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Abstract—Virtualization technologies are being actively 

used to design infrastructure of cloud computing systems. In 
this case applications can be duplicated and hosted in different 
virtual machines on different physical nodes. That defines 
various performance of applications which causes the problem 
of managing performance of the entire heterogeneous system. 
There are different ways of solving this problem, including 
queuing theory methods. However research of the threshold 
discipline in scope of queuing theory is not complete because 
of difficulty of gathering precise analytic values and building 
of precise mathematic model of the system. Another feature of 
heterogeneous systems is the finite random time of system 
functioning which is defined by random endogenous and 
exogenous factors. This paper gives an overview on a 
functional model of the system with two heterogeneous devices 
with random functioning time and different service 
disciplines. In scope of simulation statistic experiments for 
different service disciplines at random time interval an 
average time needed to process a single request is measured. A 
comparison of service disciplines is conducted. Authors also 
provide a working software implementation of the 
heterogeneous system and experiments with use of service 
disciplines is performed.  

I. INTRODUCTION 

Software systems are widely used in modern life. They 
are one of the mandatory things to have in computer 
science and anything related to it. Lately a type of such 
systems called clouds became very popular. This led to 
appearance of variety of optimization techniques for cloud 
based systems. 

One of the most important research topics discussed in 
clouds optimization related papers and articles is the 
resource allocation. Verma et al. [2] formulated the 
problem of dynamic placement of applications in 
virtualized heterogeneous systems as a continuous 
optimization: performance is optimized at each time frame 
by optimizing the placement of virtual machines. In [3] 
Chaisiri et al. proposed a virtual machine placement 
algorithm based on stochastic integer programming. These 
works discussed VM consolidation and not resource 
allocation at application level. Song et al.  [4] presented a 

resource allocation approach according to application 
priorities in multi application virtualized cluster.  For this 
machine learning was used to define applications priorities 
in advance. This proposed approach is a static resource 
allocation, ignoring dynamic resource demands in cloud. 
Further studies led to the presentation of a prototype 
infrastructure by Appleby [5]. This infrastructure can 
dynamically allocate cloud resources for an e-business 
computing utility. In 2007 Xu et al.  [6] introduced a two-
level resource management system with controllers at VM 
level and a global controller at server level. Their works 
focus only on cloud resource allocation among VMs within 
a server and don't consider the resource optimization 
among applications. 

 Most clouds are built in the form of data centers. They 
consist of the master server, computing servers and the 
transmission server. To provide more powerful resource 
capacity these servers are composed by multiple virtual 
machines. The master server works as a scheduler, it receives 
requests and distributes them to computing servers. The 
waiting time before a request is sent to a corresponding 
service is determined by resource capacity of a computing 
server. The same resource capacity determines processing 
speed for the requests. After the processing the results will be 
sent back to users. Transmitting server acts as a gateway node 
and controls the traffic. 

 During the work, as a part of optimization algorithms, 
virtual machines may need to be migrated to another physical 
server. Migrations are not committed in equal time intervals 
but when an event occurs. Because of that we can’t define the 
time when it will happen. This is what called random time 
horizon. Usually the agent, or a controlling server in the 
case of clouds, doesn't know the final time before it actually 
comes. Thus, we can't assume that T is a finite and fixed 
(deterministic) variable. If the time is very large, it is often 
assumed to be infinite. We will assume that the planning 
horizon (terminal time) T has a known distribution function 
and finite expectation. In 1965 Yaari [7] presented 
uncertain lifetime, where the distribution function ( )tF s  is 
the conditional probability of the consumer dying before 
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time s, considering he is alive at time t, where t < s. Karp 
and Tsur (2011) [8] applied non-constant discounting to a 
problem of climate change, by assuming that a catastrophic 
climate event occurs at a random time T. Non-constant 
discounting reflects that preferences change with time: an 
agent that made a decision at time t will have different 
preferences when it makes a decision at time s. Agent that 
makes decision at time t is called the t-agent. 

