61| 720,47| 700,76
dEclat 853,25 804,4| 759,62| 746,29| 710,52
FP-Growth 854,22| 816,82 762,04| 751,02| 716,14
LCMFreq 858,41| 818,14 765,21 760,31| 724,92
Eclat 880,64| 832,14| 782,39| 780,46| 740,47
Apriori Hybrid 874,42| 838,46 785,66 788,98| 751,85
Apriori 883,42| 845,82 790,02| 789,09| 754,02

Datasets Mushrooms and Chess have Average cover of a
glossary equal to 23.7% and 22.1%, respectively. However
other datasets can have very different values of average cover
indicator. How will the algorithms work with such datasets?
Since public datasets do not have sufficient flexibility to more
thoroughly examine this question, we wrote a utility to
generate random datasets according to the specified
parameters: the number of transactions, the capacity of a
glossary and the average cover of a glossary.

We have generated a glossary consisted of 70 items,
datasets consisted of 90 000 transactions, and varied the value
of the average cover of the glossary. We have conducted
experiments with a minimum support (MinSupport) equal to
80 and got the results shown in Table III.

TABLE III. EXECUTION TIME OF EXPERIMENTS WITH DIFFERENT VALUES OF
AVERAGE COVER (SEC). MINSUPPORT = 80%

algorithms. If we place the results on different charts this
difference becomes more noticeable (Fig. 3 and Fig. 4).
Certain patterns of behavior common to all algorithms of each
type become visible on these charts. "Candidate-generation-
and-test" algorithms are better for small values of the average
cover of a glossary (2-15%). At the same time, they are
noticeably less efficient for large values of this index (15-
30%). This fact may be explained: for small values of the
average cover of a glossary heuristics effectively cut off
unsuitable candidates, that improves the speed of the algorithm
work. The growth of the average cover of a glossary makes
heuristics work more and more rarely. It finally decreases the
efficiency of the whole algorithm. However in this interval
"pattern-growth method" algorithms effectively use their main
advantage — the search of local results with their further
extension. There are fewer local results, and they expand for a
smaller number of steps because of smaller differences in
transactions. The charts shows that the performance rankings
of the algorithms when the value of the average cover of a
glossary is equal 25% corresponds to the rankings of the
experiments with the bases Mushrooms and Chess (whose
indexes are equal to 23.7% and 22.1% respectively). This
reinforces the validity of our experiments.

Previous studies have shown that the algorithms of the
category "candidate-generation-and-test" are more efficient for
small values of the average cover of a glossary, and "pattern-
growth method" algorithms for large values. The absolute
leaders in each of the categories are PrePostt and Relim,
respectively. We continued to look for the relationship
between the operation time of the algorithms and metrics
based on the lengths of the transaction, and considered the
mathematical expectation of the length of the transaction. This
concept for a dataset is defined as follows:

Mathematical expectation =Y p; *1

where [in (1,N),

N - the maximum length of a transaction,
pi - the relative probability of length / (p; =g,/ n),
n - the number of transactions,

q; -the number of transactions of length /.

Avg cover

Relim 2356,47| 229443| 2263,08| 2192,67| 220848| 223716
PrePost+ 2104,21| 2168,28| 2237,52| 2255,73| 2270,33| 2356,02
FIN 2197,34| 2231,83| 2280,14| 2270,59| 2299,36| 2360,98
PrePost 2188,63| 221587| 2261,59| 2249,41| 231242 2367,82
PPV 2191,33| 2206,87| 226559| 225541| 232442 237382
H-mine 2446,26| 2374,65| 2306,13| 2237,79| 2340,69| 2398,08
dEclat 2211,33| 2226,87| 2269,59| 2275,41| 234542| 2393,82
FP-Growth 2516,67| 244536| 240594| 2310,72| 2347,95| 240507
LCMFreq 2551,95| 247191| 2423,79| 2350,38| 2363,73| 2431,08
Eclat 2381,24| 238692 241991 2440,59| 2478,63| 2510,37
Apriori Hybrid 2390,42| 2414,31| 2452,13| 2462,72| 249182 2525,09
Apriori 2461,42| 2493,31| 2551,13| 2574,72| 2590,82| 2610,85

It is interesting to note that the results of the experiments in

Table III clearly demonstrate the difference in behavior of
"candidate-generation-and-test" and "pattern-growth method"

309

time of execution (sec.)

15

25

30
average cover of a glossary(%)

kil
7 Apriori
¥ Eclat
¥ dEclat
¥ ppy

¥ PrePost
FIN

vy “PrePost+

~ Apriori

ri
Hybrid

Fig. 3. The chart of execution time of "candidate-generation- and-test"
algorithms (sec)

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

time of execution (sec.)

