PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Surgery Scene Representation
in 3D Simulation Training SDK

Anton Ivaschenko, Nikolay Gorbachenko

Samara State Aerospace University
Samara, Russia
{anton.ivashenko@, eaglegor} @gmail.com

Abstract—This paper introduces a software development kit
(SDK) to provide IT developers and medical community a
platform to build new simulation technologies for surgery
training. There is described a formal model for simulation
objects, scenes and scenarios representation and a software
solution for objects interaction modeling and surgery scene
simulating. The results are illustrated by the simulation suite for
laparoscopy surgery training delivered and installed at Samara
State Medical University.

I. INTRODUCTION

Simulation training is actively employed at medical
universities nowadays. Particularly surgery training has
become a promising area of full range of simulation
technologies application including 3D visualization, motion
capture, knowledge representation, etc. In this area, there is a
strong market request for new information technologies and
their applications that will be able to provide an efficient
training of surgeons considering their specialization and
difference in educational programs at medical universities and
training centers.

First results in this area were achieved under the “Virtual
Surgeon” and “Inbody Anatomy” projects that were carried
out in 2012 — 2014 and include a number of simulation
training suites for endovascular and laparoscopy surgery [l —
2]. These products were successfully probated in several
medical universities in Russia. During the process of their
deployment and technical support there was gathered a
remarkable feedback from professors and IT departments.

There was identified a strong request to separate the
training suites into a number of autonomous components that
can be used by universities themselves to build own solutions
and adapt them for specific educational programs.

This feedback led to motivation of a new research project
started in 2014 and aimed to develop a number of software
components for surgery training, an extensive set of 3D
models of human body, and special software used by
universities to develop their own products capable to provide
personalized simulation and training. In addition to it there
was designed an Internet platform that provides to its users an
opportunity to exchange and share new simulation
technologies and products in integrated information
space.

Alexandr Kolsanov
Samara State Medical University
Samara, Russia
avkolsanov@mail.ru

Andrey Kuzmin

Penza State University
Penza, Russia
flickerlight@inbox.ru

To meet the goals there has been developed a specialized
software development kit (SDK) [3], which contains a number
of components that can be used to implement a large variety of
simulation solutions for surgery training. In this paper there
are described some technical solutions for operating scene
ontology model formalization and its implementation in the
proposed SDK.

II. STATE OF THE ART

Intensive application of simulation tools for surgery
training at medical universities and specialized training centers
requires implementation of the most up-to-date technologies in
robotics, 3D modeling, electronics and software engineering.
Still the combination of the most realistic visualization of
surgery field and adequate haptical feedback of manipulators
that simulate surgery instruments can appear to be not enough
for effective educational process [4 — 6]. At the same time,
some simple versions of training suites that are comparatively
cheap and easy in use can give a significant improvement to a
surgery training technique. Consequently it is reasonable to
introduce a specialized software development kit (SDK) aimed
for different developers and medical community to provide
various solutions for surgery simulation training.

Technical aspect can be characterized by an extensive use
of emerging and innovative technologies to provide high
realism of visual scene and force feedback. Among the most
widespread areas of simulation for surgery training, there are
laparoscopy, laparotomy and endovascular diagnostics and
surgery [7, 8]. The mentioned above solutions are based on
visualization of 3D scenes that represent surgery fields for
different cases and simulation of surgery intervention by
means of specifically designed manipulators. The concept is
pretty close to gaming simulation: the student has a certain
situation described by visual model with predefined features
and can perform a number of actions getting the response that
simulates the real human body behavior.

Due to high complexity and uncertainty specific for real
surgery intervention and uniqueness of every individual
surgery scene the simulation is often simplified: the number of
cases is limited to typical ones (normal and pathologic), and
the possible behavior of the model is captured by a certain
scenario. This helps implementing the simulation of not all the
organs of a human body with realistic physiology and

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

feedback, but only a fragment relevant to the current surgery
case. Therefore, the student can perform a limited number of
actions at a certain moment of time; otherwise, the system will
terminate the game with an exception.

