

Functional Model of a Software System with
Random Time Horizon

Dmitrii A. Zubok, Aleksandr V. Maiatin, Valentina E. Kiryushkina, Maksim V. Khegai
ITMO University

St. Petersburg, Russia
zubok@mail.ifmo.ru, {mavr.mkk, v.kiryushkina}@gmail.com, MaxHegai@rambler.ru

Abstract—Virtualization technologies are being actively

used to design infrastructure of cloud computing systems. In
this case applications can be duplicated and hosted in different
virtual machines on different physical nodes. That defines
various performance of applications which causes the problem
of managing performance of the entire heterogeneous system.
There are different ways of solving this problem, including
queuing theory methods. However research of the threshold
discipline in scope of queuing theory is not complete because
of difficulty of gathering precise analytic values and building
of precise mathematic model of the system. Another feature of
heterogeneous systems is the finite random time of system
functioning which is defined by random endogenous and
exogenous factors. This paper gives an overview on a
functional model of the system with two heterogeneous devices
with random functioning time and different service
disciplines. In scope of simulation statistic experiments for
different service disciplines at random time interval an
average time needed to process a single request is measured. A
comparison of service disciplines is conducted. Authors also
provide a working software implementation of the
heterogeneous system and experiments with use of service
disciplines is performed.

I. INTRODUCTION

Software systems are widely used in modern life. They
are one of the mandatory things to have in computer
science and anything related to it. Lately a type of such
systems called clouds became very popular. This led to
appearance of variety of optimization techniques for cloud
based systems.

One of the most important research topics discussed in
clouds optimization related papers and articles is the
resource allocation. Verma et al. [2] formulated the
problem of dynamic placement of applications in
virtualized heterogeneous systems as a continuous
optimization: performance is optimized at each time frame
by optimizing the placement of virtual machines. In [3]
Chaisiri et al. proposed a virtual machine placement
algorithm based on stochastic integer programming. These
works discussed VM consolidation and not resource
allocation at application level. Song et al. [4] presented a

resource allocation approach according to application
priorities in multi application virtualized cluster. For this
machine learning was used to define applications priorities
in advance. This proposed approach is a static resource
allocation, ignoring dynamic resource demands in cloud.
Further studies led to the presentation of a prototype
infrastructure by Appleby [5]. This infrastructure can
dynamically allocate cloud resources for an e-business
computing utility. In 2007 Xu et al. [6] introduced a two-
level resource management system with controllers at VM
level and a global controller at server level. Their works
focus only on cloud resource allocation among VMs within
a server and don't consider the resource optimization
among applications.

 Most clouds are built in the form of data centers. They
consist of the master server, computing servers and the
transmission server. To provide more powerful resource
capacity these servers are composed by multiple virtual
machines. The master server works as a scheduler, it receives
requests and distributes them to computing servers. The
waiting time before a request is sent to a corresponding
service is determined by resource capacity of a computing
server. The same resource capacity determines processing
speed for the requests. After the processing the results will be
sent back to users. Transmitting server acts as a gateway node
and controls the traffic.

 During the work, as a part of optimization algorithms,
virtual machines may need to be migrated to another physical
server. Migrations are not committed in equal time intervals
but when an event occurs. Because of that we can’t define the
time when it will happen. This is what called random time
horizon. Usually the agent, or a controlling server in the
case of clouds, doesn't know the final time before it actually
comes. Thus, we can't assume that T is a finite and fixed
(deterministic) variable. If the time is very large, it is often
assumed to be infinite. We will assume that the planning
horizon (terminal time) T has a known distribution function
and finite expectation. In 1965 Yaari [7] presented
uncertain lifetime, where the distribution function ()tF s is
the conditional probability of the consumer dying before

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

time s, considering he is alive at time t, where t < s. Karp
and Tsur (2011) [8] applied non-constant discounting to a
problem of climate change, by assuming that a catastrophic
climate event occurs at a random time T. Non-constant
discounting reflects that preferences change with time: an
agent that made a decision at time t will have different
preferences when it makes a decision at time s. Agent that
makes decision at time t is called the t-agent.

