PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Machine Learning Approach to Automated
Correction of I&IEX Documents

Kirill Chuvilin
Institute of Computing for Physics and Technology, Protvino, Russia
Moscow Institute of Physics and Technology (State University), Moscow, Russia
kirill.chuvilin @gmail.com

Abstract—The problem is the automatic synthesis of for-
mal correcting rules for IXTEX documents. Each document is
represented as a syntax tree. Tree node mappings of initial
documents to edited documents form the training set, which is
used to generate the rules. Rules with a simple structure, which
implement removal, insertion or replacing operations of single
node and use linear sequence of nodes to select a position are
synthesized primarily. The constructed rules are grouped based
on the positions of applicability and quality. The rules that use
tree-like structure of nodes to select the position are studied.
The changes in the quality of the rules during the sequential
increase of the training document set are analyzed.

I. INTRODUCTION

The reason for this work is the preparation of conference
proceedings in 2007-2012. Many scientific conferences and
publishing houses get source texts from authors in the IXIEX
format. Each publisher has certain traditions and requirements
for the material to publish. These rules include the design of
headings, lists, tables, bibliography, equations, numbers, etc.
The errors associated with non-compliance with these rules
are called typographical errors. The sources sent by authors
usually contain a significant amount (dozens per page) of such
errors, the correction of which is done manually by editors.
There are tools to facilitate manual proofreading [1], but
nevertheless the processing of a single page takes up to two
hours of time. Therefore, an automation of typographical errors
correcting process is actual to reduce the time and volume of
manual work.

Generally speaking, the idea to automate the correction
of texts is not new [2], and at the moment there are some
qualitative tools for automatical search and fixing spelling
errors using dictionaries and word forms morphological anal-
ysis [3]. In addition, a similar problem arises for intelligent
error correction in search queries using lexical and statistical
characteristics [4]. But these approaches are not applicable for
the correction of typographical errors that are discussed in this
article and are associated not only with the textual content of
the document, but also with formatting layout. Often the local
information in the text is not sufficient to describe an error,
but also the knowledge of the context (additional information
about the position in the document structure) is required.

On the other hand, there is a research field devoted
to the improvement of programs source code characteristics
(the probability of errors in individual modules, the degree of
connectivity modules, etc.). Known methods allow to measure
the characteristics with the analysis of repositories change
history and then use them to find errors in the code [5],

[6]. They allow to create recommendation systems to improve
the quality of program source code [7]. Documents in the IXTEX
format can be regarded as the source code, which is used by
the TEX compiler, but it is not common to use the suitable
for further analysis repositories in publishing practice. There
are no uniform standards. And in addition, the text contents
of documents cannot be subject for such a processing.

Thus there is a need for a new research aimed directly at
the automation of typographical error correction. The proposed
approach is the following. Editors works with the system,
which itself determines the possible fix positions in the source
text and offers him a replacement. If they agree with the
replacement, the only thing that is needed is to press the
appropriate button. If they don’t agree, then they make editing
manually.

Correcting rules can be defined manually on the basis of
practical experience of editors. However, due to the significant
number and diversity of situations and behaviours this will
rather increase the amount of work, especially at the initial
stage. Therefore, we propose to build the rules using the al-
ready processed set of document pairs. A document that hasn’t
been proofread will be called a draft copy, and a proofread
document will be called a clean copy.

The problem of document transformation rules automatic
synthesis using the training set composed of ‘“draft—clean
copies” pairs is considered in [8]. However, the rules obtained
with such a way have several drawbacks including the in-
complete coverage of the error positions in the non-training
document set and the wrong suggested replacement.

This article deals with two approaches to improve the qual-
ity of a rule set using the structure complexity.

II. IDENTIFICATION OF DIFFERENCES BETWEEN
DOCUMENTS

ETEX documents in the text representation are sequences
(can be nested) of lexemes of the following types: syntactic
brackets ({ and }), space, horizontal padding, vertical padding,
paragraphs separator, line break, symbol, number, word letter,
command, tag, wrapper (tag with the closure), equation, su-
perscript or subscript, label, linear dimension, path to a file or
a folder, list, list item, floating box, image, mathematical binary
operator, mathematical postoperator, mathematical preoperator,
table, table cell separator, table settings, not processing (raw)
data.

