PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

The Impact of Blocking Factor on Real-Time
Applications Feasibility

Sergey Baranov, Victor Nikiforov
SPIIRAS, ITMO University
St. Petersburg, Russia
snbaranov@gmail.com, nik@iias.spb.su

Abstract—An approach to estimating the blocking factor
impact on feasibility of software applications in real-time systems
on multi-core processors is described. An option for compound
blocking to occur is demonstrated for the priority inheritance
protocol as well as for other known protocols for access to shared
resources. A method to estimate the impact of chained blocking
on feasibility of particular application tasks and the application
as a whole is described. A method to estimate the blocking factor
value for systems with compound and chained blocking on multi-
core processors is presented.

I. INTRODUCTION

The criterion of feasibility of tasks constituting a software
application for a real-time system (RTS) is guaranteed on-time
realization of RTS functions assigned to its tasks 1, o, ..., Tp.
Each task t; is characterized by at least two parameters: its
period 7; and weight C; (the processor time, that it may
consume). Each task t; of the applications should comply with
the constraint D, imposed on its response time R; (which is the
maximal time interval between activation of the task t; and its
termination). With this notation the criterion of task T,
feasibility is meeting the requirement R;<D,. The value of the
response time R; depends on the adopted scheduling mode and
protocol of access to shared informational resources.

The scheduling mode determines the order of allocating the
executive resource (processor time) to tasks which request it.
Studies aimed at developing efficient scheduling modes for
RTS started over 40 years age [1] and were successfully
pursued for RTS with a single executive resource ([2], [3]) as
well as for multi-processor systems and multi-core processors
([41, [5], [6]). Studies in this area are going on up to now,
especially in the area of further improving the methods of
estimating feasibility of applications for multi-core processors
([7], [8]). In particular new methods for increasing the utility
load of multi-processor systems and for estimating feasibility
of applications with non-trivial structures of composing tasks
were suggested quite recently ([9], [10]).

Any scheduling mode may be specified by the way how
integral priorities are assigned to tasks.

Protocols of access to shared informational resources
determine the order of entering and exiting for those code
segments (critical intervals) of programs which access those
resources and consist of: a) a precondition for entering a
critical interval; b) modification of system attributes at actual
entering the critical interval; and c)modification of system
attributes at exiting the critical interval [11].

Let's consider that scheduling mode with statically
assigned basic priorities is used and that the basic priority of
the task t; is determined by the value of its index 7 (the task T
priority is higher than that of task 1; if i<j). Feasibility of an
RTS application as a whole, is understood as feasibility of
each of its constituting tasks.

Two approaches to estimating feasibility of software
applications are being developed. The first one is based on
estimating the integral utility U=} <<, u;, where u,=C,/T;.
With this approach the value U is compared against some
boundary value UB (utility bound) of the integral utility. If the
inequality U < UB holds, then feasibility of all application
tasks is guaranteed. Checking application feasibility within
this approach is called a UB-test.

The second approach is based on estimating the response
time R; for each task 7; in the application. Checking application
feasibility within this approach is called an RespT-fest
(Response Time test).

UB-tests are quick, but they give a rough (pessimistic)
estimation of feasibility in the sense that if a UB-test passes,
then feasibility of each application task is guaranteed, but a
test failure does not imply that some task may violate its
deadline.

The first UB-test was described over 40 years ago — it was
demonstrated in [1] that in applications consisting of »
independent tasks executed on classical single core processors
with the RM scheduling, provided 7=D;, each task is feasible
if the inequality U< UB=nx(2"-1) holds. This UB-test was
been developed on a constructive manner: the worst
configuration of application was found, that becomes
infeasible, if this UB-test is failed.

Later this UB-test was extended to systems on multi-core
processors ([12], [13]) but in non-constructive manner. The
known UB value for applications, implemented on multi-core
processors, has some reserve — if the UB-test is satisfied,
application is feasible, but no configuration of application is
known, for which UB-test failing certainly implies the
unfeasibility of application.