A t-agent has two behaviors: naive and sophisticated.
Naive one makes the agent take decisions without thinking
that it will change its parameters later. Then it modifies its
calculated choices for the future. In general its decisions are
time inconsistent. The solution to this is in solving the
associated optimal control for such an agent and patching
together the optimal decision rules at time t. To get a time
consistent strategy we need a sophisticated t-agent; it
should take into account the preferences of all t'-agents, for
t' > t. To find time-consistent solutions for agents with non-
constant discounting we use a dynamic programming
approach, applying Bellman's optimality principle.

In cases of non-constant discounting and random
duration the t-agent tries to maximize the expected value of
the agent’s objective. The terminal time in this case is a
random variable described by a distribution function ()F τ .
Assuming that T is independent on state and control
variables, we assume that the distribution ()F τ has density
function, () ()F fτ τ= . The t-agent will then maximize
next expression:

() () (, ,)

() () ((),)

I dF ds s t L x u s
t t

t t

dF t S x
t

t

τ
τ θ

τ θ τ τ τ

∞
= − +� �

∞
+ −�

� �
� �
� �

 In this paper we want to introduce readers to the area of
mathematics behind these principles, show their complexity
and explain them.

II. PRELIMINARIES

The problem of optimal jobs assignment to
heterogeneous servers was discussed by many researchers
and a lot of algorithms and models were proposed. For use
in clouds the most noticeable are controllable queuing
systems. It means that an arrived job is sent either to a
computing server or to a queue where it waits to be
computed. Which server the job is being sent depends on a
service discipline. Let’s consider an M/M/K/N–K
()K N≤ < ∞ controllable queuing system. K is
heterogeneous exponential servers of intensities

(1,),k k K N Kμ = − places in the buffer, and a Poisson
input of jobs with the intensity lambda.

For modeling of the system operation, consider the
controllable process { } { }() ((), ())Z t X t U t= with the

observed process { } { }() (), ())X t Q t D t= and controlling

process { }()U t . Here ()Q t is the queue length at time t,

and ()1() (), ..., ()kD t D t D t= describes the states of the

servers at this time, () 0 1iD t or= depending on the idle or
busy i-th server. The states space of the observed process is

{ }0,1 KE N= × with the set { }0,1, ...,E N K= − . The
decision set A consists of 1K + elements, i.e.

{ }0,1, ...,A K= and the decision ”0” denotes not to
occupy any server (send the arrived job to the queue), while
the control ”k” denotes to send the next job on the k-th

server. Denote also by
1

() () ()k
k K

L t Q t D t
≤ ≤

= + 	 the

random process of the number of jobs in the system.

For each state 1(, ,...,)Kx q d d= denote by

1
() K

k K
d x d

≤ ≤
= 	 the number of busy servers, by

() () ()l x q x d x= + the number of jobs in the system, by

0 ()J x and 1 ()J x the sets of busy and idle servers
respectively,

{ }0 () : () 0jJ x j d x= = , { }1 () : () 1jJ x j d x= = ,and

by 0

0

() j
j j

M x μ
∈

= 	 , and
0

1() j
j j

M x μ
∈

= 	 the total service

intensities of the idle and busy servers.

Notice that the decision depends on the state of the
observable component and the decision set ()A x at the

state x equals { } 0() 0 ()A x J x= ∪ .

Under the considered assumptions, the process
{ } (){ }() (), ()Z t X t U t= is a Markov decision one with
transition intensities

{ } 0 1(0)

, for

() , for 1

0,

(), ()
a

xy j j aq x

y x e

a y x e

otherwise

e e j J x

λ

λ μ >

= +

= = − + − + ∈

 �
� �
 �
� �
� �

where (0, ...,1, ..., 0)ie = denotes the 1K + -dimensional
vector, the i-th component of which (beginning from 0-th)
is one and all others are zeros.