A t-agent has two behaviors: naive and sophisticated. 
Naive one makes the agent take decisions without thinking 
that it will change its parameters later. Then it modifies its 
calculated choices for the future. In general its decisions are 
time inconsistent. The solution to this is in solving the 
associated optimal control for such an agent and patching 
together the optimal decision rules at time t. To get a time 
consistent strategy we need a sophisticated t-agent; it 
should take into account the preferences of all t'-agents, for 
t' > t. To find time-consistent solutions for agents with non-
constant discounting we use a dynamic programming 
approach, applying Bellman's optimality principle. 

In cases of non-constant discounting and random 
duration the t-agent tries to maximize the expected value of 
the agent’s objective. The terminal time in this case is a 
random variable described by a distribution function ( )F τ . 
Assuming that T is independent on state and control 
variables, we assume that the distribution ( )F τ  has density 
function, ( ) ( )F fτ τ= . The t-agent will then maximize 
next expression: 

( ) ( ) ( , , )
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t t

t t
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 In this paper we want to introduce readers to the area of 
mathematics behind these principles, show their complexity 
and explain them. 

II. PRELIMINARIES 

The problem of optimal jobs assignment to 
heterogeneous servers was discussed by many researchers 
and a lot of algorithms and models were proposed. For use 
in clouds the most noticeable are controllable queuing 
systems. It means that an arrived job is sent either to a 
computing server or to a queue where it waits to be 
computed. Which server the job is being sent depends on a 
service discipline. Let’s consider an M/M/K/N–K 
( )K N≤ < ∞  controllable queuing system. K is 
heterogeneous exponential servers of intensities 

( 1, ),k k K N Kμ = −  places in the buffer, and a Poisson 
input of jobs with the intensity lambda. 

For modeling of the system operation, consider the 
controllable process { } { }( ) ( ( ), ( ))Z t X t U t=  with the 

observed process { } { }( ) ( ), ( ))X t Q t D t=  and controlling 

process { }( )U t . Here ( )Q t  is the queue length at time t, 

and ( )1( ) ( ), ..., ( )kD t D t D t=  describes the states of the 

servers at this time, ( ) 0  1iD t or=  depending on the idle or 
busy i-th server. The states space of the observed process is 

{ }0,1 KE N= ×  with the set { }0,1, ...,E N K= − . The 
decision set A consists of 1K +  elements, i.e. 

{ }0,1, ...,A K=  and the decision ”0” denotes not to 
occupy any server (send the arrived job to the queue), while 
the control ”k” denotes to send the next job on the k-th 

server. Denote also by 
1

( ) ( ) ( )k
k K

L t Q t D t
≤ ≤

= + 	  the 

random process of the number of jobs in the system. 

For each state 1( , ,..., )Kx q d d=  denote by 

1
( ) K

k K
d x d

≤ ≤
= 	  the number of busy servers, by 

( ) ( ) ( )l x q x d x= +  the number of jobs in the system, by 

0 ( )J x  and 1 ( )J x  the sets of busy and idle servers 
respectively, 

{ }0 ( ) : ( ) 0jJ x j d x= = , { }1 ( ) : ( ) 1jJ x j d x= = ,and 

by 0

0

( ) j
j j

M x μ
∈

= 	 , and 
0

1( ) j
j j

M x μ
∈

= 	  the total service 

intensities of the idle and busy servers. 

Notice that the decision depends on the state of the 
observable component and the decision set ( )A x  at the 

state x equals { } 0( ) 0 ( )A x J x= ∪ .  

Under the considered assumptions, the process 
{ } ( ){ }( ) ( ), ( )Z t X t U t=  is a Markov decision one with 
transition intensities 

{ } 0 1( 0)
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( ) , for 1
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where (0, ...,1, ..., 0)ie =  denotes the 1K + -dimensional 
vector, the i-th component of which (beginning from 0-th) 
is one and all others are zeros. 