RespT-tests are based on calculations which take more
processor time (compared to UB-tests) but provide higher
accuracy — they are much less pessimistic. In case of classical
single-core systems, algorithms for response time estimating
provide exact results because they involve analysis of system
functioning in the worst (critical) scenarios of the system

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

events. In this case substituting the calculated response time in
the inequality R<D; provides the necessary and sufficient
condition for feasibility of the task ;.

For independent tasks the response time R; equals to the
sum of two components: R; = C; + [; where C; is the task T;
weight factor and /; is the priority factor — maximal duration of
its existence in the “ready” state.

For classical single-core processors contribution of each
task T, of higher priority than that of 7; in the value of /; equals
to |—R,-/Tﬂ, where [x]is the integral ceiling of x. In this case the
priority factor equals to the sum /=) j<,CjX|_R,/7}—|. Substituting
this sum in the expression for R, a recurrence equation is
obtained. A solution for this equation is obtained by the
method of successive approximations [11].

Generalizations of feasibility estimation methods with
RespT-tests for systems with multi-core processors (e.g.,
suggested in [14] and [12]) may produce over-estimations of
the response time — i.e., may have a pessimistic bias. This is
due to the fact that no universal means for constructing a
critical scenario for system events is known for the systems
with multi-core processors.

In case of systems with interdependent tasks the expression
for response time R; should be complemented with the
blocking factor B; which reflects increase of the existence
interval of jobs of the type 1; on behalf of possible existence in
the “waiting” state:.

R=C,+1,+B,. (1)

In this paper we present the method of estimating the B;
value for application on multi-core processors.

II. ESTIMATING THE RESPONSE TIME

When estimating R; with the proposed method, we'll use the
index A for high-priority tasks (task 7, with the basic priority
higher than that of the task 1;) and the index / for relatively low-
priority tasks.

In case of multi-core processors, the existence interval of the
next job of the task t; type (the interval of the next execution of
the task t;) consists of segments of two kinds:

a) segments where the job of the t; type either owns the
processor resource, or is waiting for a low-priority task
to release the required informational resource);

b) segments where the job of the 1; type is waiting for one of
processor cores to be allocated to it.

When running a software application on a multi-core
processor, existence intervals of jobs of the type 1, do not
contain segments of the ») kind for i<m. Really, according to
priority-based scheduling modes at any given time some
processor core is ready to execute either the code of 1,, or the
code of a critical interval of a job which inherited the priority of
the task t; for a period of this blocking critical interval.

The maximal possible total duration of segments of the
kind a) for instances of the task 1, is equal to C; + B; (the sum
of the values of the weight factor and the blocking factor of
this task). The maximal possible total duration of segments of

16

the kind b) corresponds to the value /; of the task 1, priority
factor.

As mentioned above, the priority factor equals to zero for
the tasks 1, 1o, ..., Tp.

The key principle determining the proposed approach to
estimating the task response time for systems on multi-core
processors is based on the following assertion: for instances of
the task t1; with >m at segments of the kind a), the processor
cores are loaded neither with code of high-priority tasks 1, nor
with execution of those critical intervals of low-priority tasks
7; which block high-priority tasks t,. At these segments the
processor cores either serve low-priority tasks (along with 1,),
or stay idle.

Each task 7, contributes to the overall amount of
computation performed within the existence interval of an
instance of the task t;, The size of this contribution is
determined by the expression (Cy+BIy(t;))*N(i,h), BIi(t;) being
the indirect blocking factor of 1, (the maximal possible duration
of blocking the high-priority task 7, by tasks with priorities
lower than that if the task 1,), and N(i,#) being the maximal
possible number of task 1, activations within the time period
of R,.

For i>m, the maximal possible amount of computations
performed at segments of the kind) of the existence interval
of a task 7, instance is determined by the expression
Z,<h(Ch+Blh(‘c,))X|_R,-/ T;,—|, |_X—| being the integral ceiling of the
number x. This leads to the conclusion that in accordance
with the key principle formulated above (these computations
are performed by all m cores of the processor), the value 7; of
the priority factor is determined by the expression:

1, =(1/m)Y. 1< 4 (Cy+ BL ()< R /T .)

A particular case when all B; in expression (1) and all B/,(t;)
in expression (2) are equal to zero, corresponds to systems
without critical intervals for access to shared resources. A
method of estimating the response time for applications on
multi-core processors with no sharing of informational
resources is derived through skipping the components B; and
BI (1)) and by substituting (2) for (1).