(1)

(2)

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 260 --

As usual (see, for example, [9]) define a strategy �, the
probability distribution xPδ of the process{ }()Z t given the

initial state x and strategy �, the expectation xEδ with
respect to this probability distribution. Then in
mathematical terms the problem can be represented as
follows: minimize with respect to all admissible strategies
the following expression:

0

1
(;) lim ()

t

xt
g x E L u du

t
δδ

→∞
= �

In 2002 Rykov and Efrosinin [10] proved next theorem:

For the system under consideration an optimal policy is
of a threshold type, i.e. for each state x, there exists some
level of the queue length ()q x∗ (depending on the

collection of busy servers 1()J x) such that it is necessary

to occupy some server only if ()q q x∗> ; in this case the
fastest of idle servers should be occupied. On the other
hand, if in some state x the optimal decision is to allocate a
job to the queue then the same decision is optimal for all y
with () ()q y q x≤ and the same collection of busy servers

1 1() ()J y J x= .

That allowed them to formulate number of job
minimization threshold formula:

1

1

1 (1)
j

k
kj

jq jμ
μ

−

=

∗ � �
� �
� �� �

= − −	

However this formula gives us an estimated value.
Because of that we look not only on the values it gives us
but also on their variations. This will allow us to get an
optimal threshold value.

III. QUEUING MODELS AND EXPERIMENTS IN SIMULATION
ENVIRONMENT

In this section we introduce two queuing models to
compare system performance when different service
disciplines are applied. AnyLogic Professional 7.1 is used
as a modeling tool. Simulations are widely used in
researches related to queuing models and optimization. For
example, in [11] simulation is used to evaluate resource
allocation schemes. There authors perform experiments
with different scenarios and get charts as a result.

Basic model is shown on the Fig. 1. The model consists
of one source, one infinite queue and two servers with
different service rates.

It is known that a request on a web server can be
modeled by a Poisson process. So we consider that requests
arrive with an average rate λ . Servers have an exponential

service time with average service rate 1μ and 2μ

respectively, such as 1 2μ μ< and 1 2 Mμ μ+ = .

Fig. 1. Conservative service discipline model

Source element produces objects with rate λ of the class
Entity, which was modified by adding field startTime for
storing time when a request arrives.

Element Queue describes the queue. Its capacity is set up
at maximum.

CPU1 and CPU2 are the standard library Delay
elements, which delay requests (one per moment) for a
specified time. We use function exponential() with
arguments 11 / μ and 11 / μ .

In the simulation environment we implement three
different service disciplines: conservative discipline,
threshold discipline and discipline based on calculating
minimum average service time subsequently referred as
mintime discipline. Conservative discipline is FIFO
discipline, where requests are served by any available
server. Threshold discipline for two-server queue implies
that initially we use only one server with maximum service
rate, and we have threshold value 2q . When size of the
queue reaches this value we should start using the second
server. Threshold value is calculated according to the
equation (4).

To measure conservative and threshold discipline
performance we use the basic model. hold2 element used
for blocking CPU2 in threshold mode. It works as follows.
When a request enters the queue the unblockCPU function
is called. This function checks if size of the queue reaches
the threshold value and if it is unblocks CPU2 by setting
hold2 blocked. When the request exits the queue the
blockCPU function is called, which checks if size of the
queue is less than the threshold value and if it is blocks
CPU2.

Mintime discipline implies following. For each incoming
request we calculate expected service time on each server

1t , 2t . If the corresponding server is available i it μ= ,

otherwise (1)i i i rt n tμ= + ⋅ + ,where in is size of the

queue for corresponding server, rt is a remaining service
time for current processing request and

(3)

(4)

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 261 --

r enter i currentt t tμ= + − , entert is time when a request

starts being processed and currentt is current time. Then we

compare 1t and 2t and put the request to a server that has

minimum it . To measure this discipline performance we
use a model similar to the basic one: model has one source,
two servers, but every server has its own queue. The model
for mintime discipline is shown on Fig. 2.

Fig. 2. Mintime discipline model

We took several experiments using these models to
compare described service disciplines. General experiment
structure is next. We set initial model state that implies an
empty queue, two available servers and no processed
requests. Then we set the model parameters: rate λ ,
average service rate 1μ and 2μ and experiment time T. As
the indicator for the experiment to stop we use the function
that is shown on Fig. 3. We set the threshold value Q, the
number of processed requests, indicating that the
experiment should stop.

