PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Emulation of Dynamic Adaptive Streaming over
HTTP with Mininet

Anatoliy Zabrovskiy, Evgeny Kuzmin, Evgeny Petrov, Mikhail Fomichev
Petrozavodsk State University
Petrozavodsk, Russia
{z_anatoliy, kuzmin, johnp, fomichevm} @petrsu.ru

Abstract—Video streaming is becoming more and more pop-
ular technology for media content delivery over the Internet. Dy=-
namic Adaptive Streaming over HTTP (DASH) allows delivering
data streams to a user with the highest possible bit rate in varying
bandwidth conditions which is particularly significant for hopping
communication channels present in wireless networks. This paper
investigates the delivery of media content over the Internet
using MPEG-DASH technology within the network emulation
environment Mininet connected to a real hardware client and
a server from a real IP-network. We present Mininet settings
that allow embedding this virtual environment into existing
network infrastructure. The study shows that the bandwidth
variation of a communication channel emulated in Mininet yields
similar effects on streaming video as compared to experimental
results obtained with a specialized hardware-software network
emulator configured with the same channel characteristics. We
conclude that Mininet can be considered as a practical tool for
the emulation of video streams transmission employing Dynamic
Adaptive Streaming over HTTP, as well as be used for the
development of new adaptive control algorithms.

I. INTRODUCTION

The technologies for streaming video delivery are contin-
uously developing, primarily due to the need to keep up with
the rapidly growing amount of video traffic on the Internet
[1]. Recently, video streaming transmission over HTTP known
as adaptive HTTP streaming has become widely deployed.
Several software vendors like Adobe, Microsoft and Apple
have long been using their own proprietary systems for content
delivery over HTTP such as HTTP Dynamic Streaming [2],
Smooth Streaming [3] and HTTP Live Streaming [4] respec-
tively. The advantage of using HTTP is that the ordinary web
servers with a caching capability can be used for streaming
video.

HTTP Adaptive Bitrate Streaming (ABR) technologies
allow a real-time adjustment for the delivered bit rate and video
resolution depending on the varying bandwidth conditions,
client’s CPU usage as well as the type of an end device.
Video files of different bit rates and resolutions should be
adapted accordingly and uploaded to a server in advance or, in
case of live streaming, generated by the server in a real-time
mode. The decision regarding a bit rate switch is made on the
client side by the media player using built-in adaptive control
algorithms.

Dynamic Adaptive Streaming over HTTP (DASH), also
known as MPEG-DASH, is the first bit rate adaptive HTTP-
based solution which became an international standard in 2012
[5]. Currently, this standard is being widely applied, especially

in live streaming video systems. YouTube and Netflix have
started deploying MPEG-DASH [6], [7] which means that the
format will play an important role in streaming.

In order to investigate new technologies for streaming
video existing communication networks can be utilized which
is not always convenient or even feasible. Thus, to overcome
the aforementioned obstacle network emulators [8] are fre-
quently used: one of them is open-source Mininet [9]. Mininet
is capable of building realistic virtual topologies consisting
of numerous network elements such as end hosts, switches,
routers and communication links. In a nutshell, Mininet im-
plements a concept of Software-Defined Networking (SDN).
SDN is an emerging networking paradigm in which a control
layer is implemented in software and separated from a packet
forwarding plane [10]. It is expected that the future deployment
of a new SDN concept [11] will allow administrators to control
network services and hardware without having to know the
intricate underlying functionality.

As we expect, the rapid development of new approaches
to network establishment and maintenance together with tech-
nologies for media content delivery will eventually lead to their
complementary utilization. Enabling such functionality would
maximize the perceived quality of experience (QoE) while
watching video. With this in mind, we decided to estimate the
delivery efficacy of real MPEG-DASH traffic through Mininet.
Hence, the main contributions of this paper are as follows.
Firstly, we develop a methodology for setting Mininet virtual
environment with bandwidth shaping functionality. Secondly,
an experimental setup is presented which interconnects two
parts: a virtual environment established with Mininet and a real
IP-network. Finally, we compare the process of transmitting
DASH content via Mininet and the real network infrastructure
under a number of traffic shaping scenarios. Based on our
findings we recommend using Mininet emulation environment
as a handy tool for testing and evaluating the performance of
adaptation logic for DASH-based multimedia streams. More-
over, Mininet is considered to be reasonably accurate for
emulating DASH-content delivery in pre-set topologies as well
as software-defined networks.