For systems with informational resource sharing,
estimating methods of factors B; and BI,(t;) are very much
needed. These estimates are performed differently for different
protocols of access to shared resources [5].

III. PROTOCOLS OF ACCESS TO SHARED RESOURCES

An access protocol determines specific features of
executing the operation of requesting a resource:

o the required pre-conditions for a permit for the task to
occupy the requested resource to be issued;

e system side effects occurring when a critical interval on
access to the allocated resource is entered.

Priority inheritance protocol. With the simplest protocol
(SP), there's only one pre-condition for allocating a requested
resource: the resource should be unoccupied, and no side
effects occur at entering the critical interval (except for the

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

mandatory one — the resource state becomes "occupied").
Using the SP may result in priority inversion, when high-
priority task waiting for a resource is prolonged because of
actions of tasks with intermediate priorities. Eliminating the
possibility for priority inversion to occur is ensured with the
priority inheritance protocols (PIP). The pre-condition for a
requested resource to be allocated is the same as with the SP
(the resource should be unoccupied); however, a specific
system side effect occurs when a task 1; requests a resource
occupied by task 1 the priority of task 1, which owns the
occupied resource temporarily, until its exit from the critical
interval, is raised to that of the task 7; (t; inherits the priority
of ;).

Priority Ceiling Protocols. Using PIP does not prevent
compound blocking of high-priority tasks and a occurrences of
situations with mutual task blocking (deadlines and clinches)
[14]. To eliminate the possibility of mutual or compound
blocking, access protocols use priority ceilings of resources —
statically defined parameters of each shared resource: the
resource priority ceiling equals to the highest base priority of a
task which may occupy this resource. Two breeds of such
protocols are known — the priority ceiling protocol (PCP) and
the preventive priority inheritance protocol (PPIP) [11].

PCP is characterized by one more pre-condition for
allocating a requested resource, in addition to that of PIP: the
requested resource is allocated to the requesting task only when
its base priority exceeds the maximum of priority ceilings of all
resources currently occupied by other tasks.

PPIP is characterized by increasing its system side effect
against that of PIP at entering a critical interval: when the
requested resource is allocated to task T, the priority of 1; is
immediately raised up to the priority ceiling of this resource; the
task enjoys this raised priority until it releases the allocated
resource.

When running applications with shared resources on single-
core processors, both PCP and PPIP ensure that mutual task
blocking for any application configurations is impossible.
When running on multi-core processors, PCP still preserves
this useful feature, while PPIP does not. For single-core
processors both PCP and PPIP ensure the impossibility of
compound blocking, while running on multi-core processors
compound blocking may occur for both PCP and
PPIP [15].

IV. COMPOUND BLOCKING

Software applications considered in this section should
meet the following constraint.

Constraint 1. Application tasks do not contain intersecting
critical intervals for accessing resources.

Including the indirect blocking factor B/,(t;) in formula (2)
for calculating the priority factor /; allows to take into account
the possibility of task 1, priority inheritance by instances of
tasks with priorities lower than that of task 7. In case such
priority inheritance occurs, the critical interval of a low-priority
task is executed with the priority level of task t,, which allows
to consider execution of this critical interval as part of

17

computation for task 1, in segments of the kind 5) of execution
of the next instance of task ;.

When an instance of high-priority task 1, is blocked by 1,
execution of the blocking critical interval refers to kind a)
segments of the existence interval of the task 7; instance.

Let's estimate the maximal duration of the blocking interval
of a high-priority task t, by a low-priority instance of 1, under
the following constraint.

Constraint 2. Any blocked task contains only one critical
interval.

As one can see, constraint 2 strengthens the constraint 1.

Let there be in the code of a number of low-priority tasks 1,
critical intervals capable to block 1, when requesting a resource
g, Ci(1;,2) being the duration of a critical interval of access to
the resource g in the code of task 7, C,(t;, 2)=0 when there's no
access to g in the code of 7.

