PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Concept of Distributed Processing System of Images
Flow 1in Terms of m-calculus

Aleksey Kondratyev, Igor Tishchenko
Program Systems Institute of Russian Academy of Sciences

Pereslavl-Zalessky, Russian Federation

ronkajitsu, igor.p.tishchenko@ gmail.com

Abstract—The paper describes a concept of software tools
for data stream processing. The tools can be used to implement
parallel processing systems. Description of the task is presented in
the first part of paper. The system is based on pipeline parallelism
and was distributed for using on a cluster computer. The paper
describes a base scheme and a main work algorithm of the system.
Tasks are presented in w-calculus terms. The system process
tasks as mw-calculus automata. An actual application example is
presented.

I. INTRODUCTION

Active development of parallel computing is accompanied
by the growth of computing power and the creation of high-
performance systems. Creation of supercomputers has several
objectives:

e The maximum capacity (Top 500).

e The solution to a specific problem (data storage, data
processing).

Supercomputers are not used for playing games or watching
movies, so the majority of computer users are not interested
in them. No one would create a cluster computer without a
goal because of the high production and maintenance costs.
Clusters without load usually are switched off completely
or partially. We need high-quality custom software that is
designed to perform a specific task which will make a full
use of a cluster computer. In most cases users create this
software “from scratch” by using libraries for parallel pro-
gramming (MPI, Ocaam, OpenMP, PVM, etc.). Highly skilled
professionals who can produce the correct decomposition of
tasks for parallel execution and its correct implementation are
required in order to develop effective programs to fully utilize
available hardware.

One of many problems which require capabilities of su-
percomputers is the problem of data flow processing. The
data may be from sensor nodes with wide spectrum. The
data processing could consist of several stages like searching,
tracking or monitoring object state, etc. The main condition is a
possibility to schematize task as a block-scheme of processing
stages.

II. GENERAL SYSTEM INFORMATION

To split the computations into independent parts it’s es-
sential to analyze the task solution scheme. Equal computa-
tion volume and minimization of dependencies are the main
requirements for splitting. In most cases analysis and task

splitting are complex problems. To use the low-level libraries
in a new supercomputer application it’s important to have
highly qualified specialists and a lot of time. The best way
is to use special software tools in most cases [1].

Our program system has been successfully used in various
scientific fields, and allows quickly creating applications ori-
ented towards running on cluster nodes. Some of them could
be named as an example:

e processing of remote sensing data [2],
e processing of medical information [3],
e designing and using of neural networks [4], [5],

The system allows dividing roles between users and develop-
ers. Users can solve a task without writing program code in
contradistinction to typical ways. User may not know how to
split algorithm into parts and make parallel program. They
could just build a linear scheme of data processing which
consists of program modules with data channels and initial
conditions (see Fig. 1). Users can describe the whole data

Fig. 1.

Scheme of image regions isolation

process algorithm by modules. The scheme will have modules
with typical connection slots. It may be done by the graphical
user interface (GUI) (see Fig. 2). GUI has all the information
about modules, like a list of available modules and channels.
It allows users to make some part of work using their intuition
and detect some errors on the design stage.

The system algorithms could help reach calculation ac-
celeration on supercomputers. As an example lets consider a
problem of repainting a map based on texture classification.
Results of the tests are shown in Table II and are illustrated
on Fig. 3 and Fig. 4.

The textural classifier provides results inaccessible for
point classifiers. But it requires more hardware resources. The
system parallelism could provide close to linear acceleration
as shown on Fig. 3. As shown on the Fig. 4, processing time
can be easily decreased in some cases.

