
System Level Modeling of Dynamic
Reconfigurable System-on-Chip

Elena Suvorova, Nadezhda Matveeva, Alexey Rabin, Valentin Rozanov
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation
suvorova@aanet.ru, {nadezhda.matveeva, alexey.rabin, valentin.rozanov}@guap.ru

Abstract—In this paper methods of dynamically

reconfigurable multi-core System-on-chip (SoC) design are
discussed, the approaches of system modeling for evaluation of
these systems are presented. The dynamically reconfigurable
SoC can be developed using the FPGA and the ASIC
technologies. The implementations of dynamic reconfiguration
using these approaches are essentially different. The system
level modeling is used to evaluate the performance of
dynamically reconfigured systems in the early stage of their
development. The models of dynamically reconfigurable
systems have very significant differences from the models of
systems without a dynamical reconfiguration. The
development of such models may require extensions of existing
tools and specification of mechanisms functionality. In this
paper the existing tools for SoC system design and the
requirements for it to allow modeling of reconfigurable
systems are considered. We propose mechanisms for system
level modeling of the dynamically reconfigurable Networks-
on-Chip (NoC) implemented on the ASIC technology.

I. INTRODUCTION
The reconfiguration of the system can be implemented

on a static or a dynamic level [1].

The static reconfiguration (often referred to the compile
time reconfiguration) is the simplest and most common
approach for implementing design with a reconfigurable
logic. Hardware resources remain static for the life of the
design. Static reconfiguration is possible only on the
Register Transfer Level (RTL) development stage. The
dynamic reconfiguration (often referred to the runtime
reconfiguration) uses a dynamic allocation scheme that
reallocates hardware at a runtime. It can increase the system
performance using highly optimized circuits that are loaded
and unloaded or reconfigured dynamically during the
operation of the system [1].

We consider the system level modeling of the dynamic
reconfigurable SoC in this paper.

The main problems with the system modeling of th�
dynamic reconfigurable systems are:

1) the validation of reconfigurable systems behavior
during the functioning;

2) the validation of reconfigurable systems behavior
during the reconfiguration;

3) the evaluation of the task execution time in a
reconfigurable system;

4) the preliminary evaluation of energy consumption
during functionality and reconfiguration;

5) the evaluation of a resource utilization for a
reconfigurable system.

The tasks 1, 3, 4, 5 are typical not only for the
dynamically reconfigurable systems. The task 2 is specific
for these systems. This task is very important because most
of errors arise in such systems by the reason of transient
processes during a reconfiguration.

Therefore, it is important that the reconfiguration
process can be modeled with a high degree of detail for
these systems. The degree of detail for the simulation of
reconfiguration process should be essentially more than for
the simulation of the static functionality. We consider
approaches to simulation of system reconfiguration process
in this paper.

The dynamically reconfigurable systems could be
implemented on the ASIC or the FPGA technologies. The
major opportunities for dynamic reconfiguration provided
by changing of the interconnection structure in systems
implemented on the ASIC technology. However, there are
some possibilities to change the logic (functionality) of
components.

The dynamically reconfigurable interconnection
structure can be used for implementation of NoCs with a
different interconnection graph in the same platform. The
interconnection structure adapts to current data flow graph
[2 - 5]. Nowadays the different variants of such systems are
implemented [3 - 4].

The dynamic reconfiguration of interconnections is
advisable on the subblock layer [5]. This approach can be
used for implementation of dynamically reconfigurable data
paths. Also, it could be used for a dynamic change of the
ratio of the subcomponents’ number/capacity.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

It is also possible to dynamically change the behavior of
components in the ASIC technology. Nowadays it is
achieved through the use of the look-up tables or libraries
with reconfigurable logical components developed for the
ASIC technology. These components can be configured for
implementation of different functions such as NAND,
NOR, INV [6, 7].

The dynamic reconfiguration of FPGA from different
manufacturers, for example, Xilinx, Virtex, Altera is
performed on similar schemes. The region, wherein the
CLB is disposed, is divided into frames – typically vertical
columns wide several CLB (depending on the type of
FPGA) [8, 9, 10]. Each of these columns can be
independently reconfigured with using of a separate bitfile.

