PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Platform-Independent Reverse Debugging
of the Virtual Machines

Pavel Dovgalyuk, Denis Dmitriev, Vladimir Makarov
Novgorod State University
Velikiy Novgorod, Russia
{pavel.dovgaluk, denis.dmitriev, vladimir.makarov}@ispras.ru

Abstract—Prototyping and debugging of operating systems
and drivers are very tough tasks because of hardware volatility,
kernel panics, blue screens of death, long periods of time
required to expose the bug, perturbation of the drivers by
the debugger, and non-determinism of multi-threaded environ-
ment. This paper shows how the deterministic replay of the
virtual machine execution can be used to reduce the impact
of these factors to the process of debugging. We present an
approach to reverse debugging which allows creating multi-
target whole-system debugger. Using this debugger one can
investigate the failures affecting behavior of virtual hardware
and guest software. Our debugger is capable of replaying whole
virtual machine execution with reproducing internal state of all
virtual devices. Although reverse debugging was a subject of
many previous researches, there is no widely available practical
tool for debugging software on different platforms. We present
reverse debugger as a practical tool, which was tested for i386,
x86-64, MIPS, and ARM platforms, for Windows and Linux
guest operating systems. One can use this debugger to debug
user- and kernel-level code, deterministic functional modelling
of peripheral devices and hardware platforms. We show that
this tool incurs 15—40% recording overhead, which allows using
our tool for debugging time-sensitive applications. We presented
reverse execution implementation as a set of patches. Some of
the patches were already included into mainline QEMU.

I. INTRODUCTION

Prototyping of new operating systems and device drivers
includes efforts on simulating, testing, and debugging [16].
Virtualization-aided development and validation techniques
improves the experience of developers [1].

OS kernel errors, faulty data from hardware, race condi-
tions highly affect the debugging usability. Every time critical
error happens the developer needs to restart the debugging
process or even reboot the system. Rebooting obviously leads
to spending more time for debugging and causes data loss.

Debugging drivers and OS kernels in the interactive debug-
ger is a tough task. Stopping the program in the debugger may
cause timeout in the data processing. After breaking the data
transfer the behavior of the debugged program may change
and the bug may disappear.

Traditional cyclic debugging is inconvenient for debugging
the kernel code. Cyclic debugging requires that every program
run behaves and fails in the same way. One can rerun the
program being debugged for multiple times, but changed state
of the device will lead to changed behavior of the program.
It means that developer will spend time for the runs that do
not expose the bug and for setting up the external device to
its initial state.

Heisenbugs can also cause nuisances for debugging pro-
cess. Heisenbug can disappear or alter its behavior when one
tries to debug it [11]. Heisenbugs can be caused by changing
timings, data races, usage of uninitialized memory, and so on.

Reverse debugging is the solution for the problems with
drivers and kernel debugging. Reverse debugging allows exam-
ining the prior system states including the values of variables
and memory cells [9]. Instead of re-executing the programs re-
verse debugging focus on recording its behavior. Reproducing
the bug again and again becomes quite simple when replaying
previously recorded behavior.

Key benefit of reverse debugging is the ability to trace
sources of the data values back in time. Usually reverse de-
buggers support “reverse execution”. One can set a breakpoint
in the program and then “execute” it backwards to see where
this breakpoint could be hit in the past as it was set before
execution. Another powerful feature of deterministic replay is
decoupling dynamic program analysis from execution and fault
detection [5].

Reverse execution differs from making the virtual machine
snapshots and re-executing the program. Program rerun could
observe changed environment and therefore behave differently.
Deterministic replay allows reproducing communications with
virtual machine environment.

Our aim is aiding in kernel code debugging.One of the
possible solutions for that is creating virtual machine-based
reverse debugger. Reproducing the behavior of the whole
virtual machine allows to replay kernel code, state transitions
of all virtual devices, and operations with attached devices.

There are few available reverse debuggers for virtual ma-
chines. All of them are targeted to one or two platforms.
There is only one true multi-platform full-system reverse
debugger, but it is too slow and cannot debug time-sensitive
programs [10].