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

MMM
muwm Doatrs]

M W
SigChunk iaChunk_SigChuni Siohunk. Dbiatrx
“SigChuni SigChunk

Fig. 2. Graphical user interface
TABLE 1. THE PARALLEL PROGRAM EFFECTIVENESS
CPU kernel count | Time Acceleration

1 185.7 1

2 939 1.98
3 64.8 2.86
4 51 3.64
5 47.7 3.89
6 33 5.48

The field of parallel processing is very well studied. A lot
of software tools were created for a lot of applications. Some of
them are completed software. Some of the software tools can
be used for implementation of parallel data processing systems:
CODE, HeNCE, GRADE, TRAPPER, Kepler, etc. But all of
them require knowledge about parallel programming. Most of
them are only GUI for parallel programming library. And only
Kepler allows implementing applications with conveyor. Other
software does not allow this. The described tools simplify the
development of new data processing systems rather than trying
to achieve maximum performance.

III. KEY FEATURES

The system is based on a modular structure. Each com-
ponent has its own role in the system but all of them are
intended for one goal. The system is the environment for
running program modules in the pipeline parallelism mode.
Principal working scheme is presented on Fig. 5.

Each module is a minimal program with some processing
function and may have several input and output channels.
The system considers each module as one function with
input parameters. It provides an ability to organize calculation
process with pipeline parallelism.

In the traditional work-sharing approach, threads run dif-
ferent iterations concurrently [6], [7], [8], [9]. Each thread runs
iteration in its entirety and then proceeds to the next iteration.
An alternate approach is to use pipeline parallelism where we
split loop iterations into stages and threads operate on different
stages from different iterations concurrently (see Fig. 6).

Pipeline parallelism is powerful because it can expose par-
allelism in ordered loops where iterations are non-independent
and cannot run concurrently. By splitting each loop iteration
into segments, we can expose intraiteration parallelism. When
multiple cores are assigned to a pipeline stage, its throughput
increases (ideally) linearly. Thus, a common mechanism to
speed up a pipeline workload is to assign more cores to

132

Acceleration

—
DN
w

Nodes count

Fig. 3. Speedup of the program

200

Time

100 - 1

| | |
3 4 5

Nodes count

—_
[}
o -

Fig. 4. The parallel program results

the slowest stages to balance the throughput. However, pro-
grammers are often unable to balance pipelines completely
which leads to thread waiting, thus, lost performance oppor-
tunity [10].

This work is performed by the system. The system trans-
forms a task into a list of system commands. The system can be
described by a state machine. Each command is a conditional
transition between its states. Each command describes some
action like data transfer or module execution. System scheduler
strives to use all available resources at any time [11]. With
the release of hardware resources scheduler must choose a
command which can be executed in that moment from the
command queue. This method proved to be good for modules
with considerable time of processing for little amount of data.
So the time for command selection is smaller than processing
time.

When we talk about image stream processing we have a
lot of fast processing steps. If we try to test it as a part of
the system we get a terrible result with multiple nodes. The
time of processing and transfer data is smaller than command
selection time. Similar type of problems must be solved by
another method of scheduling and data management. The main
idea of that method lies in phrase “transfer data when needed”.
A system module is described as a “pure” function. It means
that a module has two input parameters. One of them is data
for processing and another one is an internal module state with
module initial parameters. The system tries to process the data
locally for cluster node. Schematically the basic actions could

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

System
Scheduler
> GUI
Resource Module
manager manager
Data processing
DataBase modules

Fig. 5. Principal working scheme

I S1: Read (1 time unit)
[S2: Compress (4 time units)
I S3: Write (1 time unit)

NumCores = 6

r o P o R o = Bl | Booreslstage
i NumCores =3
B e et =
!
NumCores =1
T - T i e T i o =
FTTTTTTTITTTITT T TTTTTTI T I T I T T T I T T T IrTrrIrnl
0 5 10 19 20 25 30 35 40 45
Fig. 6. Pipeline parallelism

be described in several steps:

1) System initialization.
2) Waiting for new task.
3) Generating commands from input task.
4) Module initialization on cluster nodes.
5) Command executing with rules:
a) Processing data on one node with several
modules.
b) Spread data from stream on several nodes.
¢) Combine data transmissions.
d) Minimization of data transmissions.

6) After the completion of the task go to step 2.