The rest of the paper is organized as follows. Related work
is discussed in Section 2. Section 3 provides an overview of
Mininet within the SDN paradigm. The research methodology
and experimental setup are explained in Section 4. Section
5 presents the main results along with a relevant discussion.
Finally, in Section 6 conclusions are drawn and future work
directions are indicated in Section 7.

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

II. RELATED WORK

To start with, there exist several hardware-software network
emulators which can be used for investigating the impact
of channel characteristics on the delivery of DASH-based
streams. For example, open-source WANem emulator [12],
specialized Linktropy hardware [13] from Apposite Tech-
nologies, or Netem module [14] built into a Linux kernel.
Furthermore, several studies have shown the applicability of
network emulators for performance-wise estimation of varying
communication channels. Muto and colleagues [15] evalu-
ated the performance of MPEG-DASH over Content Centric
Networks (CCNx) by considering such link parameters as
bandwidth, delay and a packet loss ratio set in PacketStorm
emulator [16]. In [17] authors conducted experimental analysis
of dynamic adaptive streaming over HTTP in CCNx, where
bandwidth shaping was achieved with Linux Traffic Control
Program (tc) [18] and Hierarchical Token Bucket (hh) packet
scheduler [19]. Additionally, the round-trip time (RTT) was
controlled by Linux Network Emulator (Netem) [14]. It should
be noted that some of the aforementioned emulators can
be configured to support a traffic shaping environment (e.g.
dedicated Linktropy 5500 hardware has such functionality).
In essence, this feature allows setting a predefined scenario
according to which bandwidth or other channel parameters
would change over time.

Mininet can be used to achieve both goals simultaneously,
namely setting up a network emulation environment and
enabling traffic shaping for a specified topology. Lantz and
colleagues [20] considered several tools for network emulation
and pointed out that Mininet is a solution for rapidly pro-
totyping large networks on constrained resources of a single
laptop. In [21] it is claimed that Mininet provides a simple
and inexpensive network testbed for developing OpenFlow
applications in Software-Defined Networks. Recent work [22]
used Mininet virtual network to evaluate the effect on adaptive
streaming over HTTP when a bottleneck link was shared.
However, the presented experiments did not take into account
a bandwidth shaping scheme for the bandwidth variation of a
communication channel.

In this paper we describe how to build a system for
delivering DASH-content over the Mininet environment that
comprises of a virtual topology connected to a real network.
The proposed solution allows configuring and applying the
bandwidth shaping scheme which we consider vital for the ex-
perimental analysis. Therefore, our approach leverages Mininet
flexibility and scalability as compared to other works which
used several instances to set up a virtual environment and
tune channel parameters. Moreover, we compare the accuracy
of Mininet emulation capabilities with specialized Linktropy
equipment which provides insights whether the former can
become an affordable platform for researching and developing
systems for adaptive streaming.

III. MININET OVERVIEW

Mininet is designed in a way that follows a concept of
Software-Defined Networking (SDN). The main difference
between SDN and a traditional network (Fig. 1) is the sep-
aration between control and forwarding planes which results
in more flexible and agile network configurations [23]. The

392

control layer is usually represented by so-called network
controllers such as NOX [24], ONIX [25] and Beacon [26]
which are responsible for centralized control (e.g. a decision
whether to drop, forward or buffer a particular packet) and
network monitoring. The forwarding plane consists of various
networking devices such as a switch, router and access point.
Both layers communicate through some interface protocol such
as OpenFlow [27]. A vital feature of SDN is its capability to
be adjusted according to concrete user or application require-
ments after the network has been set. Therefore, utilization
of SDN opens a wide range of opportunities for rich network
configurations and domain specific optimizations.

In its core, Mininet uses a mechanism of Linux lightweight
containers which allows configuring and running a virtual net-
work within a single OS kernel [23]. In Mininet topology there
are various instances that can be set such as communication
links, hosts, network switches and controllers [9]. Mininet host
behaves like a real computer. For example, it is possible to
use SSH connections to remotely access a particular node
and run real programs on it. Additionally, Mininet provides
a capability to configure and tune numerous parameters of a
communication channel such as throughput, delay, jitter, etc.
To accommodate a large number of networking instances (e.g.
hosts and switches) Mininet uses process-based virtualization
within a single OS kernel [9]. On top of that Mininet supports
user interaction (e.g. using ping or traceroute utility) with a
virtual network environment by means of a command line
interface (CLI). Furthermore, Mininet can be interfaced with
real networks, for instance, wired or wireless LANs. Moreover,
in order to install Mininet a laptop or a desktop running Linux
is required. A straightforward and extensible Python API is
provided for network establishment and development [9].