The project is divided into zones with the dynamical
reconfiguration possibility and without this possibility [11].

Thus, dynamically reconfigurable systems implemented
on the FPGA have a very high degree of flexibility. One
component of the system can be replaced with another one
having a completely different functionality. For example,
RISC core can be replaced by a video codec.

Almost all of the existing system level modeling
approaches for reconfigurable systems are focused on the
FPGA based systems. Different programming languages,
such as SystemC, SpecC and SystemVerilog are used for
the specification of systems within these approaches [14].

For the simulation of communication between blocks is
used the TLM-2.0 standard introduced in SystemC.

This paper is organized as follows. In paragraph 2 we
consider the existing approaches to the system level
simulation of the implemented on the FPGA reconfigurable
systems using SystemC and TLM, their capabilities and
limitations.

In paragraph 3 we suggest approaches to the system
level simulation of implemented on the ASIC
reconfigurable systems using the SystemC library.

II. SYSTEMC AND TLM FOR SIMULATION OF
RECONFIGURABLE SOC

SystemC is the ANSI standard C++ class library for
system and hardware design for use by designers and
architects who need to address complex systems that are a
hybrid between hardware and software [12]. SystemC is
widely used for a SoC design.

OSCI Transaction-Level Modeling Standard (TLM-2.0)
was presented in the IEEE Std 1666™-2011. At the
simplest level a TLM is a set of the SystemC modules (i.e.
C++ classes), each providing one or more sockets, through
which the SystemC modules may read and write data [13].

Dynamic objects creation or elimination of the SystemC
module are not supported according to SystemC. They are
limitations for creation Dynamically Reconfigurable

Systems using SystemC. However, the SystemC standard
supports dynamic processes. The function sc_spawn is used
to create a static or dynamic spawned process instance.
Spawned processes may be created by calling the function
sc_spawn during elaboration or simulation, [12].

The function sc_spawn may be called during
elaboration, in which case the spawned process is a child of
the module instance, which function sc_spawn is called, or
it is a top-level object, if the function sc_spawn is called
from the function sc_main [12].

The function sc_spawn may be called during simulation,
in which case the spawned process is a child of the process
that has called the sc_spawn function. The function
sc_spawn may be called from a method process, a thread
process, or a clocked thread process [12].

If the function sc_spawn is called during the evaluation
phase, the spawned process shall be made runnable in the
current evaluation phase. If the function sc_spawn is called
during the update phase, the spawned process shall be made
runnable in the next evaluation phase.

The function sc_spawn is useful for making models of a
reconfigurable system. However, this is not enough. Main
items of Dynamically Reconfigurable Systems are
generation or elimination while the system is running. In
order to express these behaviors naturally at the system
level design, modules have to be generated or eliminated
dynamically and ports and channels have to be connected
and dispatched dynamically [14].

There are several approaches for solving this problem.
For example, authors [15] introduced an extension to
SystemC in 2006. It’s name is the ReChannel library. The
main goal of the ReChannel library is to enable modeling
and simulation of runtime reconfigurable systems – which
obviously might change their hierarchy and/or
interconnection characteristics during runtime – with
SystemC.

This library does not depend on the SystemC kernel and
has been designed to work with any SystemC simulator that
conforms to the IEEE standard 1666 Open SystemC
Language Reference Manual [2005]. It is very important,
because a non-standard simulation kernel is a bottleneck for
a design process. Compatibility with SystemC can be
loosed, when a new version standard will be released. The
only hard restriction is the necessity to use a compiler
supporting partial template specialization.

Portal is used for this library. A portal is a special
switch, designed to connect a static channel to a port of a
reconfigurable module. The use of portals allows the usage
of any, even a custom-built SystemC channel, in a
reconfigurable context, which leads to a highly flexible
methodology for the reconfigurable systems modeling [15].
The ReChannel library is free. Source files are available
from the Technical Computer Science University of Bonn

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 223 --

site [16]. The library is distributed without any warranty. A
designer can edit source files, but designers should learn
sources of the ReChannel library first.