Fig. 3. Function to stop the experiment

 We decided to run the model 500 times. If we run it
100-200 times we obtain sparsed average values, however
500 times turned out to be more sufficient in obtaining not
so sparsed values.

Average time is calculated by calculating average
service time for each run and then calculating average of
average values from previous step.

Experiment results are written to files and then
processed by Python script and Excel.

We took statistical experiments varying λ , ratio of 1μ

and 2μ , and threshold 2q . Each experiment we measured
request service time as an average time of a request staying
in the system.

We obtained that for Mλ ≥ threshold discipline doesn’t
work, it degenerates into conservative, so we consider only
for Mλ < .

Let 0.083(3)M = . First we set a fixed 2 1/ 0.5μ μ =
and set λ equals to 2M, 1.5M, M, 0.8M, 0.5M. But for

Mλ < threshold discipline turned out to be more efficient,
average service time is less by 25% compared to
conservative.

Then we set 2 1/ 0.33(3)μ μ = for Mλ < and obtained
that threshold discipline is more efficient when

2 1

2

1
q μ

μ
= ⋅ .

But the usage of conservative discipline gives final
queue size smaller by 20%.

Then we measured system performance for mintime
discipline. Average service time for this discipline is less by
25% comparing with conservative and queue for rate

Mλ < and queue size is more than four time lesser than
for conservative and threshold disciplines.

Average service time for this discipline is less by 25%
comparing with conservative and queue for rate Mλ <
and queue size is more than four times lesser than for
conservative and threshold disciplines. The obtained value
for the conservative discipline’s average service time is
385,5897 and for the improved discipline is 333,7046 and

2 1/ 0.243μ μ = . Other obtained values are listed in the
table 1, where q2 is threshold value for queue size.

TABLE I. AVERAGE PROCESSING TIMES OF VIRTUAL MACHINES

q2

Threshold
average time,

seconds

Conservative/
Threshold,

seconds

Improved/Thres
hold,

seconds

1.0 309,2085 1,2470 1,0792

2.0 313,9540 1,2281 1,0629

3.0 326,7411 1,1801 1,0213

4.0 343,0303 1,1240 0,9728

 We took another experiment studying queue size at the
end of experiment, and the end time is random: we stop the
experiment when the number of processed requests equals
1000, which is an optimal value we gathered after a number
of tests. The reason for that is that at 1000 requests the

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 262 --

system is already in stationary state and shows all
characteristics of Poisson process. We obtained the
following ordering of experiment end time for each
discipline c mst tτ τ τ< < , where cτ is an average

experiment end time for conservative discipline, mstτ is
average experiment end time for discipline with min service
time choice, tτ is average experiment end time for
threshold discipline. Conservative discipline has a minimal
average queue size and discipline with min service time
choice has the maximal average queue size.

 The experiment also shown that for an exponentially
distributed random termination time the processing time for
threshold discipline was lesser than for conservative
discipline.

IV. ARCHITECTURE OF THE SOFTWARE ENVIRONMENT
To gather data from a software environment we need a

proper system. Such a system can be built by using
virtualization to simulate different physical servers. Xen-
hypervizor allows several virtual machines to be created
and run simultaneously and share hardware resources with
them. It also allows us to limit some of the parameters such
as maximal CPU usage for each virtual machine which will
help us simulate real servers by setting different
performance levels. Those virtual machines are connected
to each other via single virtual interface that works as a
router, thus giving access to any virtual machine from each
one of them. The architecture is presented at the Fig. 4.
 The choice of Xen is motivated by its often usage in
scheduling analyze and high-performance communications
[12].

The main goal of the experiment is to look at the
system's behavior when we use gathered data and adjust
parameters for the software environment to find the best
outcome. We then will compare both performance outputs
from the simulation environment and software environment
and see if they lie within our expectations. For this to be
possible we implemented the model described in the
previous section with only input and output changed to be
controllable by us.