The paper describes an approach which is used to design
and implement multi-platform reverse debugger. This approach
can be used to debug user- and kernel-level applications.In
summary, this paper makes the following contributions:

e System-level execution replay method that does not
depend on hardware or software platform. Idea of our
method is presented in section II. In section III we
show how deterministic replay may be used for im-
plementing platform-independent reverse debugging.

e Implementation of replay debugging based on multi-
platform simulator QEMU and GNU debugger. It

ISSN 2305-7254



PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

works with state-of-the-art operating systems like
Windows and Linux, does not require any modifi-
cations of the guest OS, and supports commodity
hardware platforms. Replay debugging is described in
section IV.

e  Set of the patches for deterministic replay that were
included into upstream QEMU. These patches allow
using record-replay simulator capability for other de-
velopers [8].

e  Evaluation of reverse debugging. We measured perfor-
mance of record-replay execution for several hardware
platforms. Compared to other deterministic replay
implementations, our implementation is fast enough
for time-sensitive applications recording and supports
many hardware platforms, as shown in sections V
and VL

I[I. PLATFORM-INDEPENDENT REVERSE DEBUGGING

There are no available reverse debuggers that can satisfy
our requirements: multi-target, capable of devices communica-
tions debugging, and fast enough to debug real time systems.
Multi-platform support implies that debugger should be made
on top of the virtual machine. We chose QEMU for creating
the reverse debugging tools. QEMU is a multi-target simulator
supporting commodity hardware platforms [3] like x86, x86-
64, ARM, MIPS, and PowerPC. It translates guest binary code
into host binary code and then executes it. Due to binary
translation and caching of the translated code QEMU works
faster than interpreters.

We decided to use deterministic replay for reverse de-
bugging. The idea of deterministic replay is in recording the
non-deterministic inputs of the virtual machine during failure
exposition scenario. The non-deterministic inputs come from
user, network, real time clock, and external devices. Hardware
interrupts can also be treated as non-deterministic inputs,
because they can occur at random moments.

Executed program code (read from disk) is treated as
deterministic, because it does not change between simulator
runs. Other inputs of guest machine usually connected to
the real world and produce different data values in different
executions. Therewore we have to “‘stabilize” these inputs to
make execution repeatable.

When the program executes along the same path (i.e. it is
deterministic), user can accumulate debugging experience for
the same execution running it over and over again.

Our approach is based on maintaining the consistent state
of CPU, memory, and all virtual devices. It means that we
must capture all external inputs to these parts of simulator.
All inputs are recorded (and replayed) into non-deterministic
events log, as shown in Fig. 1.

The novelty of our approach is in reusing abstract hard-
ware layer to capture non-deterministic data. We also use
platform-independent instruction counter, as opposed to other
approaches that use platform-specific registers for that pur-
pose [6], [14]. These properties allow creating platform-
independent implementation of the reverse debugging tool. Re-
verse debugging may be used with any newly added platform
without its modification.

42

QEMU

Virtual Platform

| CPU |
| Virtual device n'l
| Memory Real time clock

Audio adapter

| Disk drive
\-| Abstract devices interface

|
-
!
Replay engine

‘ Event log ’

Serial port

Network

Keyboard

il

USB devices

Fig. 1. Multi-platform replay in QEMU

Our approach allows implementing platform-independent
record/replay and reverse debugging. All replay-specific func-
tions work with platform-independent data and events. This
design allows replaying the state of the whole virtual machine,
including its devices. One can record an execution of a virtual
machine and reproduce its internal devices state or external
models (e.g., SystemC models [16]) for multiple times for the
sake of debugging.

III. DETERMINISTIC REPLAY

Our record/replay system is based on saving and replaying
non-deterministic events (e.g., keyboard input) and simulating
deterministic ones (e.g., reading from HDD or guest mem-
ory) [2], [7]. Saving only high-level non-deterministic events
makes log file smaller, simulation faster, and allows using
reverse debugging even for time-sensitive applications.

The following non-deterministic data from peripheral de-
vices is saved into the log: mouse and keyboard input, network
packets, audio controller input, USB packets, serial port input,
and hardware clocks. Clocks are non-deterministic too because
their values are taken from the host machine. Inputs from
simulated hardware, guest memory, software interrupts, and
execution of instructions are not saved into the log because
they are deterministic and can be replayed by simulating the
behavior of virtual machine starting from the initial state.

We had to solve three tasks to implement deterministic
replay: recording non-deterministic events, replaying non-
deterministic events, and checking that there is no divergence
between record and replay modes.