IV. METHODOLOGY AND EXPERIMENTAL SETUP

In this section we describe our methodology along with
settings and network parameters used for DASH-based content
delivery. The experimental setup that we developed (Fig. 2)
consists of the following elements:

e Apache HTTP Server (package httpd-2.2.15-
39.el6.centos.x86_64) width DASH content

e Mininet network emulator (version 2.2.1)

e (lient PC (Windows 8 64-bit, Intel Core i7-4700MQ,
RAM 8 GB) with MPEG-DASH media player

e Customized web-based management interface that we
implemented

e MySQL RDBMS

Further we provide a full description of the core elements
in our experimental setup. More rigorous and detailed infor-
mation regarding the presented setting is given in Table I.

A. DASH content generation

The DASH content for all experiments has been gen-
erated using bitcodin service [28] by encoding file Sin-
tel.2010.720p.mkv* [29] (14 minutes 48 seconds long) into
MPEG-DASH format with a wide range of different bit rates.
We considered the following bit rates for video streams: 4.0

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Fig. 1. Traditional network (left) vs. SDN (right)

Control (e. g. NOX, ONIX, Beacon)

(Forwarding) (Forwarding)

Hostl (Virtual Machine)

Mininet

root-eth0 |—|ink1—®

Switchl OS Routing

VSwitchl

Client

Server

Fig. 2. Experimental setup

Mbps, 3.0 Mbps, 2.4 Mbps, 1.5 Mbps, 1.1 Mbps, 0.8 Mbps
and 0.5 Mbps as well as a single audio stream with a bit
rate of 128 Kbps. The obtained video and audio content was
uploaded to Apache HTTP Server together with a MPD file.
The content was transmitted between the web server and the
client over HTTP 1.1 protocol.

B. Mininet and network parameters

In our experiments Mininet was running within a virtual
machine (VM VirtualBox), launched on a computer with two
network interfaces. Both network cards were configured in a

393

Database

bridge mode and enabled in VirtualBox. In fact Mininet could
have been established on a real computer as well, which would
produce the same results. Hence, we assume that the VM
acts as a normal PC host, named Host/. In this setting one
of the Ethernet interfaces (ethO) on Hostl was connected to
a physical network switch (Switchl). Additionally, a desktop
running Apache HTTP Server (Server) was attached to the
same Switchl. Correspondingly, Server and Switchl represent
a real network in our experimental setup.

The virtual network that was created with Mininet Python

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

TABLE L ELEMENTS OF EXPERIMENTAL SETUP
Name Description
Server Apache HTTP Server (package htipd-2.2.15-39.el6.centos.x86 64)
with DASH content
Mininet Network emulator (version 2.2.1)

Clicnt PC with MPEG-DASH mcdia playcr and web-bascd management
interface (Windows 8 64 bit, Intel Core i7-4700MQ, RAM 8 GB)

Web-based Our customized implementation (version 0.3)

management

interface

Database MySQL RDBMS

OS Routing Linux kernel forwarding feature

Hostl Virtual-Box VM (version 4.2.16) with Ubuntu OS (version 14.04
(Virtual LTS)

Machinc)

Switchl Netgear JGS524E-100PES

Vswitchl Virtual switch (mininet.node.OVSKernelSwitch Class)

link1 Link with symmetric TC interfaces configured via opts
(mininct.link. TCLink at Mininct Python API)

root-ethQ root namespace node (mininet.node at Mininet Python API)
eth0 Host1 ethernet interface 0
ethl Host1 ethernet interface 1

API comprised of a single virtual switch (VSwitchl) and a
built-in default controller. By means of Inif{) function [30] we
attached another real hardware interface of Hostl (ethl) to
VSwitchl and connected a personal computer (Client) to the
same interface. It should be noted that Client was assigned an
IP address from the range of Mininet IP network. Therefore,
in the presented setting Client is considered as a part of the
Mininet virtual IP network. More concrete details regarding the
network parameters of our experimental setup can be found in
Table TI.