Its algorithm is:

• A request is created by user (or, in case of the
presented architecture, it's created in different
intervals, generated by random numbers generator);

• This request is added to the common queue on the
controlling virtual machine;

• Following a service discipline the request is sent to
appropriate virtual machine;

• The request is processed and an answer is sent back to
the controlling virtual machine.

Fig. 4. Architecture of the system

 There are currently two service disciplines implemented
in the system: conservative and threshold. Both of them use
the same architecture and may be quickly swapped.
Conservative discipline is very simple: as soon as a request
is added to the common queue, the system looks for a first
free server (virtual machine) and sends it there. If no free
servers is found the request stays in the common queue.

Threshold discipline is generally an upgraded
conservative discipline. Here, instead of immediately
sending a request in a first free server, we wait until the
number of requests in the common queue becomes higher
than threshold value and only then begin to send requests to
the next free server. Until it happens every request is sent to
a previous server, waiting for the previous request to be
processed. The functional model of the system is presented
on Fig.5.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 263 --

Fig. 5. Functional model of the system

The servers are sorted by performance level: highest to
lowest, which is characterized by one parameter:

• Maximal CPU usage.

 This parameter can be set using default tool available in
Xen-hypervizor, called xm. Its parameter sched-credit can
set CPU cap at needed level. In current system there are
two servers, each with 256 mb of RAM. The maximal CPU
usage for the first one is 55% of the overall hardware CPU
time and the second one is 25%. The maximal CPU usage
for the controlling server is 20%.

 To make queuing possible we add two additional
parameters:

• Number of simultaneously processed requests;
• Threshold.

They are set in the control script that we wrote. Each
server has to have different threshold values. However, if
we use a conservative discipline this value is completely
ignored. Number of simultaneously processed requests is a
value that defines how many requests a server is guaranteed
to process before they will be sent to the next server (giving
that a request cannot be processed or a threshold value has
been reached).

Requests are sent by using RabbitMQ framework. It is
an easy-to-use framework made for exchanging messages
between a server and a client. What is important for us is
that it works asynchronously, it has support for message
queues and it works with a variety of protocols. We use

AMQP as a protocol and PHP as a programming language
to use RabbitMQ.

To test the performance an HTML page is generated by
PHP when a request is received. The page is the same on
every server; otherwise we can't evaluate the performance
properly. When a request is added to the common queue,
the control node writes receiving time to a variable. Then a
page is generated and when it's done finishing time is
written to another variable. The difference between these
variables gives us the processing time. The smaller it is the
higher the overall performance of the system. After it is
calculated the processing time is written to a CSV file to be
used later.

V. EXPERIMENT IN THE SOFTWARE ENVIRONMENT
The experiment that was conducted consisted of two

parts. First the random numbers generator was disabled and
a constant interval T = 3 seconds is set. Such interval is
needed to get an adequate precision of comparison of
values. Only one computing server was turned on. Then the
system was started and requests were created and added to
the common queue. The control server worked for 50
cycles after which the system was shut down. The gathered
data was then used to calculate average processing time of
the server. The chart is presented on Fig. 6.

Fig. 6. Processing time of requests sent with 3 seconds interval on first
VM

Then a constant interval T = 1 seconds was set and the
system started again. The control server worked for 50
cycles and then the system was shut down. Again, the data
was collected to calculate average processing time. The
chart is presented on Fig. 7.

These average processing times that we gathered in these
experiments were used to calculate the general average
processing time of the first computing server. The same
was done for the second server, the collected data is
presented on Fig. 8 and Fig. 9.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 264 --

Fig. 7. Processing time of requests sent with 1 seconds interval on first
VM

Fig. 8. Processing time of requests sent with 3 seconds interval on second
VM

Fig. 9. Processing time of requests sent with 1 seconds interval on second
VM

Using those averages processing times an average
number of requests per second was calculated. The
generator was turned on to calculate a random interval.
After that the second part of the experiment was conducted
for two service disciplines: conservative and threshold. The
system worked for 1000 cycles. Thresholds for the
threshold discipline were 5 and 10 requests. The resulting

charts are presented on Fig. 10 and Fig. 11. All gathered
values were added to the tables 2 and 3.