Besides there can be extracted two types of simulators both
popular in the market: without force feedback [9] (SIMENDO
laparoscopy from SIMENDO and LAP-X from Epona
Medical), and providing force feedback (CAE LaparoscopyVR
Simulator from CAE Healthcare (http://cachealthcare.com/),
and LapSim Haptic System from Surgical Science Sweden AB
(http://www.surgical-science.com/). Simbionix provides LAP
Mentor training suite with both options, either including or
excluding force feedback.

It should be mentioned that each type of simulators has its
own niche. Training suites without force feedback are
constructively simple and relatively cheap. They allow
surgeons to gain basic surgery skills and can help to evaluate a
theoretical qualification and career potential of a medical
student who is going to perform certain surgery interventions.
Those that provide force feedback are able to offer a new
range of educational techniques and bring the student closer to
real life practice. One of the main problems here is to train the
students to operate surgical instruments, which requires
studying uncommon hand motions.

In the area of 3D modeling there can be identified a
number of software development projects that become
frequently used in visual simulators. In 2006 the generic
approach of modeling internal organs was developed as a part
of the GiPSi (General Physical Simulation Interface) project
[10]. GiPSi is an open source/open architecture framework for
developing organ level surgical simulations.

In 2007 the basic principles of the SOFA project were
introduced [11]. This project is focused on the creation of the
instrument set for the development and the comparison of
different physical models of internal organs. The architecture
allows combination of different physical properties and
equation solvers introduced for this purpose. Extensive usage
of third-party libraries based on SOFA allowed to boost
simulations creation speed.

The described above state of the art analysis supported by
the consultancy of medical professors and doctors from a
number of leading medical universities in Russia results in a
conclusion that in the area of surgery education there remains
a variety of methodologies and educational technologies. From
IT service point of view, this gives reasons for a relevance of
SDK development used as a platform for new simulation
solutions. This is a challenging technical problem: SDK
should provide interoperability, compatibility and usability. To
provide these features there was developed an architecture,
were the data (3D models, scenes and scenarios) are separated
from Ul and core components.

III. SDK ONTOLOGY MODEL

Let us consider a surgical operation as a set of objects in a
surgical field and a set of events occurring during the
operation. We do not explicitly distinguish instruments and
organs because they can be described using the same concepts.

76

There are denoted the combination of these two sets by the
scene Q:

Q=1{0.E},)

where O is the set of scene objects and E is the set of events
occurring during the surgical operation.

Event is described by its type and the set of attributes
describing the particular situation:

E:{el,lzll}, €; :{el’l,l:lLl} (2)

Scene object is described by its behavior aspects. Each
behavior aspect is described by the two components. The first
one is the set of states of the object having this behavior
aspect. The second one is the set of transitions between these

states. We denote the set of states of the scene object o, € O
by s; . The single state of the scene object is denoted by
Sy € 8y as described by the set of attributes:

S= {Sk,k =1 K} s Sk = {Sk’,,l‘ =1 Tk} ,

Skt = {Sk,t,jaj =1 ~"Jk,t}

3

The transition between the states s;, and sy, of the
object o, after the event e; has occurred is denoted by
rg, s,.e - Let us define this transition as a mapping of the

state s; , and the event ¢; to the state s; ,:

s, .S, :{Sk,t 7ei} > Skr - (4)
The denotation 7y, ,;=r, , . is introduced to make
ERE L] kt >Rkt >%i

the equations look clearer. This denotation states that if the
event ¢; occurs and the scene object oy is in the state sy,

then the scene object will move to the state sy .