Authors [14] propose other extended SystemC library for
the system level modeling and simulation of the system,
which includes Dynamically Reconfigurable Architectures.
The proposed library consists of a dynamic module, a
dynamic port, and a channel pool. Using this extended
library allows to generate and eliminate modules and ports
during a simulation. It is not supported by the SystemC
2011 standard [12].

Authors [17] present a new methodology for simulation
of a dynamic reconfigurable system. This methodology is
based on the using of the blocked modules list. Instead of
immediately executing the processes sensitive to an event,
they propose the blocked modules list to be checked before
its execution. The blocked modules list can change during a
simulation. SystemC was selected as case study for a
methodology implementation. Authors modify the SystemC
kernel source code [17]. Moreover, each module has own
area value. Log files are generated during a simulation. A
chip area usage is generated from an execution log file. It is
useful for understanding of a total chip utilization.

Methodology for Designing Partially Reconfigurable
Systems is described in the paper [18]. Authors use TLM-
2.0 for communications between modules and from the
reconfiguration manager to the modules. The typical
module is based on the SystemC dynamic threads, used to
switch between tasks and change the functionality of a
module during a runtime. The OSCI TLM-2.0 standard [12]
supports loosely-timed and approximately-timed coding
styles. The main goal of presented methodology is the
modeling of the parallel behavior of the tasks inside the
FPGA. Therefore, this methodology uses approximately-
timed coding style, because a non-blocking transport
interface is supported by it.

TABLE I. COMPARISON OF THE REVIEWED APPROACHES

Name Re-
Channel

Dynamic
Module
Library

Methodology
for Modeling

and
Simulation of
Dynamic and

Partially
Reconfigu-

rable Systems

Methodology
for Designing

Partially
Reconfigu-

rable Systems
Using

Transaction-
Level

Modeling

Change
SystemC

kernel

no no
informa-

tion

yes no
information

Use TLM no no no yes

Open
access

yes, free
library

no no no

There are two main ways to the reconfiguration
implementation in existing approaches with SystemC:

• development of extended SystemC library and classes
• SystemC kernel modification

There are several versions of the SystemC standard.
Current version was published in 2011. Previous version
was published in 2005. Papers [14,15,17] are based on
standard 2005. Current version has many important
changes, which can be used for solving tasks of
reconfigurable system modeling.

These changes are such as: [12]:

• new process control member functions, by which
processes can suspend, resume, reset, or kill other
processes or themselves;

• simulation can be paused, and there is a function to
get the current state of simulation (elaboration,
running, paused, stopped, and so forth);

• event lists, as passed to the functions wait and
next_trigger, can be constructed as explicit objects,
making it possible to create event lists containing a
parameterized or variable number of events;

• a new utility class sc_vector makes it easy to
construct vectors of modules, ports, exports, and
channels and to bind vectors of ports;

• the bind function of the standard port and socket
classes has been made virtual;

• sc_mutex and sc_semaphore are now derived from
sc_object rather than from sc_prim_channel, so they
may be instantiated dynamically.

The following operations are permitted while simulation
is paused:

• calls to function sc_spawn to create dynamic
processes;

• the instantiation of objects of a type derived from
sc_object provided that instantiation of those objects
is permitted during simulation;

• calls to function sc_stop.

The member functions of class sc_process_handle are
described in this clause and its subclauses are concerned
with process control. Examples of process control include
suspending, resuming, killing, or resetting a process
instance. Several of the process control member functions
are organized as complementary pairs: suspend and resume;
disable and enable; sync_reset_on and sync_reset_off; kill;
reset, throw_it. With suspend/resume, the kernel keeps a
record of whether the target process would have awoken
while in fact being suspended, whereas with disable/enable,
the kernel entirely ignores the sensitivity of the target

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 224 --

process while disabled. Kill interrupts and irrevocably
terminates the target process. Reset interrupts the target
process and, in the case of a thread process, calls the
associated function again from the top.

The function sc_get_status shall return one of the eight
values of type sc_status to indicate the current phase of
elaboration or simulation.

The latest SystemC version does not support dynamic
generation and elimination objects of class sc_module,
sc_port, sc_export, or sc_prim_channel during a
simulation. These features are required for modeling of
dynamically reconfigurable systems, which are built on
FPGA.