In addition, such files have a natural tree structure (syntax
tree) [8], by exploring which you can get all the necessary

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

information to describe a proofreading fix. Nodes of such
structures will be called fokens. The following types of tokens
are taken into account to construct a syntax tree: symbol (letter,
digit, mathematical operation, quote sign, dash, etc.), com-
mand, command parameter, environment, environment body,
space, paragraph separator, word, number, label, linear dimen-
sion, path to a file, tabular parameters, not processing fragment
(for example, the text inside a verbat im environment). Each
token can be matched by one of the lexeme types. Examples
for token of each type are in Table I.

TABLE L. EXAMPLES OF TOKENS
Token type IATEX source sample
Symbol height 1. 2

\includegraphics |

widen=10cn] |
{|-./figure. eps

includegraphics
[width=10cm]
| {../figure.eps} |

I4TEX command

IATEX command parameter

| \begin{tabular} |{c |c}
height & 1.2\, m
\end{tabular}
begin{tabular}t{c|c}
| height & 1 42\,m|

147X environment

IATEX environment body

end{tabular}

Space heightJ1.2\, m

Paragraph
Paragraphs separator O

New paragraph
Word |height | 1.2\, m
Number height | 1.2 |\,m
Label \ref{| equationl |}

\textwidth=| 10cm |
includegraphics

Path to a file [width=10cm
{| --/figure.eps |}
\begin{tabular}{clc [}

height & 1.2\, m
\end{tabular}

Linear dimension

Tabular parameters

tokens, the pairs (source and target) of the changed tokens,
the set of the removed tokens, the set of the inserted tokens.

III. RULES WITH A SIMPLE STRUCTURE

The initial set of rules is built after obtaining the mapping
between the draft and clean trees [8]. Each synthesized rule
characterized by the pattern (the sequence of adjacent tokens
with the same parent), the localizer (the token whose child
tokens the pattern is applied to) and the action (the operation
aimed at changing the syntax tree). Thus, a rule allows to
locate the error (to determine its position in the syntax tree
and consequently in the original document text; it is considered
that the error is in the piece of the text that corresponds to the
rule pattern tokens), and it offers the option of correcting (the
change of the syntax tree and hence the initial document text)
on the basis of the rule action.

Definition 1: Left pattern chain of radius r is a sequence of
not more than r adjacent tokens with the same parent. The left
chain start is its most right token.

Right pattern chain of radius r is a sequence of not more
than r adjacent tokens with the same parent. The right chain
start is its most left token.

Let token x of a draft tree be removed or changed to
token y. Then the localizer is the parent token of x, the pattern
is composed of the left and right closest to x pattern chains
and of token x. In such cases, token x will be called the target
token of the rule. The rule action is to remove the target token
or to change it to a token y, depending on the type of the rule.

Let token y be added to a clean tree. Then the localizer is
the prototype of the parent token (if it exists) of y, the pattern is
composed of the left pattern chain that starts from the prototype
of the y’s left neighbour (if it exists) and the similar right
pattern chain. The rule action is to insert the token y between
the left and the right pattern chains.

Example 1 (A token insert rule): An extra space is often
inserted between two standing next equations to improve
the readability of the text. The mapping between syntax trees,

which appears while changing | If $SS, $Qs, then| to

Not processing fragment \verb\| complex source |\

A syntax tree bijectively (according to the TgX compiler)
defines a IATEX document. It is convenient to formulate the cor-
recting rules for the trees.

Syntax trees of draft and clean copies will be called draft
and clean trees respectively.

The differences between the draft and the clean trees for
each document pair from the training set are identified before
the search of the regularities in the changes that were done by
editors. Zhang-Shasha algorithm is used for this purpose [9],
[10]. It implies that the following steps are allowed to be
consistently applied to the syntax tree: a token removal (all
child tokens go to the parent), a new token insertion to
an arbitrary place, a token change. The algorithm allows to
calculate the edit distance between two trees and in addition
to determine which procedure should be applied to each node
for the implementation of that distance. The result of its work
consists of the pairs (source and target) of the not modified

34

|If 8,\; $0s, then|is shown in Fig. 1.

documer.t
environment body

docunent

environment body

Fig. 1. A token insert rule example.