The importance of the data distribution for processing among
cluster nodes is proved by various papers. Preliminary data
distribution can significantly reduce the processing time [12],
(13], [14].

IV. SYSTEM MODEL

The Worker concept is closely linked with the concept of a
computing node. The Worker is the same thing as computing
node where it was launched. It describes computing resources,
data processing modules from those nodes. Also the Worker
could execute commands from command list which describes

133

data processing computation. Worker state consists of infor-
mation about usage of CPU, memory, hard drive and data
processing modules activity. The Scheduler decides commands
for process by using information about resources from all
known Workers. It generates commands for Workers from
incoming data processing task description. Scheduler does
task decomposition, load balancing and provides a mechanism
for module communication in computing environment. It has
information about computing environment — computing node
list with information: CPU load, memory usage, network
usage, connection and module state, threads status.

The Worker could execute most of data processing mod-
ules. It depends on the Worker capabilities. As example could
be named GPU support.

The primary way to realize application is data processing
module. The module is realization of data processing function
or data generation function. The module is divided into several
parts:

e internal state of the module;
e input and output data channels;
¢ module initialization function;

e data processing function.

A. Scheduler

Load balancing and task execution is based on system of
control commands. The work of scheduler could be described
in several steps:

1) insert incoming task to queue,

2) task decomposition into list of control commands,

3) insert commands to command queue,

4) search command list for execution in accordance
with limitations (minimization of data transmissions,
maximization of computing resource utilization, com-
mand priorities);

5) send command to execution on Workers,

6) wait for results from Workers,

7) return to step 4.

As result from Worker could be received an alert or new
command for new data processing. That command must be
added to command queue. Scheduler could be described as
automata (Fig. 7) S = (Q, S, J, Start, End) where:

e Q = {Start, Init, Update, Select, Apply, Wait, End}
— finite number of states, which describes phases of
scheduler,

e S = {CONTINUE, SELECT_CMD, SENT_CMD,
NO_CMD, EVENT, EXIT_CMD}.

e J:QxX — @ — transition,
e Start — start state,

o F ={End} — set of final states.
States of automata for scheduler are:

e Init — system initialization,

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

®

CONTINUE

At

CONTINUE EVENT

<—EXIT_CMD

c
=
a
)

NO_CMD
CONTINUE SENT_CMD

RO
RS

SELECT_CMD

Fig. 7. Scheduler state automata

e Update — system information update (hardware re-
sources, data packages, generation of new control
commands),

e Select — selection of control command and Worker,

e Apply — applying of command (command transmis-
sion and execution),

e Wait — waiting for response from Worker.

B. Worker

Worker is a data processing node in terms of the data pro-
cessing system. Worker has a set of data processing modules,
pool of threads for data processing (one for each CPU thread).
The main Worker goal is data processing module execution.
The Worker executes control commands from Scheduler. The
Worker could send alert to Scheduler as result of command
execution. The command set for Worker is limited and strictly
defined:

1) init worker command,

2) load module command,

3) init module command,

4) module execution command,
5) data transmission command,
6) stop module command,

7) delete data command,

8) stop worker command.

Each command calls Worker function with several actions:

e Init worker command is the first command for Worker
from Scheduler. Worker creates pool of threads, loads
information about dynamic libraries for resources and
modules. Worker send message to Scheduler about
actions with information about node (thread count,

134

module list and etc.). After that Worker is ready for
work.

Load module command is the command for loading
module with parameters: identification number, cus-
tom module name. Worker loads module and create
a copy with parameters. Also Worker loads informa-
tion about data channels. Worker send message about
successfully done actions.

Init module command is the command for module
initialization with custom parameters from user task
description. It calls function “init()” of data processing
module. It allows module to do some actions one time
before data processing (like GPU context initializa-
tion). Worker send message about successfully done
actions.

Module execution command transfer to Worker when
it has capabilities for command execution (hardware
resources, module description, data for processing).
Worker calls module function “work()” for each data
in incoming channels. Result of function execution
may be new data for processing. Worker send message
to Scheduler about actions result (such as id for new
data). Function could be executed in 2 cases: module
has data in input channel, module doesn’t have input
channels.