¥ LcMFreq
J FP-Growth
H-mine

10 B Relim

15 25
average cover of a glossary (%)

Fig. 4. The chart of execution time of "pattern-growth method" algorithms
(sec)

Relim and PrePost+ algorithms are not only the most
effective but also reflect the behavior of all algorithms for the
respective classes. That is why in the future we have only
considered them. We have upgraded the existing tool for
generating test data set for the study of dependencies with the
new metric and added the required mathematical expectation
of the length of the transaction as a new input parameter. We
left the experimental value of the minimum support equal to
80%, generated a database with 50000 transactions and varied
the size of a glossary: 20, 50, 80 and 100 items.

TABLE IV. EXECUTION TIME OF PREPOST+ AND RELIM ALGORITHMS IN THE
EXPERIMENTS WITH 20, 50, 80, 100 ITEMS

20|PrePost+ | 382,72 389,48| 405,23 413,07| 42015 429,69
20|Relim 430,61 417,8| 41145 30884 40419) 41126
50|prePosts | 771,34] 780,91 792,32| 79864 81049 81782
50|Relim 830,14| 813,79| 807,02| 79041| 795,65 801,74
80|PrePosts | 1069,9| 1088,8| 1092,24| 1108,75| 1122,36] 1136,67
80|Relim 1130,4| 1110,7| 1102,37| 108452 1095,93| 1101,66
100|PrePosts | 1172,4| 1194| 1207,58| 1224,97| 1246,52| 1271,18
100|Relim 12747| 1245(123045| 120424 1211,43] 122051

The experiment results (Table IV, Fig. 5) confirm the
concept of the common patterns of behavior for the algorithms
that belong to the same class. At small values of the
mathematical expectations of the lengths of the transactions,
"candidate-generation-and-test" algorithms are faster than the
“pattern-growth method" algorithms, however, for large values
of mathematical expectations, the situation changes exactly the
opposite. It is also worth noting that the running time of an
algorithm PrePost+ with the increase of the mathematical
expectation is growing disproportionately faster than the
operation time of the Relim algorithm. This observation is also
true for all members of each class relative to the average cover
of a glossary (Fig. 3, Fig. 4).

The second observation that can be made on the results of
these experiments: the size of the dictionary influences the

310

angle of the graph execution time of the algorithm PrePost+.
That is, the execution time depending on the mathematical
expectation grows faster with increasing size of the dictionary.
While Relim behaves much more stable, almost not changing
the angle of the graph in different experiments.

. i o " - --~ PrePost+
glossary size 20 items Prepost

glossary size 50 items

-=—s-Relim -a—=-Relim

cution (sec.)

of exe

- -~ Preposte
- -~ Preposts

-—u-Relim «
e

glossary size 80 items

glossary size 100 items

cution (sec.)

0

ecution (sec)

of ex

time of e

a 05
expectation expectation

Fig. 5. The charts of execution time of PrePost+ and Relim algorithms at
experiments with 20, 50, 80, 100 items

The experiments show that for small values of
mathematical expectation of transaction length "candidate-
generation-and-test" algorithms more efficient, however, with
the increase of mathematical expectation, their efficiency is
dramatically reduced. In this case are leading representatives
of the "pattern-growth method", working with greater speed.
Their rate of increase in execution time is much more stable.
Brief descriptions of the algorithms Relim and PrePost+ are
given below.

. Relim. This algorithm was proposed in 2005 in the
study by Christian Borgelt [4]. The acronym "Relim"
illustrates the wunderlying principle of the algorithm:
"REcursiveELIMination scheme". Relim tries to find all
frequent itemsets with a given prefix by lengthening it
recursively and renewing support at the same time. The
approach utilized here is called a "pattern-growth
method".

. PrePost+. Proposed by Z. H. Deng [9] in 2015, it is
the latest algorithm for identifying frequent itemsets. PrePost+
uses three data structures at a time: N-list, PPC-tree and set-
enumeration tree, which explains why it requires more
memory than FP-Growth does (as you can see in Fig. 2).
Although it is an "Apriori-like" algorithm, it has empirically
proved superior to many other algorithms in terms of
execution time (Fig. 1).

I1I. THE SOLUTION OF THE PROBLEM OF PROFILING

We will describe the solution of the profiling of a chain of
restaurants where each restaurant profile is a set of the most
popular dishes. We solve the task for each object separately,
despite the fact that they have common glossary of attributes

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

and the input set of transactions. The solution is divided into 5
stages:

1) Filtering of "empty" data. In order not to work with
information, which made no sense, we need to get rid of
attributes not used to describe objects. This obviously is done
in linear time O(N) using O(M) additional memory, where N
is the initial number of transactions, M is the number of
attributes.