The nomenclature of critical intervals determining the
value BI(t;), depends on the used protocol of access to
resources. In case of PIP, when a resource g is requested by a
high-priority job of the type 1, this job may be blocked only
by critical intervals of low-priority tasks performing access to
this very resource g requested by a high-priority task T;.
Therefore, in case of PIP, the maximal possible value of
indirect blocking factor BI,(t)) is:

BI(t))=max(C,(t;, g)|I>7} , 3)

g being the resource used by the task 1.

With PCP, the nomenclature of blocking critical intervals
for 1, may be larger than that with PIP. In case of PIP, an
instance of a high-priority task 7 is blocked by not only critical
intervals of access to resource g, but by critical intervals of
tasks 1, of access to any resource with the priority ceiling not
lower than the base priority of 1,. A formal estimate of the
indirect blocking factor when PCP is used, is given by the
expression:

BIi(t)) =max(C(t, g") | I>i, n(g’)<h} 4)

g’ being any of resources used by low-priority tasks with the
priority ceiling m(g’) not lower than that the base priority of
task Ty,

The maximal possible value of the blocking factor B; is
determined in a similar way:

e critical intervals in the code of low-priority tasks T,
capable to block t; are identified;

e the value of the blocking factor B; is determined as the
maximum of durations Cj)(g) of the identified critical
intervals.

When PIP is used, the value of the blocking factor is given
by the expression:

B;=max{C(t, g)|I> i},)

g being the resource used by task T,

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

To estimate the response time of tasks which meet the
constraint 2, the value (3) is substituted in (2) and then the
values (2) and (5) are substituted in (1).

In case of PCP, the nomenclature of critical intervals
blocking 1; may turn to be larger than that for PIP. The causes
of this difference are similar to those highlighted for the
indirect blocking factor BI,(t;). The value of the blocking
factor B; with PCP is given by the expression:

B; =max(C(t,g")|[> i, n(g") =i}, (6)

g’ being any resource with the priority ceiling not lower than
the base priority of the task 1,. As for BI(t;), the value B; for
PCP is in general not lower and in a number of cases even
higher than that for PIP.

To estimate the response time of tasks with PCP which meet
the constraint 2, the value (4) is substituted in (2) and then the
values (2) and (6) are substituted in (1).

Compound blocking. Let's eliminate the constraint 2: let the
code of any task to contain a number of non-intersecting critical
intervals. Then the possibility of compound blocking is invited
— during task run the task may be blocked not once when
requesting access to various resources.

In Fig. 1a an application consisting of 3 tasks is presented in
the formalism of route networks [16]. The task 1, contains two
non-intersecting critical intervals of access to resources g, and
2->. The weight of each interval equals to 2. The time of the first
activation of each task is specified by its phase: ¢;=4, ¢,=2,
and ¢;=0.

&1 &>
T —»—‘—l—‘—l—c R

— g8 %

41 21 22 T et — —
P . : — g —
— T —
7% 2 T ¢
/gI\ I T T ‘ T T I T T ‘ T T I T 1T ‘ T
LY 5 2 0 10 20
a) b)

Fig. 1. Compound blocking with PIP on a single-core processor:
a) application configuration consisting of 3 tasks;
b) ordering of requested resource allocation

In Fig. 15 the starting piece of the run chart of the
application {t;, 1o, 13} is presented when running on a single-
core processor and using PIP. At time 7= 1 the task 15 occupies
the resource gy, at =3 the task 1, occupies the resource g,. At
t =15 the task 1, becomes blocked because of its request for an
occupied resource g;; the priority of 1, is inherited by
task T3.

At ¢ =12 the task 1, becomes blocked again because of its
request for the resource g,, occupied by task 1,. Thus, Fig. 1
demonstrates a possibility for compound blocking to occur
when running inter-dependent tasks with PIP on a single-core
processor. Compound blocking is impossible with PCP or
PPIP; however, this is no more true when applications run on a
multi-core processor.

Fig. 2 represents the configuration and starting piece of a
run chart of an application of 3 tasks with PCP running on a
two-core processor.