We changed several parts of QEMU to implement event
log recording and replaying. Devices’ models that have non-
deterministic inputs from the real world were changed to write




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

every external event into the execution log immediately, e.g.,
network packets are written into the log when they arrive into
the virtual network adapter.

Replay engine needs to know when to inject real world
events while replaying. We specify these moments of time by
counting the number of instructions executed between every
pair of consecutive events.

To make sure that replay process is deterministic, our
implementation checks that expected events (e.g., reads of the
timer, software interrupts) of the QEMU execution are coming
from the log in the correct order. If one of these events is not
expected in the current state of the simulator, replaying will
stop immediately.

A. Instruction counting

Record replay reuses icount feature of QEMU to perform
instruction counting. icount was designed to allow determin-
istic execution in absense of external inputs of the virtual
machine. We extended this mode to allow record and replay
of the whole virtual machine execution. Recording enables
deterministic execution even when external data inputs affect
the virtual machine behavior.

QEMU uses dynamic translation to execute the guest code.
Every guest instruction is transformed into a sequence of host
instructions that simulate behavior of the guest one. After
translation QEMU joins instructions into translation blocks.
Translation block is a continuous sequence of instructions. It
means that execution of the block always starts at the first
instruction and ends at the last one.

The icount allows to perform accurate counting of executed
instructions. But the counter of the instructions is not incre-
mented after every instruction. The counter is updated only
at the beginning of the translation blocks, because translation
block always executed from the beginning to the end. Hard-
ware exceptions (such as MMU fault or division by zero) break
this rule and there is special mechanism to correct icount in
case of exception.

We use icount to control the occurrence of the non-de-
terministic events. Number of instructions executed after the
last event is written to the log. In replay mode we can use
instruction counter to predict when to inject that event.

Using icount is a very convenient way to control the non-
deterministic events, but it has a performance tradeoff. Instruc-
tions counting code is added to every translation block, as
shown in Fig. 2. “+” mark in the figure indicates the operations
that perform instructions counting. We present evaluation of
the performance overhead in section V.

B. Real time clock

QEMU uses host real time clock (RTC) for passing it to
virtual RTC into the guest machine and for internal timers.
Timers are used to execute callbacks from different subsystems
of QEMU at the specified moments of time. There are several
kinds of timers:

e Real time clock. Based on host time and used only
for callbacks that do not change the virtual machine

43

Translation block to be executed

0x000fdlfe: mov $eax, 59s
0x000£d200: mov %ecx, $eax
0x000fd202: Jmp *Fedx

Intermediate repr ion of the tr block

1d_i32 tmpl2,env, SOxfffffff4
movi_i32 tmpl3, $0x0

brcond_i32 tmpl2,tmpl3,ne, $0x0
1d_i32 locl4,env, $Oxffffffes
movi_i32 tmpl2,$0x3

sub_132 locl4,locléd,tmpl2
movi_i32 tmpl2,$0x0

brcond_i32 locléd,tmpl2,lt, $0x1
stl6_1i32 locld,env, $O0xffffffesd
-——— 0Oxfdlfe

mov_i32 tmp0,eax

movi_i32 tmp3, $0xfdlfe

st_i32 tmp3,env, $0x20

mov_i32 tmp6, tmpO

movi_i32 tmpl2,$0x5

call load_seg, $0x0,$0,env, tmpl2, tmp6
—-——— 0xfd200

mov_i32 tmp0,ecx

mov_i32 eax, tmp0

-——— 0x£fd202

mov_1i32 tmp0, edx

st_132 tmp0,env, $0x20

exit_tb $0x0

set_label $0x0

exit_tb $0x5c8033b

+ set_label $0x1

+ exit_tb $0x5c0045a

+ 4+ o+ + o+ o+

Fig. 2. Translation block with icount code

state. Therefore real time clock and timers does not
affect deterministic replay at all;

e  Virtual clock. These timers run only during the emu-
lation. In icount mode virtual clock value is calculated
using executed instructions counter. As a result, it
is completely deterministic and does not have to be
recorded;

e Host clock. This clock is used by device models
that simulate real time sources (e.g., real time clock
chip). Host clock is the one of the sources of non-
determinism. Host clock read operations should be
logged to make the execution deterministic;

e Real time clock for icount. This clock is similar to real
time clock but it is used only for increasing virtual
clock while virtual machine is sleeping. Due to its
nature it is non-deterministic and has to be logged.