If S, Q, then|~>|1f s,\; Q, then|

The meaning of change is the insertion of a symbol
between the comma and the space. But an extra space is

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

not always needed between a comma and a space, even if
there is an equation before the comma or an equation after
the space. The correct condition is the presence of equations
before the comma and after the space.

Therefore in this case the left pattern chain consists of
the comma token and the equation token, the right pattern chain
consists of the space token and the equation token, the pattern
consists of the equation token, the comma token, the space

token and the equation token. The rule action is to insert a
symbol token between the comma token and the space token.

Example 2 (Token change rules): One of the most usual
typographical errors is to use the ”...” quotes instead of
<<...>> quotes in Russian-language sources. Let the mapped
parts of draft and clean trees look as shown in Fig. 2, this

<<word| n

corresponds the mapping of | r word| to

a document environment.

<’ decament : i Jocurent >
~guyironment body . 5 gryironment body

L

Copee

Fig. 2. A token change rule example.
" ’word | — | <<word |

In this case the localizer is the document environment
body token, the left pattern chain consists of the space token,
the right pattern chain consists of the word token, the pattern

consists of the space token, the symbol token and
the word token. The rule action is to change the token that is
between the space token and the word token to a symbol
token.

The similar rule is built to change right quotes.

On the other hand, some of the rules are not applicable
to all the document fragments. This confirms the need to take
a context into account for the creation and use of the rules. For
example, a number of pages in a list of references is usually
denoted by “Pp” for English-language sources. But it is usual
to see a single letter “P” designation in practice. So there
is a need to change “P” to “Pp”, but such a modification is
likely to be incorrect for a random fragment of the document.
Therefore, this rule is built only for the thebibliography
environment body.

mapping between syntax trees, which appears while

to m is shown in Fig. 3.
</7Fpmh ingz aprv ; : fh@hlhllrgraph\)
“-emyironment body —environment body

The m
changlng

A

Capee]

Fig. 3. A token change rule example.

[][]

In this case the localizer is the thebibliography
environment body token, the left pattern chain consists of

35

the comma token and the space token, the right pattern chain
is empty, the pattern consists of the comma token, the space
token and the “P” word token. The rule action is to change
the pattern last token to a “Pp” word token.

A. Searching of matches to rules

A token [is considered to correspond to a rule localizer if
their types and their lexeme types are matched.

A continuous sequence of [child tokens is sought accord-
ing the following principles:

e token types and lexeme types must be matched for all
the tokens of the pattern chains and the corresponding
child tokens of [,

e the target token must be full matched to the corre-
sponding child token of I.

Definition 2: Rule position in the syntax tree is a union
of the token that corresponds to the rule localizer and the set
of tokens matching to the pattern. Rule generating position is
the position that corresponds the item of the mapping between
syntax trees that was a basis for the rule. Rule position set in
a document set is the set of all the positions in the syntax trees
of these documents that match to the rule.

B. Preliminary estimation of a rule

Preliminary quality estimations are calculated for each rule
using the training set [11]. Let d; and ¢; be the sizes of the rule
position sets in the sets of draft and clean copies respectively.

Definition 3: Preliminary (in the training set) precision of
a rule is the ratio of the rule position matching to the draft
copies only set size to the total number of the found positions:

dt — Ct
d,

C. Selection of optimal patterns

The tokens set that forms a rule pattern can be defined
in different ways. According to the experiment results, we
can conclude that the maximum patterns do not always give
the best result [8]. In this article, the optimal pattern is selected
by the following criteria:

1) the rule preliminary precision must not be less
than 0.9;

2) the pattern with the smallest size is sought among all
the patterns that provide the selected precision;

3) the rule with the greatest precision is sought among
all the rules with the selected pattern size.

D. Reduction of a rule set

It turns out that rules are redundant after processing all
the differences among the training set trees as many of them
are duplicated.

To eliminate this effect, the reduction process is used,
which means the removing of some rules, so that the general
set of the identified regularities stays the same.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Definition 4: A rule A absorbs a rule B, if their actions
are the same and the rule B position set in the draft copies of
the training set is a subset of the rule A position set.

Rules that can be absorbed by the other rules are incre-
mentally removed from a generated rules set.

Definition 5: Rule generating position set is the set of
generating positions of this rule and all the rules absorbed
by this rule.