Transition between the two states of the scene object may
occur after several different events. We denote all possible

transitions between the states s; , and sy, by

=Tt Ts, s, =Tkt :{”k,t,t'faf:]---Fk,z,t'} Q)

7
Skt s Sk

The set of all possible transitions between all possible
states of the scene object can be considered as a mapping of
the set of all object states and the set of all event types to the
set of all object states:

e ={rs, s, oSkom € Sk>Skn €Sk} T Asg. EY > {sg} (6)

e >
Each single behavior aspect of the scene object is called

the component. It is defined as follows:
ck,d = {Ek,d € Skﬂ?k,d € I’k} N Ck = {Ck’d,d =]Dk} N (7)

where ¢ is a set of all components attached to the scene
object oy, Sy 4 is the subset of object states containing only
states affected by the component ¢; ;, 7, 4 is the subset of
transitions between the states of o, containing only the ones
introduced by the component ¢ ;.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

For each pair of scene objects we define the set of
interaction aspects. The single interaction aspect between the
objects o, and o; is described by the set of events, the set of

both objects states and the set of transitions between object
states:

ag 1 piler) SE i n Sty S 1sSkn S SkoSth 513> (8)

where 7y p . E, Sk.h» S are defined by the type of

interaction aspect. r; , and #;, contain transitions between

Sk and m respectively. The events subset a is defined
by the mapping ¢y ;:

s dekseh > te) - ©9)

Interaction of each two scene objects is defined by the set
of all their interaction aspects:

ak’l:{ak’l’h,hzl...Hk’,}. (]0)

Any possible object behavior and interaction can be
described using the approach we introduced. But our goal is
not only to describe the behaviors and interactions on the
scene but to reach the flexibility and the ability to adopt to
changing requirements. To reach this goal we need to
introduce an approach of combining objects behaviors and
interactions.

Generally, the objects itself do not have any behaviors
initially. During the development of the surgical case model
the operator may extend the set of behaviors and interactions
to reach the simulation goals.

Using the introduced models such extension is the
association of a new component c¢'; ; to the object oy :

(11)

As a result of this attachment the set of object states and
the set of transitions between object states are affected:

(cx +€'ki) ek -C'ki} = ChirChi =k Y 'k

(12)

It is natural to think that different components may affect
the same object states (e.g. the organ may be damaged by the
electrocoagulation or by the puncture but both events translate
the organ to the “damaged” state). On the other hand, different
components may affect absolutely different states (e.g. when
the organ is damaged and grasped by the instrument,
“damaged” and “grasped” are completely different by their
nature). Considering both cases we define &; ; as a cartesian

Sk = Ski» Tk > Tk,

product of all states the object already has and the new states
introduced by the component ¢'; ; :

Ski =Sk *Ski =
= {Skl Sk,il ’Skzsk,i] ,...,Skrk Sk,l'z ’Sk] Sk,iz ,...,Skrk Sk’ifh } =, (]3)
= {Sk,l'l ,Sk’l-2 "”’Sk,l'f]' }

where 3 ; ={s;; 1= 1..T};} is the subset of states introduced

by the component ¢'; ; .

77

The set of transitions between object states must be
updated in a more complex way to define transitions on the
new combined set of object states.

When attaching a new component, we define the new
behavior aspects of an object. Our model is event-based,
therefore to make the object move over the states we must pass
events to this object. As mentioned before, we use the
mapping ¢ ; to define the events generated for each pair of

objects, s owe need to change this mapping to define the new
interaction on the scene.

Let us introduce the operation of linking the objects oy
and o; through the subset of events e'c E :

G > Oss Grgve) b et > b (14)

bks = {ck.c1y > e Ne',

where ¢, ; is the set of events defined for the specified

combination of components before linking and ¢' may contain
any possible event types on the scene.

Let us consider the example. We describe two objects —
“the dissector” (o;) and “the liver” (o0,). We attach the

component “grasp algorithm controller” to the “dissector” and
the component “grasp algorithm” to the liver. Doing this we
add the “may grasp” property to the “dissector” and the “may
be grasped” property to the liver. But doing only this we
cannot grasp the liver with the dissector because

o ={c.cr} > D.

We have transitions between objects states defined but we
have no events passing to the objects. This may be the
expected result (in case of different difficulty levels) or the
mistake of scene creator. Performing objects linking we update

the mapping so that qﬂ’z ={c|,ca} > {e;,es}, where ¢ is the

“objects collided” event and e,is the “grasp started”

event.

After this operation is completed the environment has the
information about event types to be generated between these
objects and the corresponding interaction aspects may be
defined (in our case it is the aspect called “grasping the liver
with the dissector™).