Real time clock used for guest RTC and timers have
to be recorded because they affect the execution of virtual
machine. We created wrappers for clock reading functions.
These wrappers write the values to the log when recording
and read them back when replaying the execution.

C. Simulator execution checkpoints

Replaying of the virtual machine execution is bound by
sources of non-determinism. These are inputs from clock
and peripheral devices, and QEMU thread scheduling. Thread
scheduling affect processing events from timers, asynchronous
input-output, and bottom halves.




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Execution thread Events thread

Translation <> Deferred calls
Caching Timers
Execution Virtual devices

"

10 threads pool

Asynchronous 10

Fig. 3. Logic blocks of QEMU

The simulator consists of several threads: execution thread,
events thread, translation module, execution module, and mod-
els of peripheral devices, as shown in Fig. 3.

Execution thread runs in loop and invokes execution mod-
ule. Execution module calls translation functions if simulated
code was not translated before, or it takes translation result
from the cache. Then the translated code has to be executed.
Sometimes events thread breaks the execution and invokes
drivers of emulated (HDD) or external (keyboard) devices.
Execution loop continues after processing events from these
devices.

Such an asynchnonous architecture brings in difficulties
in reverse debugging implementation. Non-deterministic in-
puts from peripheral devices are supplemented with non-
deterministic inter-thread communication.

Invocations of timers are coupled with clock reads and
changing the state of the virtual machine. As we want to
keep the virtual devices in the consistent stace, we should
preserve order of timers invocations. Their relative order in
replay mode must replicate the order of callbacks in record
mode. To preserve this order we use simulator checkpoints.
When specific clock is processed in record mode, we save to
the log “checkpoint” event. Checkpoints here do not refer to
virtual machine state snapshots. These are just record/replay
events used for synchronization.

QEMU in replay mode will try to invoke timers processing
as they appear in the queue and timeout expires. But we do
not process the timers until the checkpoint event will be read
from the log. This event synchronizes CPU execution and timer
events.

Another checkpoints application in record/replay is instruc-
tions counting while the virtual machine is idle. gemu_-—
clock_warp is the function responsible for this. It changes
virtual machine state and must be deterministic then. That
is why we added checkpoint to this function to prevent its
operation in replay mode when it does not correspond to record
mode.

D. Asynchronous input and output

Disk I/O events are completely deterministic in our model,
because in both record and replay modes we start virtual
machine from the same disk state. But callbacks that virtual
disk controller uses for reading and writing the disk image
may occur at different moments of time in record and replay
modes.

44

Read and write requests are created by execution thread of
QEMU. These requests proceed to the block layer, which is
responsible for disk images. Block layer creates tasks for 10
thread that will be processed asynchronously.

We implemented saving and replaying IO tasks syn-
chronously to the CPU execution. When the callback of the
task is about to execute, it is added to the queue in the replay
module. This queue is written to the log and its callbacks are
executed. In replay mode callbacks do not processed until the
corresponding event is read from the events log file.

E. Initial setup

Before replaying the execution of the system it should
be set into the initial state. Then execution begins from
this starting point. System executes forward deterministically
because starting point was the same and the executed code did
not changed. Previously recorded inputs are injected into the
system while replaying the execution.

F. Abstract hardware layer for external devices

QEMU is capable of passing through hardware USB de-
vices into the virtual machine. This is a great possibility for
prototyping software for newly created and commodity de-
vices. As we added record/replay mechanism into the abstract
QEMU level, it supports replaying of any USB devices that
can be connected to simulator.

Abstract layer also includes functions for replaying serial
port and network communications. Replaying these communi-
cations does not depend on connected endpoints. E.g., it uses
the same functions for TCP and file-mapped serial communi-
cations, for Slirp- and TAP-based implementations of network
connections.

IV. REVERSE DEBUGGING WITH GDB

Reverse debugging is the ability of going through the
process of execution in backward direction. With reverse
debugging programmer can stop at a chosen point of execution
(e.g., where invalid pointer dereferencing exception occurs),
examine registers and memory, and continue execution of the
program in backward direction (e.g. to the last position, where
data pointer is written).