Data transmission command transfer to a Worker when
it has data from one module for another data process-
ing module. The Worker transfer data for processing
from output channel to input channel throw local or
network socket. After that Worker send message about
successfully done actions.

Stop module command transfer to Worker when some
module must be forcibly stopped for some reasons.
Worker stops module execution and delete all channels
for this module.

Delete data command is needed for removing data
from Worker when this data was processed.

Stop Worker command stops all active Worker data
processing modules.

Worker could be described as finite-state machine (Fig. 8): S
= (Q, S, 4, Start, End) where:

*

*

*

*

Q = {InitW, Work, SearchThread, Wait, StopW}
— finite number of states, which describes phases
of Worker, S = {CONTINUE, RECEIVE_CMD,
SEND_EVENT, EXIT_CMD}.

§: QrX — @ — transition,
InitW — start state,
F = {StopW} — set of final states.

States of automata for Worker are:

*

SearchThread — select thread for command execu-
tion,

Work — command execution: module loading and
initialization, data processing and transferring,

Wait — waiting of new command from Scheduler.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

(=

CONTINUE

EXITCMD“SENDEVENT

RECEIVE_CMD

SearchThread CONTINUE

V. TASKS

Fig. 8. Worker automata

Data processing application is described by scheme of
data processing. Scheme consists of data processing modules
and transfer channels between them. Scheme describes data
processing conveyor. Scheduler creates internal representation
for task and verifies it. Task could be presented as directed
acyclic graph (Fir. 9) where vertices are modules and edges
are channels.

A. Data processing task

Usually task consists of several modules where could be
operations branching operations and data combining. But task
always has initial and finishing modules.

Scheme representation could be used for most cases. How-
ever for automatic verification and simulation we could use
another way.

Modulel

Output

Input

Y

Module2

Output

v Input

Module3

Fig. 9. Task graphical view
The scheme from fig. 9 we can see all kinds of modules:

e “Generator” — module without input channels. This
type of modules should generate data in “work()”

135

function. It may be image reader, camera capturer,
database reader or etc. It “generate” data and send
it to the output channel.

o “Processor” — module with input and output chan-
nels. This type of module receives data from input
channel, processes it and sends some result to output
channel.

o “Saver” — module without output channels. This type
of module receives data from input channel and could
somehow saves it (file, database) or just does some
actions like camera rotation.

B. w-calculus

We will use pi-calclulus terms for task description. The -
calculus is a process calculus [15]. It allows channel names
to be communicated along the channels themselves, and in
this way it is able to describe concurrent computations whose
network configuration may change during the computation.
There are several reasons for this choice. The data processing
module could be represented as single thread in the system
where modules work in concurrency mode. In the case where
we have unlimited count of computing nodes we can represent
any data processing scheme to continuous conveyor without
data buffering in channels. w-calculus is model of message
passing. There is no any other way to communicate as global
variable or etc. Transition from one state to another is asso-
ciated with message sending. It corresponds to the behavior
of the system. Any system action (command) is associated
with data or message. Execution of “work()” function comes
after data arrive in input channel and ends with data in output
channel.

Central to the m-calculus is the notion of name. It’s
unlimited and doesn’t have any structure. But names play
as communication channels and variables. The process in 7-
calculus is following:

e ¢(z).P — input prefix, receiving data “x” from chan-
nel “C”,

[Tt

e ¢(x).P — output prefix, sending data “x” to channel

[Tl
’

e P|Q — two processes or threads executed concur-
rently,

e P — process replication,

e (vz)P — creation of a new name “x”,
e 7, — internal process action,

o 0 — the nil process,

e + — operation combining data.