SystemC standard has functions of class
sc_process_handle. They are concerned with process
control. These functions are such as suspend and resume;
disable and enable; sync_reset_on and sync_reset_off; kill;
reset, throw_it. By the way sc_mutex and sc_semaphore are
derived from sc_object rather than from sc_prim_channel,
so they may be instantiated dynamically. Also the bind
function of the standard port and socket classes has been
made virtual. These features aren’t enough for modeling of
complex dynamic reconfigurable system. If we select an
approach to create all modules and possible connections
between modules before simulation, then system level
model may be huge. Its modeling time will be very high.
We describe some approaches which expand opportunities
for system level modeling with SystemC.

III. APPROACHES FOR DEVELOPMENT OF
RECONFIGURABLE NOC SYSTEM LEVEL MODELS BASED ON

ASIC
Let’s consider whether there is enough opportunities for

a simulation of the ASIC based dynamically reconfigurable
systems using SystemC and TLM-2.0.

The dynamic reconfiguration possibilities for ASIC are
significantly limited in comparison with FPGA. Typically,
a set of components and possible interconnections within
the ASIC is known beforehand (behavior of some
components can be configurable). The reconfiguration
predominantly can be implemented due to activation and
deactivation of interconnections and blocks.

A. Simulation of dynamically reconfigured
interconnection stricture between components
As it is shown above, the dynamic reconfiguration of a

communication system is achieved by inserting the
selectors implemented in the form of multiplexers, or
otherwise. These selectors make it possible connection of
different lines to the same port at different times. The
mechanism multi_passthrough_initiator_socket and
multi_passthrough_target_socket can be used to support
this feature. This mechanism provides binding of one
source and multiple receivers, binding of multiple sources
and one receiver.

Let’s consider, for example, implementation of typical
fragment of interconnection structure, shown in Fig. 1.

Fig. 1. The typical fragment of reconfigurable communication system for
NoC implemented on the ASIC technology

The structure of TLM based model is represented in Fig.
2. In this model, instead of multiplexers a direct connection
between sockets is used. A particular set of connections
used at the current time depends on the system
configuration.

multi_passthrough
_initiator_socket

multi_passthrough
_target_socket

Fig. 2. The TLM model of reconfigurable communication system fragment
using multi_passthrought_initiator_socket and
multi_passthrought_target_socket

B. Simulation of dynamically reconfigured functional
blocks
The ratio of the number/capacity of subcomponents

could be dynamically changed to provide dynamical
reconfiguration of component’s behavior.

An example of such a component is represented on
Fig. 3. In this example, the RTL model of data handler
includes four ALUs. These blocks are connected into chain
by the carry signal. These carry signals can be used or not
used in each ALU depending on the configuration.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 225 --

Accordingly, the input data is handled as a single word
or a group of several short words. It is advisable to use a
similar structure for the system level model for detailed
simulation of a reconfiguration process.

The component with minimal word size is used as basic
component for system level model (as in RTL model). All
components are generated statically. All possible
connections between components (for example, carry lines
between the ALU) implemented statically. The set of
currently used connections is determined dynamically
during simulation.

The data received by the handler is represented as
transactions with fixed size, without interpreting of actual
size and number of words in transaction. The class
simple_target_socket is used to transmit data transactions
and configuration transactions.

Two processes exist inside the handler. First of them
divides received via simple_target_socket data to slices for
every ALU. Second process assembles data slices from
ALU to the output transaction. This transaction goes out via
simple_initiator_socket.

Thus, standard SystemC features are enough for an
implementation of a system level model for this
reconfiguration type.

Let’s consider system level simulation of reconfiguration
components based on a look-up table. At the system level,
the look-up table may be implemented in the form of an
array. The class sc_signal can be used for implementation
input and output signals.

Fig. 3. The RTL model and the system level model of reconfigurable data
handler

A mechanism for downloading of a new content to look-
up table should be implemented. The reconfiguration
command from the configuration manager can be translated
via simple_target_socket. The content can be loaded from a
file. The time for content reloading in real system takes a
few cycles. This should be taken into account in the
implementation of loading mechanism.