1V. QUALITY ESTIMATIONS

The experiment was performed to estimate the quality
of a rule set. It used 85 pairs of draft and clean copies of
articles from the IIP-8 conference. The adaptive learning of
the rule set was simulated. For this purpose the training set of
the document pairs used for rule synthesis increased gradually:
2,3,4,6,9, 13, 19, 28, 42, 63. Let S; C ... C Sy be
the generated ten training sets of the document pairs, Sq7 is
the set of all the document pairs. The control set was formed
of the document pairs added to the training set at the next step:
Sit1\ S, i=1,...,10.

Quality estimates of the synthesized rules and the rule sets
were calculated [11]. The sets sequences were constructed for
50 times, the data for all the tests was averaged.

Let for any rule p; be the rule generating position set size,
d. and ¢, be the rule position set sizes in the sets of draft and
clean copies respectively of the control document set, p. be
the rule position set size in the draft copies set that corresponds
the correct changes of the control document set.

Definition 6: Adjusted preliminary precision of a rule is
the ratio of the rule position really matching to the draft copies
only set size to the total number of the found positions:

Pt
dy’

Definition 7: Control precision of a rule is the ratio of
the rule position in the control document set that match to
the draft copies only set size to the total number of the found
positions:

de — ¢
de

Definition 8: Adjusted control precision of a rule is the ra-
tio of the rule position in the control document set that match
to the correct changes set size to the total number of the found
positions:

Pc

de’

It is possible to determine the quality evaluations of a rule
set at this point.

Definition 9: Let P(A;),..., P(Ax) be the preliminary

precisions of rules Ay, ..., Aj respectively, and all these rules
have the same target token. A weight of a rule A; is
P(A;
Ay = P
Zj:l P (Aj)

36

Definition 10: Let E(A;) be a number equal to 0O if
the rule A; corresponds to a correct fix and 1 otherwise. Then
the expression

k k
_ _ N i P(A)E(A;)
en = ; W(A)E(A;) = SN

defines the average error of a rule set at the selected token .

Let F; and E. be the average errors sums of a rule set at
all the tokens of the draft trees in the training and the con-
trol document sets respectively, N; and N, are the different
position numbers of a rule set in the sets of draft copies of
the training and the control document sets respectively, D,
and D, are the editing distances sums for all the draft and
clean tree pairs of the training and the control document sets
respectively.

Since the rules are generated while tokens insertion, dele-
tion or changing only, and the sum of such operations is
the edition distance, the following definitions are correct [11].

Definition 11: Preliminary (in the training document set)
precision of a rule set is

Ny — Ey
N;
Control (in the control document set) precision of a rule set is
N. - E,
N,

Definition 12: Preliminary (in the training document set)
recall of a rule set is

Ny — Ey
Dy
Control (in the control document set) recall of a rule set is
Nc - Ec
D,
As can be seen from Fig. 4, the reduction can significantly
reduce the number of rules. This means that most of the dif-

ferences between the draft and the clean copies are typical for
the whole document set.

3500
3000
2500
2000
1500
1000

500

5 10 15

20 25 30 35 40 45 50 55 60 65
number of articles pairs

—a— number of rules before reduction
—e— number of rules after reduction

Fig. 4. The numbers of the generated rules.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

5 10 15 20 25 30 35 40 45 50 55 60 65

number of articles pairs
—a— average number of rules per article before reduction
—e— average number of rules per article after reduction

Fig. 5. The average numbers of rules for one “draft-clean” pair.

The graphs in Fig. 5 correspond to the increasing functions.
From this we can conclude that there’s not a negligible number
of unique differences between draft and clean copies.

The curves in Fig. 6 that correspond to the adjusted preci-
sion ne
can to
the | ns
that od
geng

I ’00 /——D—./‘,’k_’"‘
0.95
0,90

0,85]

0,80

0,50 i

0’45 W

15 20 25 30 35 40 45 50 55 60 65
number of articles pairs

5 10

—a— preliminary precision of single rule

—e— control precision of single rule

—— adjusted preliminary precision of single rule
—— adjusted control precision of single rule

Fig. 6. The average quality estimates of a single rule.