(1) 

(2) 

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 260 ----------------------------------------------------------------------------



 

 

As usual (see, for example, [9]) define a strategy �, the 
probability distribution xPδ of the process{ }( )Z t  given the 

initial state x and strategy �, the expectation xEδ with 
respect to this probability distribution. Then in 
mathematical terms the problem can be represented as 
follows: minimize with respect to all admissible strategies 
the following expression: 

0

1
( ; ) lim ( )

t

xt
g x E L u du

t
δδ

→∞
= �  

In 2002 Rykov  and Efrosinin [10] proved next theorem: 

For the system under consideration an optimal policy is 
of a threshold type, i.e. for each state x, there exists some 
level of the queue length ( )q x∗  (depending on the 

collection of busy servers 1( )J x ) such that it is necessary 

to occupy some server only if ( )q q x∗> ; in this case the 
fastest of idle servers should be occupied. On the other 
hand, if in some state x the optimal decision is to allocate a 
job to the queue then the same decision is optimal for all y 
with ( ) ( )q y q x≤  and the same collection of busy servers 

1 1( ) ( )J y J x= . 

That allowed them to formulate number of job 
minimization threshold formula: 

1

1

1 ( 1)
j

k
kj

jq jμ
μ

−

=

∗ � �
� �
� �� �

= − −	  

However this formula gives us an estimated value. 
Because of that we look not only on the values it gives us 
but also on their variations. This will allow us to get an 
optimal threshold value. 

III. QUEUING MODELS AND EXPERIMENTS IN SIMULATION 
ENVIRONMENT 

In this section we introduce two queuing models to 
compare system performance when different service 
disciplines are applied. AnyLogic Professional 7.1 is used 
as a modeling tool. Simulations are widely used in 
researches related to queuing models and optimization. For 
example, in [11] simulation is used to evaluate resource 
allocation schemes. There authors perform experiments 
with different scenarios and get charts as a result. 

Basic model is shown on the Fig. 1. The model consists 
of one source, one infinite queue and two servers with 
different service rates. 

It is known that a request on a web server can be 
modeled by a Poisson process. So we consider that requests 
arrive with an average rate λ . Servers have an exponential 

service time with average service rate 1μ  and 2μ  

respectively, such as 1 2μ μ<  and 1 2 Mμ μ+ = .  

 

Fig. 1. Conservative service discipline model 

Source element produces objects with rate λ  of the class 
Entity, which was modified by adding field startTime for 
storing time when a request arrives. 

Element Queue describes the queue. Its capacity is set up 
at maximum. 

CPU1 and CPU2 are the standard library Delay 
elements, which delay requests (one per moment) for a 
specified time. We use function exponential() with 
arguments 11 / μ  and 11 / μ . 

In the simulation environment we implement three 
different service disciplines: conservative discipline, 
threshold discipline and discipline based on calculating 
minimum average service time subsequently referred as 
mintime discipline. Conservative discipline is FIFO 
discipline, where requests are served by any available 
server. Threshold discipline  for two-server queue implies 
that initially we use only one server with maximum service 
rate, and we have threshold value 2q . When size of the 
queue reaches this value we should start using the second 
server. Threshold value is calculated according to the  
equation (4).  

To measure conservative and threshold discipline 
performance we use the basic model. hold2 element used 
for blocking CPU2 in threshold mode. It works as follows. 
When a request enters  the queue the unblockCPU function 
is called. This function checks if size of the queue reaches 
the threshold value and if it is unblocks CPU2 by setting 
hold2 blocked. When the request exits the queue the 
blockCPU  function is  called, which checks if size of the 
queue is less than the threshold value and if it is blocks 
CPU2.  