QEMU supports debugging with gdb through remote inter-
face. This support includes breakpoints, watchpoints, single-
stepping and other common debugging commands. However,
QEMU did not have support for reverse debugging through
GDB remote protocol. We added support of reverse debugging
commands (reverse step, reverse continue) into QEMU. These
commands become usable only when replaying the execution.
Reverse step proceeds to the previously executed instruction.
Reverse continue finds the latest breakpoint hit before the
current step.

Both of these commands require loading of previously
saved system snapshots. Therefore we had to improve QEMU
for checkpointing — saving virtual machine state to allow
restoring it later. The first checkpoint is created at start of
the simulation. Other checkpoints are taken every N’th second
(where N is the command line option). These checkpoints are
used for going back through the execution process.




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

TABLE 1. PERFORMANCE OF REVERSE EXECUTION
Execution mode Execution time, Slowdown Slowdown
sec against regular against icount
Loading Windows (x86)
regular 75 1.00 —_
icount 89 1.19 1.00
icount+record 98 1.31 1.10
icount+replay 228 3.04 2.56
Loading Debian Wheezy (x86)
regular 130 1.00 —
icount 177 1.36 1.00
icount+record 183 1.41 1.03
icount+replay 418 3.22 2.36
Loading Debian Wheezy (ARM)
regular 124 1.00 —
icount 157 1.27 1.00
icount+record 164 1.32 1.04
icount+replay 457 3.69 2.91
Loading Debian Wheezy (MIPS)
regular 160 1.00 —
icount 179 1.12 1.00
icount+rccord 182 1.14 1.02
icount+replay 428 2.68 2.39

After loading one of the previous states, simulator runs
forward to find a desired point (for reverse step) or to examine
all breakpoints that were hit (for reverse continue). Reverse
continue then makes an additional pass. After reaching the
point where user stopped the execution, reverse continue re-
runs execution again to seek the latest of the hit breakpoints.

To debug in reverse direction user has just to issue the
commands to the debugger. We altered QEMU to perform all
the required actions. QEMU automatically loads previously
saved state and makes two passes for reverse continue.

V. EVALUATION

In this section we present measurements of performance
overhead for the record and replay compared to the normal
simulator execution.

We used several tests for evaluation. The first one was
loading Windows XP 32 bit on x86 and others were loading
Debian Wheezy on x86, ARM, and MIPS platforms. We set up
five virtual machines for these tests. All of them used 128 Mb
of virtual memory.

We executed each of the tests in four modes:

e regular QEMU executes the test using regular dy-
namic translation engine without counting the instruc-
tions. This mode is non-deterministic and used for
reference as a normal mode.

e icount Instruction counting is enabled with —icount
shift=7 command line option. This mode is re-
quired for deterministic execution of the instruc-
tions and virtual clock. External inputs remain non-
deterministic. Value of shift option affects the vir-
tual clock rate and does not affect the OS booting
time.

e icount+record Deterministic execution mode. All vir-
tual devices inputs connected to the real world are
recorded in the log.

e icount+replay System execution is replayed determin-
istically. All input events are read from the log.

45

TABLE 1I. LOG FILE GROWTH RATE FOR DIFFERENT PLATFORMS
Platform Log size, | Executed Bytes per 1000
bytes instructions instructions
x86 139M 6346M 21.9
ARM 80M 4469M 17.9
MIPS 257M 3408M 75.4

We measured time for execution of each test in every
mode. These measurements are presented in Table I. There are
two normalized time values for every execution. The first one
is normalized to regular execution. This shows net overhead
for the user who runs virtual system in regular emulation
mode. The second normalized value shows overhead of non-
deterministic events log capturing and replaying.

Enabling icount makes system execution deterministic. It
means that time on virtual clock depends on number of
executed instructions. So the simulation speed does not affect
the behavior of the system. The only way for the guest system
to notice the slowdown of the execution is to measure the
timings of the communications with the real world (network,
USB, and so on) or to read some external source of real time
(e.g., NTP server). If the overhead is too large, it can also affect
the usability of the execution recording. Fortunately, overhead
of the instruction counting is quite reasonable — from 12% to
36%. Such an overhead does not affect the user experience.