The two introduced operations (attaching new component
and objects linking) allows us to create complex scenes based
on more simple scenes. To adopt the models, we will
sometimes need to do the opposite — make simpler scene base
on more complex scene.

To make this possible we introduce the inverse operations
—removing a component and unlinking objects:

(15)

Using the introduced approach to the surgical case
modeling we can flexibly adjust the behavior of scene objects
and create the wide range of scenes using the same building
blocks.

(kg i) =Cri=cks (Prve)\e=ad,;

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

IV. SOLUTION VISION

Development of surgery simulators for the purposes of
training of students at medical higher schools is the actively
developed research area today. There is a need for cheap and
reusable training environment helping students to get the
needed skills they will use in real operations. Virtual surgery
simulators can become such an environment, because the
simulations can be run many times and can model the wide
range of surgical cases.

There are some commercial simulators (LapVR,
Simbionix, LapSim) but they are expensive and have the
closed architecture. Because of this fact, there are difficulties
when the independent expert wants to extend the functions of
simulator or adopt some surgical cases for his or her own
purposes. To make such extension and adoption possible we
need to develop an instrument set allowing developing new
surgery simulators using minimal amount of time and effort
and having very basic technical skills.

The first requirement (minimization of time and efforts)
allows the medical experts to quickly adopt the simulations to
the modern surgery approaches. This requirement could be
met if the developed content and modules were highly reused
while developing new operation models. The second
requirement extends the range of content creators to the non-
programmers and helps to build the rich content base. This
requirement could be met if the simple way of scene
description was introduced (WISIWYG-editors, script
languages, etc.)

Let us focus on flexible and extendable approach of
surgery simulations creation, which would be able to meet
these requirements. The proposed SDK architecture for
surgery simulations platform is based on the “Entity-
component” design pattern. All scene objects described in the
surgical case (instruments, organs, environment) are
considered as simple containers without their own behavior.
During the modeling the behavior aspects called components
are associated with these scene objects. Each component is
characterized by its name, type and a set of the interaction
interfaces.

Components lifecycle control is the responsibility of a
number of subsystems. Each subsystem is serving the group of
components it owns. An example of such subsystem is the
scene of physics engine controlling components modeling
rigid body and soft body dynamic properties of the objects
(see Fig. 1).

Subsystems are registered at the platform core when the
plugins containing these subsystems are loaded. As a result,
new behavior aspects become available to be attached to the
scene objects. The logic is divided into the base logic (memory
management, resource management, components creation and
removal, logging etc.) implemented in the core and the
specific logic (render algorithms, physics algorithms,
hardware controllers etc.) entirely implemented in the loadable
plugins. There may be several interchangeable
implementations of the same plugin interface (e.g. physics
plugin may be based on PhysX or Bullet having the same
interface).

78

Render Physics
subsystem simulation
subsystem
Render Equations
algorithms solvers
A [y
Position, Position,
arientation orientation
¥
R o Rigid body
component dynamics component
A I

Position, orientation

Fig. 1. Relations between the components and subsystems

Such approach has a set of advantages:

o there is no deep class hierarchy (less duplicated code
when there are many combinations of behavior
aspects);

e new behaviors may be introduced to the scene without
recompilation of code (less time is consumed when
developing a scene);

e content and algorithms may be distributed as loadable
packages extending the functions of system without
extensive changes to the existing system parts.

There are also some disadvantages of this approach:

e decomposition and isolation of program code inside
the small components requires good programming
skills (without this isolation the performance may
decrease because of intensive communication
between components);

o the approach is very generic and therefore it needs the
good mechanisms of consistency control.

Considering decomposition of logic based on its specificity
for the particular surgical case, we can build the hierarchy of
program layers where the interaction mostly takes place only
between the neighbor layers (see Fig. 2).

Surgical case
specific algorithms

v

Operation block
framework

.

Basic framework

v

| Core ’

Fig. 2. Hierarchy of program layers

The core contains low-level generic services without any
relation to the subject area. It is responsible for maintaining

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

the environment where the components have necessary
resources and may effectively communicate to each other.