Mintime discipline implies following. For each incoming 
request we calculate expected service time on each server 

1t , 2t . If the corresponding server is available i it μ= , 

otherwise ( 1)i i i rt n tμ= + ⋅ + ,where in  is size of the 

queue for corresponding server, rt  is a remaining service 
time for current processing request and 

(3) 

(4) 
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r enter i currentt t tμ= + − , entert  is time when a request 

starts being processed and  currentt  is current time. Then we 

compare 1t  and 2t  and put the request to a server that has 

minimum it . To measure this discipline performance we 
use a model similar to the basic one: model has one source, 
two servers, but every server has its own queue. The model 
for mintime discipline is shown on Fig. 2. 

 

Fig. 2. Mintime discipline model 

We took several experiments using these models to 
compare described service disciplines. General experiment 
structure is next. We set initial model state that implies an 
empty queue, two available servers and no processed 
requests. Then we set the model parameters: rate λ , 
average service rate 1μ  and 2μ and experiment time T. As 
the indicator for the experiment to stop we use the function 
that is shown on Fig. 3. We set the threshold value Q, the 
number of processed requests, indicating that the 
experiment should stop. 

 

 

Fig. 3. Function to stop the experiment 

 We decided to run the model 500 times. If we run it 
100-200 times we obtain sparsed average values, however 
500 times turned out to be more sufficient in obtaining not 
so sparsed values. 

Average time is calculated by calculating average 
service time for each run and then calculating average of 
average values from previous step.  

Experiment results are written to files and then 
processed by Python script and Excel.  

We took statistical experiments varying λ , ratio of 1μ  

and 2μ , and threshold 2q . Each experiment we measured 
request service time as an average time of a request staying 
in the system. 

We obtained that for Mλ ≥  threshold discipline doesn’t 
work, it degenerates into conservative, so we consider only 
for Mλ < . 

Let 0.083(3)M = . First we set a fixed 2 1/ 0.5μ μ =  
and set λ equals to 2M, 1.5M, M, 0.8M, 0.5M. But for 

Mλ <  threshold discipline turned out to be more efficient, 
average service time is less by 25% compared to 
conservative. 

Then we set 2 1/ 0.33(3)μ μ =  for Mλ <  and obtained 
that threshold discipline is more efficient when 

2 1

2

1
q μ

μ
= ⋅ . 

But the usage of conservative discipline gives final 
queue size smaller by 20%. 

Then we measured system performance for mintime 
discipline. Average service time for this discipline is less by 
25% comparing with conservative and queue for rate 

Mλ <  and queue size is more than four time lesser than 
for conservative and threshold disciplines.  

Average service time for this discipline is less by 25% 
comparing with conservative and queue for rate Mλ <  
and queue size is more than four times lesser than for 
conservative and threshold disciplines. The obtained value 
for the conservative discipline’s average service time is 
385,5897 and for the improved discipline is 333,7046 and 

2 1/ 0.243μ μ = . Other obtained values are listed in the 
table 1, where q2 is threshold value for queue size.  

TABLE I.  AVERAGE PROCESSING TIMES OF VIRTUAL MACHINES 

q2 

Threshold 
average time, 

seconds 

Conservative/ 
Threshold, 

seconds 

Improved/Thres
hold, 

seconds 

1.0 309,2085 1,2470 1,0792 

2.0 313,9540 1,2281 1,0629 

3.0 326,7411 1,1801 1,0213 

4.0 343,0303 1,1240 0,9728 

 

 We took another experiment studying queue size at the 
end of experiment, and the end time is random: we stop the 
experiment when the number of processed requests equals 
1000, which is an optimal value we gathered after a number 
of tests. The reason for that is that at 1000 requests the 
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system is already in stationary state and shows all 
characteristics of Poisson process. We obtained the 
following ordering of experiment end time for each 
discipline c mst tτ τ τ< < , where cτ is an average 

experiment end time for conservative discipline, mstτ   is 
average experiment end time for discipline with min service 
time choice, tτ is average experiment end time for 
threshold discipline. Conservative discipline has a minimal 
average queue size and discipline with min service time 
choice has the maximal average queue size. 