18

2 — 8l &
. W e T o i
L2717 2727 271 1, — g
T, —» e T, —
20 10 To6 1 3 .- !
'/glt\ I\ L ‘ L I TT 17 L \I
o aar Z 0 10 20

Fig. 2. Compound blocking with PCP on a two-core processor

At time 7= 1 the task 15 occupies the resource g, at =3
the task 1, becomes blocked because of its request for an
occupied resource g; and resumes its run after g is released at
t=". During all this time the other processor core executes the
code of the task 1,, which occupied the resource g, at 1= 10.
The task becomes blocked for the second time when
requesting access to resource g, at t=11. Thus, Fig. 2
demonstrates the possibility of compound blocking when
inter-dependent tasks with PCP run on a two-core processor.

The possibility of compound blocking of a task 7;, the code
of which contains a series of critical intervals of access to
resources g1, &i» .. Zir ... being taken into account, to
estimate the value of the blocking factor B; with PIP, the
following sum should be calculated:

Bi=Y 1<k max{C(v,gix) | 1>1} (7

@i being the resource used at the " critical interval of task T,
and C(1,g;1) — being the maximal duration of the critical
interval of access to the resource g;; in the code of a low-
priority task 1, When PCP is used, instead of the sum (7) the
sum:

Bi =<k max{ C(u,g)|/>i,n(g)=i} ®

should be calculated, g’ being any resource with the priority
ceiling not lower than the base priority of task 1. Actually,
this means that in order to obtain the value of B; the expression
in the scope of the summation sign should be multiplied by the
number of critical intervals in the code of the task ;.

The estimating formula for indirect blocking factor BI{(t;)
with PIP and several critical intervals looks as:

Bl (t)=> 1<« max{C(1,g;x) | I>i}, ©)

g« being the resource used at the x™ critical interval of the
task 1,. When PCP is used, an estimate of indirect blocking
factor BI,(t;) for tasks with several critical intervals is given
by the expression:

Bly(t) = 1<xmax{ C(r,g)|l>i,n(g)<i, (10)

g’ being any of resources with priority ceiling n(g’) not lower
than that the base priority of task 7.

Formulae (7-10) reflect the contribution of compound
blocking in the overall estimate of the response time for
systems which do not meet the constraint 2. To obtain the
value for response time R; in systems with compound
blocking, expressions (7-10) should be substituted in formulae
(1) and (2) in the same order as expressions (3-6) are
substituted for systems without compound blocking.

The considered methods for estimating the blocking factor
value are applicable to systems which meet the constraint 1.
In such systems a task may wait for releasing of one occupied

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

resource at the entry to each critical interval. For systems not
meeting the constraint 1, in addition to compound blocking
chained blocking becomes possible, when a task may wait for
releasing of two or more occupied resources at the entry to a
critical interval. The next section represents an approach to
estimating the contribution of chained blocking in the overall
task response time.

V. CHAINED BLOCKING

Let's eliminate the constraint 1: let the code of any task
contain intersecting critical intervals as well. Their existence
leads to the possibility of not only compound blocking, but to
the possibility of blocking any single resource request from
several active jobs threaded through a chain of their critical
interval dependencies. The name of chained blocking suits this
breed of blocking pretty well. Fig. 3 and Fig. 4 represent the
configuration and initial run diagram respectively for an
application consisting of 4 tasks with chained blocking.

819<85 87
—»—Lﬁl—{—'l—q

6 2 3 2 2 2 3 2

E&ég 5'_\‘ { gﬁ
—_—

32 3 222 3 2

".,/5‘ gzixs‘gf\.z_‘

0 2

—"—‘/;g3ix5_g<\‘—‘

1
0 2 2

T

Ty

T3

Ty

Fig. 3. Application with intersecting critical intervals

A characteristic feature of the 4-task application in Fig. 3 is
that its each task contains intersecting critical intervals. Such
applications are free of mutual blocking and therefore, PIP
may be used within them.

The chart in Fig. 4 demonstrates that a request for the
resource g, by task 1, results in blocking t;; first, directly by
task 13 which owns the requested resource, and then indirectly
(at =19) by task 1, owning the resource g, needed not by task
T, but rather by task t; which blocks t;. Thus, critical intervals
of tasks 13 and 1, form two cohesions of a chain which blocks
execution of task t;.

e 81 e ED >
T PEEE—— _ SSaaaaaaa——
— i &5
T, ——t.t m—— !
= o
—= r &
T, —— E— -
T [
4 ¢
I T T T T I T T T T TT I T T 1 T T I T o
0 10 20 30

Fig. 4. Run diagram for the application in Fig. 3

How many active tasks may be involved in a blocking
chain? Analysis of a special oriented graph — the graph of
bundles and critical intervals — may answer this question.