C. Task in m-calculus

Scheme conversion is based on several constructions:

e Linear section (Fig. 10). It’s used for communication
of two modules and could be represented with next

equations:
P = A|B;
A = 74.b(x).0; e
B =b(z).75.B’;

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

b——» B

Fig. 10. Linear section

e Bifurcation section (Fig. 11). It could be represented
with next equations:

P=A(B(C);
A = 74.(b{x).0lc{x).0);

B g(;)>73|§3> :)

C =c(x).7c.C

| S C

Bifurcation section

e Combination section (Fig. 12). It could be represented
with next equations:

P = (B|C)|D;
B = 7p.d(z).0;
C = 7¢.dy(x).0; 3

D =d;(z).ds(x).D;

b—* B

[C

Fig. 12. Combination section

With described rules we can represent any scheme to formal
view. As example we can see simple scheme (Fig. 13).
Representation of scheme is due to the following rules and

—» B E—
b d1
A —{ }—» D
c d2
Y C —

Fig. 13. Task scheme

steps:

136

e Modules must be named with letters.

¢ Channels also must be named with small letters similar
to modules with next rules:
e output channel must be named with same letter
as module,
e multiple output channels must have index after
letter in their name.

o We must make representation of scheme with rules
which are described before.

In this way the scheme is described with next equations:

P =IA|(B|C)|D;
A =7 4.(b(x).0¢(x).0);
B = b(x).TB.dl().0; 4)
C = c(z).7c.da(y). O
= di(y).dz2(y).7p.0

Verification process consists of several steps. Step 1 is internal
process in module “A” (data generation):

A = b(x).0|&(x).0;
B = b(z).7p.d1 ().0;
C = c(x).7c.d2(y).0;
D = di(y).da(y).7p.0;

3)

Step 2 is data transfer from module “A” to modules “B” and
“C” (process “A” is nil after that):

A= 00;
B—TBd1<>O:
C—Tcd2<> (6)

= di(y).d2(y).7p.0;

Step 3 is internal actions in modules “B” and “C”:

A = 0]0;
B = di(y).0;
C = da{y).0; ™

D =dy(y).d2(y).7p.0;

Step 4 is data transfer from modules “B” and “C” to “D™:

A =0]0;

B =0;

C =0 ®)
D = TD.O;

And the last step is internal actions in module “D’:

e

€)

QW
|

All processes are nil so it’s the end. Task could be completed
for data package.

The presented approach allows describing different
schemes and tasks which includes linear sections, data bifur-
cation and combination. And the scheme (Fig. 13) consists of
several steps with basic scheme constructions.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

VI. CONCLUSION

The described system is useful software tools for users who
don’t have knowledge about parallel programming. The pro-
cessing division into stages allow to process data independently
with several threads. It may be perfect choice for quickly
making data processing application for distributed system.
Prepared scheduling algorithms allow obtaining acceleration
in various problems.

The tools have several drawbacks. The best results can be
achieved with coarsely granular concurrency. Scheduler has
numerous leaks of time when choosing the next action. The
other disadvantages are:

1) Not all algorithms are suitable.
2) Maximum load of computing resources is not always
the best choice.

The concept has worked well for the computer network. The
next stage is to use the concept in a heterogeneous computing
environment. Various computing power of nodes requires a
more sophisticated approach to load balancing.

m-calculus allows us to model and to show the system
work in several threads. It shows data processing and work
of conveyor. Also it allows us to verify application task
scheme. Formalization of the task scheme allows creating
various simulation models. It allows finding out eternal cycles
in schemes and to guarantee the completion of calculations
in finite time with modules which work finite time. With
this concept the system is mechanism for concurrency run of
multiple finite-states machines with m-calculus description.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and
Science of the Russian Federation: #14.607.21.0088 agreement
for a grant on “Development of methods and means of process-
ing and intelligent analysis of images and dataflow obtained
from a variety of stationary and mobile sensors, using high-
performance distributed computing for the tasks of monitoring
the premises and the surrounding area”. Unique identifier:
RFMEFI60714X0088.