Recording overhead should be as small as possible to
avoid its interference in the system behavior. To estimate this
overhead, we normalized recording time to the execution time
with enabled icount. These values are shown in the fourth
column of the Table I. Recording overhead ranges from 3%
to 10% for our tests.

Replay overhead does not affect the guest system behavior.
It affects only user experience. In our tests the overhead is in
reasonable range from 204% to 269%.

We also measured space overhead for recording the execu-
tion log. It was in range from 10 Kb/sec when OS is idle to
715 Kb/sec in the active phase of OS booting.

Log growth rate is small enough to allow using execution
recording for long periods of time. Number of bytes per
executed instruction for Debian loading tests are presented in
Table II.

VI. RELATED WORK

There were previous efforts on making whole-system re-
verse execution. XenLR project used Xen to implement a
prototype of deterministic replay system [14]. It supports
replaying keyboard and timer events with MiniOS inside. It
is not capable of replaying other events or working with other
operating systems.

Authors of [5], [18] used VMWare to implement reverse
debugging. This debugger supported reverse execution for
systems on x86 platform. There was a publicly available
VMWare-based reverse debugger, but now support of this de-
bugger is discontinued and it cannot be downloaded anymore.

Time-Travelling Virtual Machine (TTVM) is intended to be
used for reverse debugging of the kernels [13]. It works only
with modified version of User Mode Linux on x86 platform.
Other hardware and software platforms are not supported. Bugs




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

in recompiled drivers will probably work differently due to
changed environment. In contrast to TTVM, our solution sup-
ports execution of commodity operating systems and replaying
communications with real hardware.

FREE project is targeted to x86 record-replay [4]. It is
built upon QEMU and records 10 reads into the log. This log
is used for replaying virtual CPU and memory state. FREE
cannot recover virtual devices’ states and does not replay DMA
transactions.

PANDA is the open-source system that supports record
and replay for several hardware architectures [6]. PANDA
maintains the state of CPU and RAM during replay. It writes
inputs from I/O instructions, interrupt controller, and DMA
controller into a non-determinism log.

Panda uses platform-dependent way to determine when to
replay the inputs. For x86 these moments are identified by the
program counter, instructions count, and value of the implicit
loop variable (which is ECX register).

Panda cannot “go live” from replay, because it replays only
CPU and RAM. User cannot examine whole virtual machine
state. In contrast to PANDA, our implementation can restart
regular execution from any moment of replay scenario, because
all virtual devices of VM are always in a consistent state.
Recording process for x86 PANDA incurs 85% overhead and
replaying — 257%.

Simics is the multi-target simulator from Wind River [10].
Reverse debugging in Simics was released in 2005. It sup-
ports full-system and even multi-system debugging. Simics
simulates wide range of platforms including x86-64, ARM,
MIPS, and PowerPC. All commodity operating systems can
be executed by the virtual machine. All these features make
Simics one of the best commercial reverse debuggers. Another
side of this features set is that Simics is a very expensive tool
that makes it unavailable for most of the developers.

However, Simics is too slow for convenient debugging of
programs that interact with user or real hardware. Rittinghaus
et al. reported that Simics was up to 40 times slower than open
source QEMU [17].

VII. CONCLUSION

We presented platform-independent record-replay tech-
nique that allows low-overhead recording and replaying of
the system execution. We implemented our method in multi-
platform simulator QEMU. Core patches of deterministic re-
play were already included into upstream QEMU [15]. Reusing
existing instructions counting allows changing the simulator in
target-independent manner. These changes enable deterministic
replay for all target platforms supported by QEMU. We tested
record/replay for 1386, x86-64, MIPS, and ARM.

Replay engine supports multiple types of input devices
including network cards, audio adapters, serial port, and USB
devices. Deterministic replay was tested on several types of
commodity USB devices that work in low-speed and high-
speed modes.

Reverse debugging in QEMU allows examining of the
whole system behavior with returning back in time. Our
reverse execution engine supports reverse stepping and reverse

46

continuing to the last breakpoint. Reverse debugging may even
be performed in offline mode when the device, which was used
to record the execution, is unavailable.

Our record/replay engine may be used for debugging
drivers, kernel, and user-level application without wasting time
for reproducing the bugs and system setup.

VIII. FUTURE WORK

We are currently working on upstreaming the reverse de-
bugging patches to QEMU. Making all the reverse debugging
code available to developers using QEMU will help them
in their debugging work. We also will test the record/replay
mechanism for other QEMU platforms.