19

Two critical intervals form a bundle if the end of the first
one (the head of the bundle) is inside the second one (the tail
of the bundle), while the beginning of the tail is inside the
head. A graph of bundles and critical intervals is a multi-
partite graph, its / partite consisting of vertices which
correspond to:

e bundles of critical intervals of the task 1; code;
e critical intervals within the bundles of the task T, code;

e free critical intervals (critical intervals within the task 7;
code which belong to no bundle).

The arcs of the bundle and critical interval graph are
constructed according to the following rules.

Rule 1. Two vertices L, and L, (corresponding to the
bundles L, and L;), are connected by an arc from L, to L,, if L,
and L, belong to different graph partites and the head resource
of the bundle L; coincides with the additional resource of the
bundle L,.

Rule 2. An arc is drawn from vertex G(g) to vertex L, if
these vertices belong to different graph partites and the head
resource of L coincides with the resource g.

Rule 3. An arc is drawn from vertex L to vertex G(g), if the
resource g coincides with the additional resource of bundle L.

Fig. 5. represents a graph of bundles and critical intervals
for the application in FIG. 3 (arcs corresponding to Rule 3 are
omitted).

Let's label each arc of the bundle graph with parameter
W, which is called arc weight. The weight of an arc incoming
to the vertex G(g), equals to the amount of computation
needed to execute the critical interval corresponding to this
vertex. The weight of an arc incoming to the vertex L, equals
to the amount of computation needed to execute the head
critical interval of the bundle which corresponds to this vertex.
In order to find which variants of chained blocking are
possible at the entry to the A™ critical interval of the task T;
one should build blocking paths — inter-partite paths belongs to
the lower (w.r.t. to t;) graph partite (i.e., not going beyond the
graph part which corresponds to tasks with priorities less than
the base priority of 1;) for the vertex G corresponding to this
critical interval in the graph of bundles and critical intervals.
The path weight equals to the sum of weights of its
constituting arcs. Chained blocking is possible if some
blocking path contains more than one bundle.

Fig. 5 depicts a bundle and critical interval graph for a
software application configuration of Fig. 3.

T
L’—‘—‘ OGi(g) Liig, gs)% G (8O

T
@ S AR ey

T3
L’—‘—‘ O G;.(8) L; (82 80 X\<> G;,(8) ‘

Ty
O Gy(g) V66 |

Fig. 5. Grah of bundles and critical intervals

CP Gi4(82) ‘

/

o
L8 81)‘

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

There are two blocking paths for the vertex G;; of the
graph in Fig. 5 — paths (G,3, Ls;) and (G5, L3, Lay). Path
(G13, L3;) contains an arc with the weight W(G,3, Ls)) = 6.
Path (G,3, Ls), Lo;) contains two arcs with the total weight
W(G\3, L3y) + W(Gy3, Ls)) =4+6=10. Therefore, chained
blocking is possible for a period of up to 10 timing units for
the task 1, at the entry to its critical interval on the resource g».
Note, that the path (Ga23, Lay, L) does not present chained
blocking because the vertex L,; is beyond the graph part
which corresponds to tasks with base priority less than that for
task ..

VI. CONCLUSION

The key requirement to a software application for real-time
systems is feasibility of particular tasks constituting the
application which means guaranteed on-time realization of the
RTS functions performed by these tasks. The blocking factor —
duration of intervals when the task is forced to wait for an
access to informational resources temporarily occupied by
other application tasks should be taken into account for
feasibility analysis of tasks with shared common
resources.

High-priority tasks may be delayed (blocked) at entries to
code segments which realize access to shared resources
(critical intervals of resource access). Such blocking lasts until
the requested resource is released by a low-priority task which
owned it. A real-time system should be built in such a way that
delays caused by such blockings do not compromise the
response time of high-priority tasks.