0.45 i

————————————
0,40 K
0,35 ’Mﬁ’g’—g‘

0,30

S 10 15 20 25 30 35 40 45 50 55 60 65
number of articles pairs

—=— preliminary precision of rule set

—e— control precision of rule set

—— preliminary recall of rule set

—»— control recall of rule set

Fig. 7. Estimates for the precision and the recall of the rules with the simple
structure set.

On the other hand, the precision and the recall of the rule

sets don’t exceed 50%. For precision this means that there
are different rules with similar patterns. Lack of recall can be
explained by the fact that the types of rules discussed earlier
are not enough to describe editor operations.

V. GROUP RULES

In practice, there are cases where an editor changes, deletes
or inserts more than one token. For example, the moving of
the token to another position is a union of removing and
inserting the token. To increase the range of the recognizable
edits we will use the rule grouping.

Example 3 (Group rules): Publishing design standards
may vary dashes. This leads, for example, to the need to

change | . | to | rr——— |

The mapping between syntax trees, which
appears while changing |(def~——- definition | to
| def '’-—— definition | is shown in Fig. 8.

cocurent dozuament

—_cnvironment body _ : i\ _cnvironment h«/y/

T

(spﬂce - sp1ce>

- defin. uon B -

, de[uuucn L >

Fig. 8. A group rule example.

| def~——- definition | — | def ’’-——- definition |

The first fragment consists of the non-breaking space (IZI)
token and the dash symbol (EI) token, the second fragment

consists of the inseparable dash symbol token.
Each rule with a simple structure can change only one token,
that is why such a replacement cannot be implemented. On
the other hand, the deletion of the non-breaking space token
standing in front of the dash token and the change of the dash
token to the inseparable dash token together give the desired

replacement.

The similar problem arises correcting one of the most
usual typographical errors when a hyphen is used instead
of a dash in Russian-language sources. The corresponding
mapping between syntax trees is shown in Fig. 9.

<’7 Socurent \‘j i’i Gosment \‘
—_cnyironment body _ —__cnvironment body_,
II o) ‘

- spaD space
C_defint tlon L _ det)nltlcn)

Fig. 9. A group rule example.

|def - definition|—>|def rr—— definition|

Another similar example is the proper use of a hy-
phen character. The mapping between syntax trees, which

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

appears while changing |σ - covering| to

| σ’’ :covering| is shown in Fig. 10.

T decument T docunert ﬁ'>
_environment body _environment body
— '

Fig. 10. A group rule example.
| σ - covering | ﬁ| σ’’ =covering

An insertion of more than one token is necessary some-
times. The mapping between syntax trees, which appears while

changing |n.k.f. | to |n.\;k.\;f. | is shown in Fig. 11.
Two tokens of symbol are added in this case.

C/ den manl. — 4ocurent ‘>

___environment body —__environment body
e B .

d\)\

o/

Fig. 11. A group rule example.

|n.k.f. |—>|n.\;k.\;f.

Suppose that there are two rules with such positions that:

e the tokens the localizers are

the same;

corresponding to

e the sets of the tokens corresponding to the patterns
have mutual elements.

Then we construct a new group rule the localizer of which is
the same as the localizer of the given rules and the pattern
is formed by the union of their patterns. The built rule is
added to the rule set, if its preliminary precision is higher
than the preliminary precisions of both old rules.

It is considered that the position in a syntax tree of
a document matches to the group rule if it matches to each of
the grouped rules. This takes into account the relative position
of their patterns: overlap should occur by the same tokens,
which it happened at the time of the group rule generation.

Fig. 12 shows the quality estimations of the rule set using
group rules built in accordance with the experiment described
earlier. It can be seen that this approach yielded the precision
significantly more than a half, but the recall is still at the level
of 50%.

VI. RULES WITH TREE PATTERNS

Another way to improve the precision and the recall of
a rule set is the complication of a pattern structure. A pattern

38

0,65
0,60

0,55
0,50
0,45

5 10 15 20 25 30 35 40 45 50 55 60 65

number of articles pairs
—=— preliminary precision of rule set
—e— control precision of rule set
—e— preliminary recall of rule set
—— control recall of rule set

Fig. 12. Estimates for the precision and the recall of the rule set taking into
account the group rules.

of a simple structure rule allows to use the adjacent tokens only
to determine the position. Generally speaking, it doesn’t mean
the use of all the text corresponding to these tokens, because
it doesn’t take into account the structure and the contents of
the subtrees, which roots form the pattern.