The basic framework contains the generic use services
such as render subsystems, physics subsystems, scripting
subsystems, GUI etc. There services are not related to the
surgery simulations and represent the standard game engine
subsystems.

The operation block framework contains the components
specific for the operation class. For example, the endoscopic
framework may contain grasping, cutting, puncture
algorithms, body state control algorithms, hardware controllers
etc. Surgical case specific algorithms contain the algorithms
involved only in small subset of operation simulations. An
example is the quality control of operator skills which is
specific for every operation case.

On each level components and subsystems are defined
using the generic interfaces which makes it possible to
interchange different modules to reach particular simulation
goals.

V. INSTRUMENT-ORGAN INTERACTION

Considering the high computational cost of surgery
simulation algorithms, the algorithms of objects that simulate
human body parts and objects that simulate instruments should
be as fast as possible while still saving the flexibility of scene
behaviors. Let us consider an example of endoscopic grasping
algorithm. The endoscopic instrument is simulated as a
compound rigid body containing moving parts. The organ is
considered as a set of vertices with the constrained degrees of
freedom. The constraints are based on the Hooke’s
law.

The simplified task of designing the grasping algorithm
may be formulated as follows:

e We need to make the system respect the physical
constraint: when the angle between the branches is
smaller than the threshold, and there are vertices
between branches, the position of this vertices in the
local coordinate system of an instrument remains the
same and independent from any instrument
movements.

e We so not consider the haptics in this research,
therefore we do not consider that the organ pushes the
instrument away (the instrument is considered to have
the infinite mass).

e We may divide our task into several steps:
o detecting the potentially grasped vertices;
o detecting the moment of grasping;

o creation and respecting of described physical
constraint;

o detecting the moment when the vertices must
be released;

o destruction of physical constraint.

One of the most computationally complex part is detecting
the potentially grasp vertices, because it needs the usage of
complex collision detection algorithms for any instrument and
organ on the scene. However, it is not necessary to make this
check on every time step for every organ and instrument. We
may perform this check only when the instrument is near the
desired organ. This check (the distance to the organ) may be
implemented in a fast way and spare the processor time. So we
define the first component, trigger, responsible for this fast
pre-check. We attach this component to the instrument.

The constraint itself needs to be included in the physics
simulation process. We do not consider, how it is implemented
exactly but we group all the constraint logic in a component
called physical constraint. The component is automatically
associated to the organ.

Different organs (human body parts) require various
implementations of physical constraints. Moreover, there may
be several organs of different nature in the same scene.
Therefore, we need to assign the particular constraint
implementation to the particular organs. To do so there is
introduced the component called physical constraints factory,
which is responsible for the creation of the correct instance of
constraint. The component is also associated to the organ.

The last component we introduce is an algorithm controller
responsible for tying the other three together. The interaction
scheme is shown in Fig. 3.

Instrument COrgan
Grasping - Graspllng
: > constraints
algorithm facto
trigger i
Event
‘Grasping Soft body
¥ s possible” dynamics
component
Grasping A
algorithm - Mesh
controller Constraint vertices
creation configuration
query
k4
Grasping
> physical
Instrument pose and constraint
angle between branches

Fig. 3. Interaction scheme

The same approach is used to design other interaction
algorithms (cutting, puncture, coagulation). The main
principles are the following:

e getting fast algorithm start pre-check;

o different constraints implementations for different
organs;

e minimization of communication between the

components.

The resulting algorithm has simple dataflow, and its parts
are easily interchangeable.

VI. CREATION OF A SURGICAL CASE MODELING SCENE

Generating of a new surgical case can be illustrated by the
following example given for the endoscopic clipping scene.
The surgical field for this example contains the elastic tube
fixed on both ends, the camera and the endoscopic clip-
applicator controlled by the operator (see Fig. 4). The task for
the operator is to correctly place three clips on the
tube.

Fig. 4. Endoscopic clipping scene

There are identified 4 objects: the tube itself (model of a
blood vessel), clip-applicator, endoscopic camera, operation
script controller. These objects parts and interactions are
shown in Fig. 5.