2) Eliminating redundancy. Each transaction from the
original dataset actually contains information about a single
client order, which is redundant information to build a profile
of the restaurant. We don't care whether the data contained
meals in a single check, it is important for us that they were
ordered in the same place at the same day. So, on the basis of
the initial transactions we can build generalized transactions
with the help of aggregating orders inside of a restaurant for
each date. In this case, associative rules for the generalized
transaction will look like this: "If a is ordered in the restaurant,
on the same day will be the ordered 5." This optimization
significantly reduces the number of input data. In addition, at
this stage quantitative indicators are canceled. Therefore, the
aggregated data will have the form, shown on Fig. 6. This step
is accomplished in O(N) using O(1) additional memory.

@ productid @ subdivision id

product name subdivision name

Transactions

transaction id

subdivision id

product id

Fig. 6. Data structure. White attributes was deleted after upgrade

3) Formatting. Algorithms for finding frequent itemsets
require input in the form of transactions, i.e. a set of elements,
corresponding to the real transaction. Formatting the source
data is performed in O(N) time and requires O(1) memory.

4) The choice of a suitable algorithm. We found that the
average cover of a glossary y for the original dataset is equal
to 29.5%. Therefore, we will use the most computationally
efficient algorithm - Relim[4] (if the index was less than 15%,
we would have used PrePost+[9]).

5) The allocation of profiles. Input parameter Minimal
Support directly affects the number of items in frequent
itemsets. Adjustment of this parameter is carried out
experimentally. The transition from frequent itemsets to the

311

profiles provided by the intersection of the results obtained for
the selected values of minimal support.

The undoubted advantage of the above solution is the
analysis of features in combination, rather than a simple sort
by quantity of item. There is also a possibility of seasonal
analysis, i.e. analysis of data corresponding periodic time
intervals (for example: winter, spring, fall or summer).
Optimization and clipping that occur in stages 1 2
significantly speed up the algorithm without compromising the
end result, and the choice in step IV the most suitable
algorithm allows to obtain the most computationally efficient
solution.

IV. EXPERIMENTS

The restaurant chain has provided a dataset, which consists
of three tables (Fig. 6). Initially the table "Transaction"
consisted of approximately 4900000 lines describing the client
checks on all restaurants in the city. It is obvious that profiling
wouldn't make sense, if the network consisted of one
restaurant because one of the motivations of this task - the
search for distinguishing features of objects. In this case, there
were 23 restaurants. Each restaurant was analyzed
individually, but because of the common glossary of items
(dishes) we got matching answers.

It should be noted that the operation of a generalization
conducted on the second step, significantly improved the
operating time of the entire algorithm as a whole, as it reduced
the initial number of transactions on average 2 orders of
magnitude. For example, in one of the restaurants, the number
of transactions was equal to 299095 before generalization and
1459 after generalization. There is some knowledge, which
was extracted from source data:

e In the restaurants located on the territory of the airport,
the largest demand is for different kinds of sandwiches.
It can be assumed that customers take sandwiches on

board the aircraft;

In many restaurants, customers often order different
kinds of coffee and desserts, while in "White gardens",
"White nights" and "Moscow city", according to a set
of dishes, people prefer to dine (in the profiles, almost
no coffee and desserts, mostly hearty meals);

In restaurants "Garage" and "Coffee shop on Fontanka"
customers often have breakfast (porridge, scrambled
eggs, pancakes and etc.).

In all experiments, the minimal support is large enough.
This is due to the peculiarities of the basic problem: too large
profiles obtained with a larger number of frequent itemsets,
not so aptly characterize the object, as more compact. What
facts can be also extracted from the resulting profiles? We can
make the most popular combination of drinks and desserts in
individual restaurants, prepare promotions and integrated
offerings or make something similar. Do not think that the
examples of the profiles are evident for the employees of the
restaurants. This is absolutely wrong, as each of the 23
restaurants initially has approximately 300000 transactions.

PROCEEDING OF THE 19TH CONFERENCE OF FRUCT ASSOCIATION

Large and compact profiles were found during the analysis
process. We can get even more non-obvious knowledge, if we
will take their difference for each feature and thus will throw
away all trivial combinations.