A pattern of a tree-like rule is constructed of two pattern
trees: left and right. In this case the length of the pattern is
the number of tokens in these trees.

The generation of such rules, the selection of the optimal
patterns and the reduction are similar to the generation of rules
with a simple structure.

Let token x of a draft tree be removed or changed to
token y. Then the localizer is the parent token of x, the pattern
is composed of the left and the right pattern trees such that all
the child tokens of the left pattern tree root form a left pattern
chain closest to z, and the child tokens of the right pattern tree
root form a similar right pattern chain. In such cases, token x
will be called the target token of the rule. The rule action is to
remove the target token or to change it to a token ¥, depending
on the type of the rule.

Let token y be added to a clean tree. Then the localizer is
the prototype of the parent token (if it exists) of y, the pattern
is composed of the left pattern tree such that the child tokens of
its root forms a left pattern chain that starts from the prototype
of the y’s left neighbour (if it exists) and the similar right
pattern tree. The rule action is to insert the token y between
the left and the right pattern chains.

The following steps are used to select the optimal pattern:

1) the rule preliminary precision must not be less
than 0.9;

2) the pattern with the smallest sum size of the left and
the right pattern trees is sought among all the patterns
that provide the selected precision;

3) the rule with the greatest precision is sought among
all the rules with the selected pattern size.

The searching of match positions is done with the following
way. A token [is considered to correspond to a rule localizer
if their types and their lexeme types are matched. The patter
trees and all their subtrees are tested at each level started from
the token [child tokens according the following principles:

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

e the most right child tokens of the left subtrees must
be equal to the corresponding pattern tokens,

e the most left child tokens of the right subtrees must
be equal to the corresponding pattern tokens,

e cach subtree must match to the corresponding child
token.

Example 4 (Rules with tree patterns): Another example
of the most usual typographical errors is the inclusion
of a punctuation in an equation body. Let the mapped
parts of draft and clean trees look as shown in Fig. 13,

this corresponds the mapping of |$, $| to |$ S,
a document environment.

(dezament >—(docurent >
__environment body ___environment hody

in

Fig. 13.

ple.

-]

A tree-like rule exam

Such a replacement can be described as a union of a comma
token insertion after the equation token that contains comma
at its end and the comma token that is after the equation
token deletion. But the inside equation tokens are required to
determine whether a comma is in the equation. Thus a simple
structure rule pattern is not enough.

So the rule of a comma addition is described by a tree
pattern, the left pattern subtree consists of the equation token
containing the comma token the right pattern subtree is empty.
The action is to insert a comma token after the left subtree.

Tree-like rules can also be used to form group rules.
The mapping between syntax trees, which appears while
changing | $\textbf{E}|S|$ | to | $\Expect [S|$ | is
shown in Fig. T4. The corresponding rule is a tree-like rule
because not only the \textbf command token is required

must be replaced with but not with . The

but also its parameter is needed. For example

rule is a group rule because not only the \textbf command
token must be changed but also its parameter token must be
deleted.

Fig. 14. A tree-like group rule example.

| s\textbf{E}|S|$ |e| $\Expect |$1§

Fig. 15 shows the quality estimations of the rule set us-
ing tree-like rules built in accordance with the experiment

39

described earlier. It can be seen that this approach can sig-
nificantly increase the precision of the generated rule set.

0,85

0,80

0,75

0,70

0,65
0,60

5 10 15 20 25 30 35 40 45 50 55 60 65

number of articles pairs
—a— preliminary precision of rule set
—e— control precision of rule set
—+— preliminary recall of rule set
—— control recall of rule set

Fig. 15. Estimates for the precision and the recall of the rule set taking into
account the tree-like rules.

It is important to note that the resulting recall is greater than
70%, i.e. less than 30% is not recognized, and the precision
is greater than 75%, this allows to use the generated rule set
on the practice of semi-automatic error correction.

VII. CONCLUSION

Rules with a simple structure described by a linear pattern
are examined. The method for constructing such rules on
the basis of the training sample composed of “draft-clean”
pairs and the use of them is described. The optimal patterns
selection and the reduction processes are shown.

The precision and recall of rule sets and the precision for
single rule estimations method is proposed. An experiment
was performed using the articles of the IIP-8 conference.
The dependence of the precision and recall of a rule set on
the number of items that are used for training was studied.