REFERENCES

[1] E. Rutledge, J. Kepner “PVL: An Object Oriented Software Library
for Parallel Signal Processing”, in Proceedings of the 2001 IEEE
International Conference on Cluster Computing (CLUSTEROI), Web:

137

http://www.computer.org/csdl/proceedings/cluster/2001/1116/00/11160074.
pdf

[2] D.N. Stepanov, A.E. Kiryushina, E.S. Ivanov, A.A. Kondratiev “Software
for pipeline parallel processing of remote sensing data in the cluster
computing installations and graphics processing unit”, in Proceedings of
Junior research and development conference of Ailama-zyan Pereslavl
university, Pereslavl, SIT-2014, 2014, pp. 5-20.

[3] V.F. Zadneprovsky, A.A. Talalaev, I.P. Tishchenko, V.P. Fralenko, V.M.
Khachumov “Software tool complex high-performance image processing
for medical and industrial use”, in Information technology and computer
systems, Vol. 1, 2014, pp. 61-72.

[4] A.A. Talalaev, LP. Tishenko, V.P. Fralenko, V.M. Khachumov “Analysis
of the efficiency of applying artificial neuron networks for solving
recognition, compression, and prediction problems”, in Scientific and
Technical Information Processing, 2011, Vol. 38, pp. 313-321.

[5] A.A. Kondratyev “Parallel clustering of color images based on the self-
organizing maps Ko-honen cluster using calculators”, in Proceedings of
Junior research and development confe-rence of Ailamazyan Pereslavl
university, Pereslavl, SIT-2012, 2012, pp. 57-70.

[6] K. Czajkowski, I. Foster “A Resource Management Architecture for
Metacomputing Sys-tem”, in Job Scheduling Strategies for Parallel
Processing (JSSPP 1998): Proceedings of the 4th Workshop, Orlando,
Florida USA, March 30.

[7]1 F. Seredynski., A. Zomaya, “Sequential and Parallel Cellular Automata-
Based Scheduling Algorithms”, in IEEE Transactions on Parallel &
Distributed Systems, vol. 13, Issue No.10, October, 2002.

[8] Kenli Li, Xiaoyong Tang, Keqin Li “Energy-Efficient Stochas-
tic Task Scheduling on Hetero-geneous Computing Systems”, in
IEEE Transactions on Parallel & Distributed Systems, vol. 1,
doi:10.1109/TPDS.2013.270.

[9] M. Pricopi, T. Mitra “Task Scheduling on Adaptive Multi-Core”, in IEEE
Transactions on Computers, vol. 1, doi:10.1109/TC.2013.115.

[10] Parallel Programming: Do you know Pipeline Parallelism?,
Web: http://www.futurechips.org/parallel-programming-2/parallel-
programming-clarifying-pipeline-parallelism.html

[11] P. Marshall, K. Keahey, T. Freeman “Improving Utilization of In-
frastructure Clouds”, in Cluster, Cloud and Grid Computing (CCGrid
2011): Proceedings of the IEEE/ACM Interna-tional Symposium, New-
port Beach, CA, USA, May 23-26, 2011.

[12] E. Tyutlyaeva, E. Kurin, A. Moskovsky, S. Konuhov “Abstract: Using
ActiveStorage Con-cept for Seismic Data Processing”, in High Perfor-
mance Computing,Networking, Storage and Analysis (SCC), 2012 SC
Companion: 2012, pp. 1389-1390.

[13] M. Iverson, F. Ozguner “Dynamic, Competitive Scheduling of Multiple
DAGs in a Distri-buted Heterogeneous Environment”, in Proceedings of
Seventh Heterogeneous Computing Workshop, Orlando, Florida, USA,
March 30, 1998, pp. 70-78.

[14] M. Maheswaran, S. Ali “Dynamic Matching and Scheduling of a
Class of Independent Tasks onto Heterogeneous Computing Systems”,

in Journal of Parallel and Distributed Computing, vol. 59, No. 2, pp.
107-131, 1999.

[15] R. Milner, Communicating and Mobile Systems The Pi Calculus.
Cambridge Unniversity Press, 1999.