Clip-applicator Tube Endoscope
Compount rigid Hardware input
body render interaction Deformable body
component component render component Camera
Mesh verices
Position Sensors configuration Positon
orientation data Pointlight orientation

Mapping of ube-like body
deformation io the mesh
detormation

Tmne

ody dynamics
angle between branches Compn;g:[

Clipping algorithm i
ube
St
stared” Glipping physical
i Hardware input
conswant interaction

companent
Clipping constraints
factory

Compound rigid
body dynamics
component

Endoscopic
instrument
pose canfroller

Mapping of instrument local
coordinates to the scane

Clipping algorithm TPns\linn orientation

Insirument pase Tube-ike b

Endoscopic
insirument
pose contreller

Constraint creaton / ramoval quary

Event

“Clp

placed” Operation script
controlier

Operation
script

Fig. 5. Clipping scene objects

The most of the implemented components are reused in
other scenes, e.g. the instrument pose controllers are used in
any endoscopic operation, clipping algorithm are used in any
operation case including blood vessels, render components
may be used almost in any possible operation. New
components need only to be developed when the simulation
goal cannot be reached wusing already existing
components.

The algorithm of scene creator’s actions during the scene
creation is shown in Fig. 6.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

VII. EVALUATION AND TESTS

Based on the proposed approach there was developed a
solution using the following third-party libraries: OGRE 1.9
(www.ogre3d.org/), PhysX 3.3.3 (https:/developer.nvidia.
com/), CeGUI 0.8.4 (cegui.org.uk), SDL 2.0 (www.libsdl.org),
AngelScript 2.30 (www.angelcode.com), Assimp 3.1.1
(assimp.sourceforge.net), Eigen 3.2.3 (eigen.tuxfamily.org),
Boost 1.55 (www.boost.org).

In order to evaluate the proposed solution there were
implemented two scenes. The parts and interactions between
objects are shown in Fig. 7.

Determine
the scene
to be modeled

l

Describe the
scene conceptually

l

Identify scene objects

l

Determine scene objects
behavior aspects

!

Look for existing components
> implementing desired
behavior aspects

Component
is found?

Implement
component

Attach component
to the scene
object

All behavior
aspects are modeled?

Run simulation

b

Analyze
modeling
results

Fig. 6. Scene creating algorithm

The purpose of the first scene (see Fig. 8) is to check if the
approach may be used in simple real scene modeling. The
scene represents the simplified endoscopic camera positioning
skills training module. It contains two active objects, several
passive environment objects, endoscopic camera controlled by
the operator and the graphical user interface (crosshair and
hints). All behavior aspects (including GUI) are implemented
as components.

The second scene is a benchmark. The proposed approach
assumes using autonomous components to construct new
scenes. It benefits in high adaptability and configurability, but
leads to additional time expenditures due to several layers of
indirection. Therefore, it is expected that implementing the
proposed approach will result in lower performance comparing
with the performance of static compilation approach when all
the logic is encapsulated inside the scene object (no
components and dynamic linking).

Endoscope Controlled object
Rigid body
Camera render component
x
Position, qu't'to?.'
Point light orientation HISTHERGH
Rigid body

)) dynamics component
Mapping of instrument local

coordinates to the scene Y

global coordinates Position.
orientation
TF'osition. orientation
Object
Endoscopic movement
instrument control algorithm
pose controller 'y

Event

TSensors data “Key pressed”

Hardware input
interaction
component

Hardware input
interaction
component

Target object Operation script controller
Event
"Visibility
Object visibility changed” | : y
detector > Operation script
x
Render Event
process ‘Operation
data finished”
h 4
Rigid body " g
render component Operation finish controller
*
Position,
orientation
Graphical user
. interface
Rigid body
dynamics component Crosshair
color
> Crosshair
Hint
text
> Hint

Fig. 7. Interaction between the objects in scene

To identify the value of time spending there was created a
scene that consists of a continuously increasing set of similar
objects (standard teapot model) rotating around their local y-
axis. Every 200 frames the objects count increases (see Fig. 9).