 The experiment also shown that for an exponentially 
distributed random termination time the processing time for 
threshold discipline was lesser than for conservative 
discipline. 

IV. ARCHITECTURE OF THE SOFTWARE ENVIRONMENT 
To gather data from a software environment we need a 

proper system. Such a system can be built by using 
virtualization to simulate different physical servers. Xen-
hypervizor allows several virtual machines to be created 
and run simultaneously and share hardware resources with 
them. It also allows us to limit some of the parameters such 
as maximal CPU usage for each virtual machine which will 
help us simulate real servers by setting different 
performance levels. Those virtual machines are connected 
to each other via single virtual interface that works as a 
router, thus giving access to any virtual machine from each 
one of them. The architecture is presented at the Fig. 4.  
 The choice of Xen is motivated by its often usage in 
scheduling analyze and high-performance communications 
[12]. 

The main goal of the experiment is to look at the 
system's behavior when we use gathered data and adjust 
parameters for the software environment to find the best 
outcome. We then will compare both performance outputs 
from the simulation environment and software environment 
and see if they lie within our expectations. For this to be 
possible we implemented the model described in the 
previous section with only input and output changed to be 
controllable by us. 

Its algorithm is: 

• A request is created by user (or, in case of the 
presented architecture, it's created in different 
intervals, generated by random numbers generator); 

• This request is added to the common queue on the 
controlling virtual machine; 

• Following a service discipline the request is sent to 
appropriate virtual machine; 

• The request is processed and an answer is sent back to 
the controlling virtual machine. 

 

Fig. 4. Architecture of the system 

 There are currently two service disciplines implemented 
in the system: conservative and threshold. Both of them use 
the same architecture and may be quickly swapped. 
Conservative discipline is very simple: as soon as a request 
is added to the common queue, the system looks for a first 
free server (virtual machine) and sends it there. If no free 
servers is found the request stays in the common queue. 

Threshold discipline is generally an upgraded 
conservative discipline. Here, instead of immediately 
sending a request in a first free server, we wait until the 
number of requests in the common queue becomes higher 
than threshold value and only then begin to send requests to 
the next free server. Until it happens every request is sent to 
a previous server, waiting for the previous request to be 
processed. The functional model of the system is presented 
on Fig.5. 
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Fig. 5. Functional model of the system 

The servers are sorted by performance level: highest to 
lowest, which is characterized by one parameter: 

• Maximal CPU usage. 

 This parameter can be set using default tool available in 
Xen-hypervizor, called xm. Its parameter sched-credit can 
set CPU cap at needed level. In current system there are 
two servers, each with 256 mb of RAM. The maximal CPU 
usage for the first one is 55% of the overall hardware CPU 
time and the second one is 25%. The maximal CPU usage 
for the controlling server is 20%. 

 To make queuing possible we add two additional 
parameters: 

• Number of simultaneously processed requests; 
• Threshold. 

They are set in the control script that we wrote. Each 
server has to have different threshold values. However, if 
we use a conservative discipline this value is completely 
ignored. Number of simultaneously processed requests is a 
value that defines how many requests a server is guaranteed 
to process before they will be sent to the next server (giving 
that a request cannot be processed or a threshold value has 
been reached). 

Requests are sent by using RabbitMQ framework. It is 
an easy-to-use framework made for exchanging messages 
between a server and a client. What is important for us is 
that it works asynchronously, it has support for message 
queues and it works with a variety of protocols. We use 

AMQP as a protocol and PHP as a programming language 
to use RabbitMQ. 

To test the performance an HTML page is generated by 
PHP when a request is received. The page is the same on 
every server; otherwise we can't evaluate the performance 
properly. When a request is added to the common queue, 
the control node writes receiving time to a variable. Then a 
page is generated and when it's done finishing time is 
written to another variable. The difference between these 
variables gives us the processing time. The smaller it is the 
higher the overall performance of the system. After it is 
calculated the processing time is written to a CSV file to be 
used later. 