A high-level overview of the developed setting can be given
as follows. The main Python script is used to automatically
create a virtual Mininet topology and interconnect it with
a real IP network. Furthermore, with this program we can
vary channel bandwidth within the virtual network according
to a predefined scenario. Therefore, video streams destined
for Client can be influenced and the corresponding effect
estimated.

C. Interconnecting Mininet with the real network

The virtual Mininet topology was connected to the real
network via a special node root-ethO created on Hostl by our
Python script with the following command: root = Node(root,
inNamespace=False). Afterwards, this node was assigned an
IP-address from the Mininet IP network and was used as a
gateway address for Client. By means of TCLink() function
[31] a link between root-ethO and a virtual switch (VSwitchl)
was established as such: link/ = TCLink(root, VSwitchl,
bw=100, delay=0ms, loss=0, jitter=0Oms). Thus, we obtained a
communication channel that could be configured with different
bandwidth values. Additionally, on HostI a special route was
added to forward packets addressed to the Mininet IP network
through the root-eth0 instance. In order to enable routing
on Hostl we utilized a Linux kernel forwarding feature in
the following manner: sysctl net.ipv4.conf.all.forwarding = 1.
Eventually, network packets sent to the range of Mininet IP
addresses were redirected by Host! to the Mininet network.

D. Mininet and bandwidth shaping

By utilizing Minievents framework [32] our program is
capable of tuning channel characteristics (see linkl above)

TABLE II.

NETWORK SETTINGS OF EXPERIMENTAL SETUP

Network
(IP-address)

Network instance

Instance IP-address

(192.168.2.0/24)

Real IP Network Server 192.168.1.1/24
(192.168.1.0/24) ethO 192.168.1.254/24
Mininet IP Network root-eth() 192.168.2.254/24
cthl no address

Client

192.168.2.1/24

394

between virtual and real networks at specified moments in
time. To achieve this we created a configuration file in JSON
notation (Fig. 3) which contained a list of events that defined
time at which a particular event should occur and the properties
of linkl, in the current setting it is bandwidth.

[

{
"time": O,
"type": "editLink",
"params": {
"link": "link1™",
"bw": 1
}
}r
{
"time": ©1,
"type": "editLink",
"params": {
"link": "link1™",
"bw": 3
}
b

]

Fig. 3. A sample of configuration file for bandwidth shaping

E. Client side

On the client side we opted for Bitmovin bitdash player
[33] as a media player for the video streams. It was con-
figured to send videoBitrate parameter which is a bit rate
of the currently played video segment in kbps. VideoBitrate
values were obtained through player’s API provided by the
developer. Throughout the whole experiment the aforemen-
tioned parameters were recorded each second and stored in a
database. The media player was launched in Google Chrome
browser (version 45.0.2454.93 m) with a buffer size set to
40 seconds which was a default value specified in the official
documentation [34]. In the current setup it means that Bitmovin
bitdash player starts downloading new segments as soon as the
buffer level drops below 40 seconds.

V. EXPERIMENT RESULTS

The duration of each experiment was 120 seconds. We
deemed this time length to be representative in terms of con-
sidered bit rates and, to the best of our knowledge, reflecting
a typical application case. For all experiments, bandwidth
values for the communication channel (see /ink! above) varied
according to the predefined scenario shown in Fig. 4. As can be
seen each 30 seconds the bandwidth changed in the following

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

sequence: 1 Mbps, 2 Mbps, 3 Mbps and 1 Mbps. Such a pattern
of bandwidth shaping inevitably caused the bit rate switch of
various DASH-based streams described at the beginning of this
section.

Bandwidth Shaping Scheme

4,096 T 7
3,072 1 .
a
e
=
=
5 2,048 - |
3
=]
2
1,024 |
O | | | |
0 30 60 90 120 150

Time [Seconds]
Fig. 4. Bandwidth shaping scheme of experiments

Overall, we conducted 50 experiments using the aforemen-
tioned experimental setup. For each experiment we obtained
120 samples of videoBitrate. All videoBitrate values acquired
throughout the study were divided into four categories with
1500 samples in each. Therefore, resulting groups contained
videoBitrate values related to one (out of four possible) band-
width outcomes: 1 Mbps (from 1 to 30 sec), 2 Mbps (from 31
to 60 sec), 3 Mbps (from 61 to 90 sec) and 1 Mbps (from 91
to 120 sec).