Deterministic replay may be used for other dynamic
analysis methods in addition to reverse debugging. Using
deterministic replay for them is a great possibility to make
analysis offline. Replay eliminates analysis disturbance of a
system behavior. Henderson et al. reported that taint analysis
with whole-system instrumentation implemented in QEMU
incurs 600% overhead [12]. Deferring this overhead from
system execution phase to replaying will make analysis more
trustworthy. Replaying also can be used for speeding up the
analysis through parallelizing it to multiple machines [17].

IX. ACKNOWLEDGMENTS

The work was partially supported by RFBR, research
project No. 14-07-00411 a.

REFERENCES

[11 M. Baklashov. An on-line memory state validation using shadow
memory cloning. In Proceedings of the 2011 IEEE 17th International
On-Line Testing Symposium, IOLTS "11, pages 186—189. Washington,
DC, USA, 2011. IEEE Computer Society.

[2] K. A. Batuzov, P. M. Dovgalyuk, V. K. Koshelev, and V. A.
Padaryan. Dva sposoba organizatsii mekhanizma polnosistemnogo
determinirovannogo vosproizvedeniya v simulyatore gemu [two ap-
proaches to organizing a full-system deterministic replay mechanism
in gemu simulator]. Trudy ISP RAN [The Proceedings of ISP RAS],
22:77-94, 2012.

[3] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference,
ATEC 05, pages 4141, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

4] S. S. Chia-Wei Hsu. Free: A fine-grain replaying executions by using
emulation. The 20th Cryptology and Information Security Conference
(CISC 2010), 2010.

5] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX 2008
Annual Technical Conference on Annual Technical Conference, ATC’08,
pages 1-14. Berkeley. CA, USA, 2008. USENIX Association.

[6] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Repeat-
able reverse engineering for the greater good with panda. Oct. 2014.

[71 P. Dovgalyuk. Deterministic replay of system’s execution with multi-
target gemu simulator for dynamic analysis and reverse debugging. Tn
Proceedings of the 2012 16th European Conference on Software Main-
tenance and Reengineering, CSMR 12, pages 553-556, Washington,
DC, USA, 2012. TEEE Computer Society.

[8] P Dovgalyuk. Deterministic replay core. https://lists.nongnu.org/
archive/html/qemu-devel/2015-09/msg04623.html, 2015.
[9] J. Engblom. A review of reverse debugging. In in S4D, 2012.
[10] J. Engblom, D. Aarno. and B. Werner. Full-system simulation from em-
bedded to high-performance systems. In R. Leupers and O. Temam, ed-
itors, Processor and System-on-Chip Simulation, pages 25—45. Springer
US. 2010.




[11]
[12]

[13]

[14]

J. Gray. Why do computers stop and what can be done about it?, 1985.
A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin. Make it work, make it right, make it fast: Building a platform-
neutral whole-system dynamic binary analysis platform. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pages 248-258, New York, NY. USA. 2014. ACM.

S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’05, pages
1-1, Berkeley, CA, USA, 2005. USENIX Association.

H. Liu, H. Jin, X. Liao, and Z. Pan. Xenlr: Xen-based logging for
deterministic replay. In Proceedings of the 2008 Japan-China Joint
Workshop on Frontier of Computer Science and Technology, FCST *08,
pages 149—154, Washington, DC, USA, 2008. IEEE Computer Society.

47

[15]

[16]

[17]

(18]

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

P. Maydell. Qemu 2.5 changelog. http://wiki.gemu.org/ChangeLog/2.5,
2015.

M. Monton, A. Portero. M. Moreno. B. Martinez, and J. Carrabina.
Mixed sw/systemc soc emulation framework. In Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on, pages 2338-2341,
June 2007.

M. Rittinghaus, K. Miller, M. Hillenbrand, and E. Bellosa. Simuboost:
Scalable parallelization of functional system simulation. In Proceedings
of the 11th International Workshop on Dynamic Analysis (WODA 2013),
Houston, Texas, Mar. 16 2013.

M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B. Weissman,
and V. Inc. Retrace: Collecting execution trace with virtual machine
deterministic replay. In In Proceedings of the 3rd Annual Workshop on
Modeling, Benchmarking and Simulation, 2007.