The experiment shows that the precision and the recall of
rules with a simple structure are not high. This is justified
by a small number of supported operations (change of only
one token at a time is handled) and an excessive simplicity of
the patterns (it is required to have an opportunity to explore
more than one child level of the localizer token).

Two approaches were proposed to improve the rule quality:
the construction of group rules and rules with a tree pattern.
The rule grouping allows operations with a set of tokens at
the same time. Tree patterns allow access to different layers
of the document syntax tree.

The dependence of the precision and recall of a rule
set on the number of items that are used for training was
studied again for group and tree-like rules under the same
conditions as for the rules with a simple structure. Each
approach allows to significantly improve the precision and
the recall of the generated rule sets.

The results can be considered as acceptable for a practical
use.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

ACKNOWLEDGMENT

This work was supported by the RFBR grants: 16-37-

60049, 16-07-01267.

The author is deeply

indebted to Prof. Konstantin

Vorontsov for the wise scientific supervision in the field of
machine learning and the statement of this research original
problem. Also I am grateful to Alexey Rozanov (the head
of the publishing house “Fizmatkniga™) for the extensive
proofreading experience with ISiEX. And in addition I would
like to thank Tatiana Alenkina for the help with the correct
formulation in English of this article ideas and results.

(1]

[2]

REFERENCES

J. André and H. Richy, ‘“Paper-less editing and proofreading of
electronic documents.”, 1999. Web: http://www.irisa.fr/imadoc/articles/
1999/heidelberg.pdf.

I. A. Bol’shakov, “Problems of automatic text correction in inflected
languages™ [Problemy avtomaticheskoj korrekcii tekstov na flektivnyh
yazykah], Results of science and technics. Ser. Probability theory. Math
statistics. Theory of cybernatics.,. vol.28, M.: VINITI. 1988. pp. 111-
139.

“Lightproof grammar checker development framework”,
Web: http://extensions.services.openoffice.org/project/lightproof

2013.

M. F. Panina, A. V. Baitin, I. E. Galinskaya, “Context-independent au-
tocorrection of query spelling errors” [Avtomaticheskoe ispravlenie
opechatok v poiskovyh zaprosah bez ucheta konteksta], Computer

40

[6]

[7]

[8]

[9

(10]

L11]

linguistics and intelligent technologies. On matherials of annual in-
ternational conference "Dialog”, issue 12, vol. 1, 2013, pp. 556-567.

C. Williams, J. Hollingsworth, “Automatic Mining of Source Code
Repositories to Improve Bug Finding Techniques”, IEEE Transactions
on Software Engineering table of contents archive, vol.31, No.6, 2005,
pp. 466-480.

E. G. Knyazev, “Methods for detection of patterns of evolution code™
[Metody obnaruzheniya zakonomernostej ehvolyucii programmnogo
koda|, Proceedings of the XII All-Russian Scientific Conference Telem-
atics 2007. ITMO University, Saint Petersburg, Russia., vol.4, 2007,
pp. 435-436.

F. Madou M. Agiiero., G. Esperén, D. Lopez De Luise, “Software for
Improving Source Code Quality”, World Academy of Science, Engi-
neering and Technology, vol.59, 2011, pp. 1259-1265.

K. V. Chuvilin, “The use of syntax trees in order to automate the cor-
rection of IATEX documents” [Ispol’zovanie sintaksicheskih derev’ev
dlya avtomatizacii korrekcii dokumentov v formate I5TgX], Computer
Research and Modeling, vol.4, No.4, 2012, pp. 871-883.

K. Zhang, D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems”, SIAM Journal of Computing,
No.18, 1989, pp. 1245-1262.

K. V. Chuvilin, “An efficient algorithm for IATEX documents compar-
ing” [Ehffektivnyj algoritm sravneniya dokumentov v formate IXTEX],
Computer Research and Modeling, vol.7, No.2, 2015, pp.329-345.

K. V. Chuvilin, “Adaptive learning of ISTgX documents correction rules”
[Adaptivnoe obuchenie pravil korrekeii dokumentov v formate IATEX],
Report of the 9th International Conference “Intellectualization of In-
Jformation Processing” IIP-2012, pp. 652—655.