There were implemented two variants of this scene —
component-based and static compiled. Both versions use the
same algorithms and perform the same actions during the
frame.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

™ Test render window

Camera base skil

Fig. 8. Scene for endoscopic camera positioning skills training

The results of benchmarking study of these two approaches
in terms of performance are given in Fig. 10. The performance
metric is the average frame update time calculated for 100
frames (50 frames before object count increase and 50 frames
after object count increase are not counted). Each experiment
was repeated 10 times and the average values for all
experiments were calculated.

Test render window

Fig. 9. Scene for benchmarking

0,25

0,2

Frame update time

630 1270 2550

0 S = N | | DI
310

10 30 70 150
Objects count

OComponent-based m Static compilation

Fig. 10. Benchmarking

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

The experiment results show that the component-based
approach is approximately 20% slower than the direct static
compilation approach, which is acceptable in practical
applications.

The results show that the proposed approach can be used to
implement completely different behavior aspects of scene
objects in a framework with the unified architecture. The slow
down because of indirection layers is relatively small
comparing ~ with the naive (static compilation)
approach.

VIII. IMPLEMENTATION

The described above approach and SDK were used to
develop a number of surgery training suites for laparoscopy
and endovascular simulation. To provide realistic 3D scenes
there was developed an original library of human body parts
models that is currently available in the market as an
independent product under the trademark “Inbody Anatomy”.
By the moment of this paper presentation there were designed,
developed and conjoined up to 3000 models of human body
parts (see Fig. 11 —12) combined to 12 layers of human body,
including the ligaments, blood vascular system, innervations
system, outflow tracts, lobar and segment structures of
internals. To develop the models there were used real digital
volume computer tomography and magnetic resonance
tomography images.

These models were used to develop realistic scenes of
surgery intervention (see Fig. 14). The models were fashioned
with the help of specifically designed shaders and some
fragments like jars, liquids and blood were implemented in
software. These shaders and algorithms were implemented
apart from the models; and any new models including those
that are implemented by third party developers can be used to
generate surgery scenes as well.

To provide highly realistic visual and physical models
there were used PhysX (https:/developer.nvidia.com/
gameworks-physx-overview) and Bullet (http:/bulletphysics.
org) middleware. The inner parts of a human body are
simulated in the scene by soft body models and surgery
instruments are simulated by rigid bodies. The value of the
feedback force is calculated on the basis of current geometrical
position of soft and rigid bodies in the scene considering their
deformation and/or topology distortion.

Fig. 11.

Anatomy 3D models

82

Fig. 12. “Inbody Anatomy” product in use

Fig. 13. 3D scene for laparoscopic cholecystectomy

The software was developed in C++ using NET C# as a
platform for user interface and infrastructure support. It
provides realistic simulation of surgical intervention with the
usage of different laparoscopic instruments and video camera
— endoscope in 3D scenes. There were 3D models of the
human body and operative intervention scenarios also
developed that help the learning of basic skills and techniques
of surgical treatment.

Hardware partials like laparoscopy manipulator, camera-
endoscope etc. were also insulated and reorganized as
autonomous components with specific APl providing
interoperability with other training suites modules. To provide
realistic physical feedback there was designed a new
construction of training suites and developed special software

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

to simulate the process of operative surgery. To simulate the
movement of different surgical instruments an original
construction was developed. The main assembly unit is the
same for all types of manipulators as they differ only in mount
attachment, orientation to console and types of adjustable
portable handles.

The laparoscopic manipulator was built using 4 Dynamixel
actuators (http://www.robotis.us/dynamixel/) that provide four
degree-of-freedom feedback and movement. The main feature
of the construction is that the entire outfit is integrated into the
manipulator. This helps to reduce any transmission and as a
result increases robustness and feedback sensitivity as
compared with widely spread analogs. Optical sensors are
used to capture the movement of camera-endoscope, and
electronic actuators are introduced to simulate the movement
of manipulators and provide force feedback. Such construction
allows the introduction of different positions of manipulators
and simulates cholecystectomy, hernioplasty and gynecology.
Special scenes and study methods are provided to train basic
surgical skills.