To evaluate the relevance of the results obtained with
Mininet, we repeated the same set of experiments with spe-
cialized Linktropy 5500 equipment. Fig. 5 depicts averaged
videoBitrate values for both network emulators. Additionally,
we compared experimentally acquired figures for videoBitrate
groups within Mininet setting to similar categories obtained
with Linktropy 5500 by applying Student’s t-test for inde-
pendent samples. That is, the first group of values resulted
from Mininet experiments was compared to the first group
from Linktropy 5500 and so on. Furthermore, we formulated
a null hypothesis H, about the equity of two expectations.
Proof of such hypothesis is based on normal distribution. Table
I contains the obtained 7, values. All four empirical values
t, are less than Student’s t-critical value under the chosen
significance level (p = 0.05). Thus, the null hypothesis Hy
is accepted which means that the difference between average
values from Mininet and Linktropy 5500 groups is insignificant
under the above selected t-parameters.

TABLE III. STUDENT’S T-TEST RESULTS
Groups of Experiment Bandwith t,
Group 1 (1-30 sec.) 1 Mbps 0,42
Group 2 (31-60 sec.) 2 Mbps 0,63
Group 3 (61-90 sec.) 3 Mbps 1.83
Group 4 (91-120 sec.) 1 Mbps 042

395

VI. CONCLUSION

In this paper we investigated how to deliver DASH-based
content through Mininet environment which can be configured
to interconnect both real and virtual networks. In addition, we
presented results for a set of experiments aimed at studying
the delivery of streaming video under varying bandwidth
conditions. The aforementioned experiments were conducted
using two different network emulators, namely SDN-based
Mininet and specialized hardware-software Linktropy 5500.
Our findings supported by statistical data analysis indicate that
both solutions obtain comparable results. That is, establishing a
bandwidth varying channel with both emulators yields similar
effects with regard to stream bit rates that would be selected
by the media player.

VII. FUTURE WORK

In our future research we are planning to incorporate more
complex network topologies within Mininet environment. With
this in mind, we could conduct more sophisticated experiments
in the delivery of DASH-based content that would reflect large
heterogeneous infrastructures typical for real-life scenarios.
Furthermore, future endeavours aim to investigate the influence
of various network impairments such as delay, packet loss, etc.
on transmitted video streams. On top of that, it would be inter-
esting to explore the frequency of bit rate switches in different
network emulators. Additionally, we envision that Mininet can
be viably used for emulating MPEG-DASH streams in Content
Delivery Networks (CDN). A distinct advantage of Mininet
is its suitability for large scale experiments where specified
parts of the infrastructure can be assigned various network
parameters.

Yet another research direction that we deem perspective
is the development of tools which could simultaneously com-
municate with Mininet environment and APIs provided by the
vendors of media players. Systems with such feature would be
able to automatically conduct experiments for the delivery of
MPEG-DASH content, taking into account different network
impairments. Finally, having such functionality opens new op-
portunities for testing adaptive control algorithms implemented
in current media players as well as developing new ones.

ACKNOWLEDGMENT

This work was supported by the Strategic Development
Program of Petrozavodsk State University (2012-2016).

REFERENCES

[17 Cisco Visual Networking Index: Forecast and Methodology, 2014-2019
‘White Paper,
Web: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-network/white_paper_c11-
481360.html.

[2] HTTP Dynamic Streaming,
Web: http://www.adobe.com/ru/products/hds-dynamic-streaming.html.

[31 Smooth Streaming,
‘Web: http://www.microsoft.com/silverlight/smoothstreaming/.

[4] HTTP Live Streaming,
‘Web: https://developer.apple.com/streaming/.

[S] ISO/IEC 23009-1:2012, Information technology - Dynamic adaptive
streaming over HTTP (DASH) - Part 1: Media presentation description
and segment formats.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Fig. 5.

[6]

[7]

18]

[9]

[101]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

118]

[19]

[20]

Mininet/Linktropy currently played video segment

47500 T T T T T

—— Mininet

40001 Linktropy

3,500 -

3,000
2,500 |-
2,000 |-

1,500 |-

Video Bitrate [kbps]

1,000 |-

500 |-

O | | | | |

0 10 20 30 40 50

60

70 80 90 100 110 120

Time [Seconds]

Currently played video segment in kbps

The Status of MPEG-DASH today, and why YouTube and Netflix use
it in HTMLS and beyond,

Web: http://www.dash-player.com/blog/2015/02/the-status-of-mpeg-
dash-today-and-why-youtube-and-netflix-use-it-in-html5/.