Thus, the experiments conducted in section II, support the
hypothesis that there is a correlation between Average cover of
a glossary, Mathematical expectation and execution time of
algorithms for finding frequent itemsets. In the same section
were formulated the selection criteria for the most efficient
algorithm depending on the properties of the original data. The
experiments conducted in section IV demonstrated the
practical results of the profiling algorithm on real data and
illustrated important optimization stages.

V. CONCLUSION

So, in this paper we gave an algorithm solving the problem
of profiling based on data analysis. The effectiveness of the
proposed solutions is based on:

e preliminary eliminating redundancy to reduce the data
volume;

e a reasonable selection of the most computationally
efficient algorithm of finding frequent itemsets
depending on the characteristics of the original dataset;

e an efficient algorithm for generating profile on the
basis of the found frequent itemsets.

The paper presents a comparative analysis of all currently
available algorithms for finding frequent itemsets. The paper
presented a comparative analysis of all currently available
algorithms for finding frequent itemsets, highlighted patterns
of behavior algorithms of different classes and the results of
experiments demonstrating the dependence of the behavior of
the algorithms and the indicator "average cover of a glossary".
As a result we received a criterion for the selection of the
optimal algorithm for solving the problem of profiling
depending on the source data. The practical result was the
creation of profiles through the processing of relevant data in
real chain of restaurants. The results may have wider
application, as the solution can easily be generalized to similar
data of any other industry and can be integrated into analytical
software packages. In the future we plan to apply a more
complex approach to the processing of quantitative indicators.

REFERENCES
[1]

R.Agrawal . T.Imielinski, A.Swami, Mining associations
between sets of items in large databases, in Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1993, pp.207-

216.

312

[2]

B3]

[6]

(7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.Agrawal, R.Srikant, Fast algorithms for mining association
rules. in Proc. 20th Int. Conf- on Very Large
Databases,1994, pp,487-499.

R.Agrawal, H.Mannila, R.Srikant, H.Toivonen, Fast
discovery of association rules. Advances in knowledge
discovery and data mining. AAAL MIT Press, 1996,12(1),
pp-307-328.

C.Borgelt, Keeping things simple: finding frequent item sets
by recursive elimination, in Proc. Open Source Data Mining
Workshop, 2005, pp.66-70.

V.Busarov, N.Grafeeva, and E.Mikhailova, A Comparative
Analysis of Algorithms for Mining Frequent Itemsets, in
Proc. 12th International Baltic Conference, DB&IS, 2016,
pp- 136—150.

Z.H.Deng, Z.Wang : A New Fast Vertical Method for Mining
Frequent Patterns, International Journal of Computational
Intelligence Systems, 2010, 3(6), pp.733-744 .

Z.H.Deng, Z.Wang, J.Jiang: A new algorithm for fast mining
frequent itemsets using N-Lists. Science China Information
Sciences, 2012, 55 (9), pp.2008-2030.

Z.H.Deng, S.L.Lv: Fast mining frequent itemsets using
Nodesets. Expert Systems with Applications, 2014, 41(10),
pp.4505-4512.

Z.H.Deng, S.L.Lv: PrePostt : An efficient N-lists-based
algorithm for mining frequent itemsets via Children—Parent
Equivalence pruning. Expert Systems with Applications,
2015, 42(10), pp. 5424 — 5432 .

J.Han, H.Pei, Y.Yin: Mining frequent patterns without
candidate generation, in Proc. ACM SIGMOD Int. Conf. on
Management of data, 2000, pp. 1-12.

J.Pei, J.Han, H.Lu, S.Nishio, S.Tang , D Yang, H-Mine: Fast
and space-preserving frequent pattern mining in large
databases, IIE Transactions, 2007, vol. 39(6), pp. 593—605.

T.Uno, M.Kiyomi, H. Arimura, LCM ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets, in Proc.
Workshop on Frequent Itemset Mining Implementations,
2004.

T.Uno, M. Kiyomi, H.Arimura, LCM ver.3: Collaboration of
array, bitmap and prefix tree for frequent itemset mining, in
Proc. Open Source Data Mining Workshop, 2005, 77-86.
S.Vinay, S.Nisarg, P.Samay, D.Nirali, C.Nimisha, P.Umang,
P.Ankit, C.Vishvash, and P.Ashis, A Study of Various
Projected Data based Pattern Mining Algorithms, Research
Journal of Material Sciences, 2013, vol. 1(2),
pp-1-5.

M.J.Zaki, Scalable Algorithms for association mining, /[EEE
transaction on knowledge and data engineering, 2000,
vol.12, no. 3, pp.372-390.

M.J.Zaki, K.Gouda, Fast vertical mining using diffsets, in
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, 2003, pp.326-335.