V. EXPERIMENT IN THE SOFTWARE ENVIRONMENT 
The experiment that was conducted consisted of two 

parts. First the random numbers generator was disabled and 
a constant interval T = 3 seconds is set. Such interval is 
needed to get an adequate precision of comparison of 
values. Only one computing server was turned on. Then the 
system was started and requests were created and added to 
the common queue. The control server worked for 50 
cycles after which the system was shut down. The gathered 
data was then used to calculate average processing time of 
the server. The chart is presented on Fig. 6. 

 

Fig. 6. Processing time of requests sent with 3 seconds interval on first 
VM 

Then a constant interval T = 1 seconds was set and the 
system started again. The control server worked for 50 
cycles and then the system was shut down. Again, the data 
was collected to calculate average processing time. The 
chart is presented on Fig. 7.  

These average processing times that we gathered in these 
experiments were used to calculate the general average 
processing time of the first computing server. The same 
was done for the second server, the collected data is 
presented on Fig. 8 and Fig. 9. 
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Fig. 7. Processing time of requests sent with 1 seconds interval on first 
VM 

  

 
Fig. 8. Processing time of requests sent with 3 seconds interval on second 
VM 

 

Fig. 9. Processing time of requests sent with 1 seconds interval on second 
VM 

Using those averages processing times an average 
number of requests per second was calculated. The 
generator was turned on to calculate a random interval. 
After that the second part of the experiment was conducted 
for two service disciplines: conservative and threshold. The 
system worked for 1000 cycles. Thresholds for the 
threshold discipline were 5 and 10 requests. The resulting 

charts are presented on Fig. 10 and Fig. 11. All gathered 
values were added to the tables 2 and 3. 

 

Fig. 10. Processing time of requests using conservative discipline 

On the Fig. 10 which shows how processing time of 
requests with conservative discipline changed it is obvious 
that with time processing time increases. That is a known 
effect which means that requests begin to stay in the queue 
for a longer period of time. This effect is less visible on the 
Fig. 11. 

 

Fig. 11. Processing time of requests using threshold discipline 

TABLE II. AVERAGE PROCESSING TIMES OF VIRTUAL MACHINES 

VM Interval Average Processing Time 
VM1 3 s 0,251110625 
VM1 1 s 0,258107819 
VM2 3 s 0,435131251 
VM2 1 s 0,436286227 

 
The Table II consists of intervals between requests and 

an average processing time with those intervals for every 
virtual machine we have. 
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TABLE III. AVERAGE PROCESSING TIMES OF THE SYSTEM 

Discipline Average Processing Time Requests left in queue 

Conservative 2,117474206 15 

Threshold 1,401167783 9 

 

The table 3 shows how many requests were left on the 
queue at the end of the experiment and an average 
processing time for both disciplines that were used. 

The experiments made it obvious that the threshold 
discipline is a better choice than the conservative one. Not 
only it gave us lower processing time but also less requests 
left in the common queue. 

VI. CONCLUSION 
This paper provided an analysis of data gathered during 

experiments in simulation environment and experimental 
environment. We also built a functional model of the 
system and used it in the experiment in experimental 
environment. The conducted experiments allowed us to 
compare two service disciplines that we used, and analysis 
of data showed that while using the threshold discipline 
processing time is lower than while using the conservative 
discipline. That means that the threshold discipline is a 
better choice, almost doubling the performance.   

Further we will perform other experiments in the 
experimental software environment we built. Those 
experiments are:  

• Experiment with an upgraded threshold discipline 
which will take into account average time needed to 
process a request and send it to different virtual 
machines accordingly; 

• Experiment with more than two virtual machines; 
• Experiment with chain of virtual machines that a 

request needs to be processed in; 
• Experiment with virtual machines that have different 

applications. 
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