Fig. 10. Processing time of requests using conservative discipline

On the Fig. 10 which shows how processing time of
requests with conservative discipline changed it is obvious
that with time processing time increases. That is a known
effect which means that requests begin to stay in the queue
for a longer period of time. This effect is less visible on the
Fig. 11.

Fig. 11. Processing time of requests using threshold discipline

TABLE II. AVERAGE PROCESSING TIMES OF VIRTUAL MACHINES

VM Interval Average Processing Time
VM1 3 s 0,251110625
VM1 1 s 0,258107819
VM2 3 s 0,435131251
VM2 1 s 0,436286227

The Table II consists of intervals between requests and

an average processing time with those intervals for every
virtual machine we have.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 265 --

TABLE III. AVERAGE PROCESSING TIMES OF THE SYSTEM

Discipline Average Processing Time Requests left in queue

Conservative 2,117474206 15

Threshold 1,401167783 9

The table 3 shows how many requests were left on the
queue at the end of the experiment and an average
processing time for both disciplines that were used.

The experiments made it obvious that the threshold
discipline is a better choice than the conservative one. Not
only it gave us lower processing time but also less requests
left in the common queue.

VI. CONCLUSION
This paper provided an analysis of data gathered during

experiments in simulation environment and experimental
environment. We also built a functional model of the
system and used it in the experiment in experimental
environment. The conducted experiments allowed us to
compare two service disciplines that we used, and analysis
of data showed that while using the threshold discipline
processing time is lower than while using the conservative
discipline. That means that the threshold discipline is a
better choice, almost doubling the performance.

Further we will perform other experiments in the
experimental software environment we built. Those
experiments are:

• Experiment with an upgraded threshold discipline
which will take into account average time needed to
process a request and send it to different virtual
machines accordingly;

• Experiment with more than two virtual machines;
• Experiment with chain of virtual machines that a

request needs to be processed in;
• Experiment with virtual machines that have different

applications.

ACKNOWLEDGMENT

This work was partially financially supported by
the Government of Russian Federation, Grant 074-U01.

The presented result is also a part of the research carried
out within the project funded by grant #15-07-09229 � of
the Russian Foundation for Basic Research.

REFERENCES
[1] G.W. Ainslie, Picoeconomics, UK: Cambridge University Press,

1992.
[2] L. Karp, T. Tsur, “Time perspective and climate change policy”,

Journal of Environmental Economics and Management, 1992, pp.
1-14.

[3] A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration
cost aware application placement in virtualized systems, Springer
J. Middleware (2008).

[4] S. Chaisiri, B. Lee, D. Niyato, “Optimal virtual machine
placement across multiple cloud providers”, in: Proc. IEEE Asia–
Pacific Services Computing Conference, 2009, pp. 103–110.

[5] Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, “Multi-Tiered On-
Demand resource scheduling for VM-Based data center”, in:
Proc. of IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2009, pp. 148–155.

[6] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel, J. Pershing, B. Rochwerger, “Oceano-
sla based management of a computing utility”, in: Proc. of IEEE
International Symposium on Integrated Network Management,
2001, pp. 855–868.

[7] M. E. Yaari, “Uncertain lifetime, life insurance, and theory of the
consumer”, The Review of Economic Studies, 1965, pp. 137-150.

[8] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, “On the use of
fuzzy modeling in virtualized data center management”, in: Proc.
of IEEE International Conference on Autonomic Computing,
2007, pp. 25–25.

[9] M. Yu. Kitaev, V.V. Rykov, Controlled queueing systems, New
York: CRC Press, 1995.

[10] Xiaoming Nan, Yifeng He, Ling Guan, “Queueing model based
resource optimization for multimedia cloud”, J. Vis. Commun.
Image. R, 2014, pp. 928-942.

[11] V. Rykov, D. Efrosinin, “Numerical Analysis of Optimal Control
Policies for Queueing Systems with Heterogeneous Servers”,
Information Processes, Vol . 2, 2002, pp. 252-25

[12] A. Nanos, N. Koziris, “Xen2MX: High-performance
communication in virtualized environments”, The Journal of
Systems and Software, 2014, pp. 217-230.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 266 --