In systems on multi-core processors compound blocking
becomes possible not only when the priority inheritance
protocol is used, but with other known protocols of access to
shared resources as well. The paper presents a method of
estimating the response time in case of compound and chained
blocking for software applications running on multi-core
processors.

When implementing real-time multi-task software
applications with the priority inheritance protocol, along with
compound blocking another variant of blocking — chained
blocking — becomes possible, when a high-priority task may
be blocked by a number of tasks threaded through a chain of
dependencies of their critical intervals. The proposed method
of estimating the duration of chained blocking based on
analysis of a multi-partite graph of bundles and critical
intervals allows to estimate the impact of chained blocking on
the overall response time of high-priority
tasks.

ACKNOWLEDGMENT

This work was partially financially supported by the
Government of the Russian Federation, Grant 074-U01.

20

(1]

[2]

3]

[4]

[5]

[6]

(7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

C.Liu, J.Layland, “Scheduling Algorithms for
Multiprocessing in a Hard Real-Time Environment”, Journal
of the ACM, vol. 20, n.1, 1973, pp. 46-61.

A.D.Ferrari, “Real-Time Scheduling Algorithms”, Dr.Dobb s
Journal. 1994.10.12, pp. 60-66.

V.V. Nikiforov, V.A. Pavlov, “Real-Time Operating
Systems for Embedded Applications”, Software and Systems,
n.4, 1999, pp. 24-30. (In Russian)

A.L.Gruntal, “Scheduling for Systems with Asynchronous
Start”, Information Technologies and ComputerSystems, n.l,
2012, pp. 32-51. (In Russian)

S.K.Baruah, “Fairness in Periodic Real-Time Scheduling

Algorithms™, in Proc. of 16 IEEE Real-Time Systems
Symposium, 1995, pp.200-209.
V.V. Nikiforov, M.V.Danilov, “Static Processing of

Software System Specifications”, Software and Systems, n.4,
2000, pp. 13-19. (In Russian)

Y. Sun, G. Lipari, N. Guan, W. Yi. “Improving the response
time analysis of global fixed-priority multiprocessor
scheduling”, in Proc. of 20 IEEE International Conference
on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2014, pp. 1-9.

N. Guan, M. Han, Ch. Gu, Q. Deng, W. Yi. “Bounding
Carry-in Interference to Improve Fixed-Priority Global
Multiprocessor Scheduling Analysis™, in Proc. of 21 IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2015, pp. 11-
20.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela. “The
Global EDF Scheduling of Systems of Conditional Sporadic
DAG Tasks™, in Proc. of 27 Euromicro Conference on Real-
Time Systems (ECRTS), 2015, pp. 222 - 231.

N. Guan. ; G. Chuancai, M. Stigge, Q. Deng. “Approximate
Response Time Analysis of Real-Time Task Graphs”,
in Proc. of 35 IEEE Real-Time Systems Symposium (RTSS),
2014, pp. 304 -313.

S.K. Dhall, C.L. Liu, “On a Real-Time Scheduling Problem”,
Operating Research, vol. 26,n.1, 1978, pp. 127-140.

T. Baker, “Multiprocessors EDF and Deadline Monotonic
Schedulability Analysis®, in Proc. of 24 IEEE Real-Time
Systems Symposium, 2003, pp. 120-129.

V.V. Nikiforov, “Feasibility of Real-Time Applications on
Multi-Core Processors™, SPIIRAS Proceedings, issue 8, 2009,
pp. 255-284. (In Russian)

V.V. Nikiforov, V.A.Pavlov, “Structured Models for Multi-
Task Software System Analysis”, Information-Measuring and
Control Systems, n.9, 2011, pp.19-29. (In Russian)
V.V.Nikiforov, V.I Shkirtil, “Compound Blocking of
Dependent Tasks in Multicore Computers”, Priborostroenie,
n.1,2012, pp.25-31. (In Russian)

V.V. Nikiforov, V.I. Shkirtil, “Route Networks — a Graphical
Formalism for Representing the Structure of Real-Time
Software Applications”, SPIIRAS Proceedings, issue 14,
2010, pp. 7-28. (In Russian)