Bitmovin turns hours into minutes by transcoding video fast using
Google Compute Engine,

Web: https://cloud.google.com/customers/bitmovin/.

Emulation,

Web: http://packetstorm.com/network-emulation/.

Mininet Overview,

Web: http://mininet.org/overview/.

Manar Jammal, Taranpreet Singh, Abdallah Shami, Rasool Asal, Yim-
ing Li: “Software defined networking: State of the art and research
challenges”, Computer Networks, vol.72, 2014, pp. 74-98.

Liyanage, M. and Gurtov, A. and Ylianttila, M., Software Defined
Mobile Networks (SDMN): Beyond LTE Network Architecture. Wiley,
2015.

WANem,

Web: http://wanem.sourceforge.net/.

Linktropy 5510 WAN Emulator,

Web: http://www.apposite-tech.com/products/5510.html.

Netem,

(23]

[24]

[25]

[26]

[27]

Web: http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

T. Muto, Y. Wang, S. Awiphan, K. Kanai. J. Katto(UWA), “Evaluation
of MPEG-DASH over CCNx over Different TCPs”, Packet Video
Workshop, Poster Session, San Jose, CA., December 13 2013.

PacketStorm Communications: WAN Emulator and Simulator,
Web: http://packetstorm.com/.

Stefan Lederer, Christopher Mller, Benjamin Rainer, Christian Tim-
merer, and Hermann Hellwagner, “An Experimental Analysis of Dy-
namic Adaptive Streaming over HTTP in Content Centric Networks”,
in Proceedings of the IEEE International Conference on Multimedia
and Expo 2013, San Jose, USA, July, 2013.

Linux Traffic Control,

Web: http://man7.org/linux/man-pages/man8/tc.8.html.
HTB - Hierarchy Token Bucket.

Web: http://linux.die.net/man/8/tc-htb.

B. Lantz, B. Heller, and N. McKeown. “A network in a laptop: rapid
prototyping for software-defined networks”, In Proceedings of the 9th

396

(28]

[29]

(30]

[31]

(32]

ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 19:1—
19:6.

Chandan Pal, Veena S, Ram P. Rustagi and K.N.B.Murthy, “Imple-
mentation of Simplified Custom Topology Framework in Mininet”,
Computer Aided System Engineering (APCASE). 2014.

J.J. Quinlan, A H. Zahran, K.K. Ramakrishnan, C.J. Sreenan, “Delivery
of adaptive bit rate video: balancing fairness, efficiency and quality”,
Local and Metropolitan Area Networks (LANMAN), 2015 IEEE Inter-
national Workshop on, Apr. 2015, pp. 1-6.

Brandon Heller, “Reproducible network research with high-fidelity
emulation”, Ph.D. Thesis, Stanford University, 2013.

N. Gude, T. Koponen, J. Pettit, B. Pfa , M. Casado, and N. McKe-
own, “NOX: Towards an operating system for networks”, SIGCOMM
Comput. Commun. Rev., vol.38, July 2008, pp. 105-110.

T. Koponen, M. Casado, N. Gude, J. Stribling, Poutievski. L., M. Zhu,
R. Ramanathan, Y Iwata, H. Inouye, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks”,
In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, 2010.

Beacon: a Java-based OpenFlow control platform,

‘Web: http://www.beaconcontroller.net/.

The OpenFlow switch,

Web: http://www.openflow.org.

Video Encoding Service for Adaptive Streaming,

Web: https://www.bitcodin.com/.

Sintel movie,

‘Web: http://eu-storage.bitcodin.com/inputs/Sintel.2010.720p.mkv
mininet.link.Intf Class Reference,

‘Web: http://mininet.org/api classmininet_I_1link_I_1Tntf.html.
mininet.link. TCLink Class Reference,

Web: http://mininet.org/api/classmininet_1_1link_1_1TCLink.html.
Minievents framework,

Web: https://github.com/cgiraldo/minievents.

Bitmovin bitdash player,

‘Web: http://www.dash-player.com/.

Player Configuration,

‘Web: https://github.com/bitmovin/bitdash-developers/wiki/Player-
Configuration.