The developed laparoscopic training suite in use is
presented at Fig. 15 and the simulation center capable to
support surgery training is presented in Fig. 16. The center
was established at Samara State Medical University and is
currently launched to practical use.

Fig. 14. Laparoscopy training suite

IX. CONCLUSION

In this paper there is introduced a Software Development
Kit (SDK) to provide IT developers a platform to build new
simulation technologies for medicine. Special attention is

83

given to surgery scene representation and unified
implementation. The ontological model provides formalization
of surgery scene objects interaction in different states. There is
proposed a hierarchy of program layers and the framework
that contains the generic use services such as render
subsystems, physics subsystems, scripting subsystems, GUI
etc. The operation block framework contains the components
specific for the operation class. Surgical case specific
algorithms contain the algorithms involved only in small
subset of operation simulations.

Fig. 15. Simulation center at Samara State Medical University

The proposed approach allows the developers of new
training suites to better specify the requirements, concretize
the scope, prepare effective tests and improve training
efficiency. High perspectives of 3D Surgery simulation
software development kit application in medical simulation
education prove its practical utility and motivate further
developments in this area.

X. ACKNOLEDGEMENT

This research was financially supported by the Ministry of
Education and Science of Russian Federation (grant 2014-14-
579-0003), contract 14.607.21.0007.

REFERENCES
[1] A. Ivaschenko, A. Dmitriev, A. Cherepanov, A. Vaisblat and A.
Kolsanov, “Virtual Surgeon” training suite for laparoscopy,

endovascular and open surgery simulation”. Proceedings of ESM
2013, Lancaster university, UK, EUROSIS-ETI, 2013,
pp. 114 -118

AV .Kolsanov, A.V. Ivaschenko, A.V. Kuzmin and A.S. Cherepanov,
“Virtual Surgeon system for simulation in surgical training”.
Biomedical Engineering, 2014, Vol. 47, No. 6,
pp. 285-287

A. Tvaschenko, A. Kolsanov, A. Nazaryan and A. Kuzmin “3D
surgery simulation software development kit”. Proceedings of ESM
2015, Leicester, UK, EUROSIS-ETI, 2015, pp. 333 — 240

D.L. Rodgers et al., “The effect of hi-fi simulation on educational
outcomes”, Simulation in Healthcare, 2009, Vol. 4, pp. 200 — 206

F. Bello and H. Brenton “Current and future simulation and learning
technologies”, Surgical education advances in medical
education, 2011, Volume 2, pp. 123 — 149

R. Owens and J.M. Taekman, “Virtual reality, haptic simulators, and
virtual environments”. The comprehensive textbook of healthcare
simulation. Springer New York, 2013, pp. 233 —253

[2]

[3]

[4]
[5]

[6]

(71

(8]

[9

D.A. McClusky III and C.D. Smith, “Design and development of a
surgical skills simulation curriculum”, World Journal of Surgery,
2008, Volume 32, Issue 2, pp. 171 — 181

C. Karaliotas “When simulation in surgical training meets virtual
reality”, Hellenic Journal of Surgery, 2011, 83: 6, pp. 303 -316

M. Zhou, S. Tse, A. Derevianko, D.B. Jones, S.D. Schwaitzberg and
C.G.L. Cao, “Effect of haptic feedback in laparoscopic surgery skill
acquisition”, Surgical Endoscopy, 2012, Vol. 26, Iss 4, pp.1128-1134

84

[10]

[11]

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

M.C. Cavusoglu, T.G. Goktekin, F. Tendick and S.S. Sastry, “GiPSi:
an open source/ open architecture software development framework
for surgical simulation”. Proceedings of Medicine Meets Virtual
Reality XII (MMVR 2004), Newport Beach, CA, 2004, pp.46 —48

J. Allard, S. Cotin, F. Faure, P. Bensoussan, F. Poyer, et al., “SOFA -
an open source framework for medical simulation”. Proceedings of
Medicine Meets Virtual Reality 15 (MMVR 2007), Palm Beach,
United States. [OP Press, 2007, 125, pp. 13— 18