Let’s consider the example – model of finite state
automata for the handling of packet headers based on a
look-up table. The possible variant of automata is
represented on Fig. 4. This automata has 4 inputs,
4 outputs, and until 8 states. The structures of the RTL
model and the system level model of this automata are
shown on Fig. 5. In this way, standard SystemC features are
enough for implementation of system level model for this
reconfiguration type.

Fig. 4. The possible variants of reconfigurable automata

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 226 --

Look-up table
(array C++)

state

Content

start_pack

finish_pack

finish_arb

fl_ok

wr_prio

wr_id

wr_addr

wr_fl

Input port controller
(Structure of System level

Model)

simple_target_socket

Look-up table
(SRAM block)

state

start_pack

finish_pack

finish_arb

fl_ok

wr_prio

wr_id

wr_addr

wr_fl

Input port controller
(Structure of RTL Model)

Reload_contentContent

Fig. 5. The RTL and the system level models of a dynamically
reconfigurable automata

 The resources inside the component can be reallocated
dynamically. For example, the buffer space belongs to the
router port can be distributed differently between the virtual
channels. The Fig. 6 illustrates an example implementation
of the buffering block with two virtual channels. The
amount of buffer space for every virtual channel is set
dynamically.

In the RTL model a buffer is implemented on single
memory block. The memory block is divided logically into
subblocks. Each subblock can be assigned to the virtual
channel 0 or to the virtual channel 1 depending on the
amount of buffer space allocated to each of these channels.
The distribution of subblocks is stored in the additional
memory unit – block_table.

The array can be used for a simulation of a buffer
memory. Support of dynamic reallocation of buffer space at
the system level can be implemented in same way as for
RTL model. However this implementation would
significantly increase the simulation time. It only makes
sense in cases where it is necessary to simulate and verify
the reallocation mechanism.

Otherwise, for each virtual channel memory, which
amount is equal to the total size of buffer space, can be
allocated. The amount of memory that will use in each
array is specified when configuring.

The methods of reading and writing data from these
arrays must support the number of simultaneous reads and
writes corresponding to the possibilities of the block
memory in RTL model.

A disadvantage of the proposed approach is that
redundant memory is allocated to each virtual channel.
However, it is compensated by the lack of the block_table
and simplified memory management scheme that reduces
the simulation time.

Fig. 6. The example of reconfigurable buffering block implementation

Standard features of SystemC are enough to support this
reconfiguration type.

As it is shown above, the dynamic reconfiguration of a
component can be implemented with using of the
reconfigurable library elements (one element can be
configured as NAND, NOR etc.). In order to support this
type of system-level reconfiguration two approaches can be
used.

The first of these “low-level” – each type of
reconfigurable element is associated with a class, Fig. 7.
The behavior of a specific instance of a class can be
dynamically configured. It can be implemented with using
of operator case (C++). Such approach does not lead to
additional overheads (increase of simulation time) for each
separate component.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 227 --

Fig. 7. The example of module based on dynamically reconfigurable
library elements

However, the specification of reconfigurable block can
include a large number of such elements. This may lead to
increase in simulation time. In addition, the specification
will look “difficult to read”.

In the second approach, the reconfiguration possibilities
are specified not on library elements layer but on the layer
of logic functions.

This kind of specification will not be “difficult to read”.
However, the number of functions that can be implemented
using a configurable set of components may be very large.

Therefore, for the implementation of this approach, it is
advisable to use a dynamic child process with the required
functionality using sc_spawn.

Using of this approach will lead to an essential increase
in simulation time. It should be used when the number of
configurable elements is several hundred or more.

Example of system level model with the ability to
configure is presented on Fig. 8. Instance of the class
“Manager of reconfiguration” controls process of system
reconfiguration. TLM-2.0 socket classes may be used for a
data transmission configuration between “Manager of
reconfiguration” and other system modules. For example,
the look-up table contains information about reconfigurable
finite state automate. We can download/update look-up
table using the TLM-2.0 sockets. Also using of the
TLM-2.0 sockets is beneficial for working parameters
setting inside the module B and for data communication
between the module A and the module B, the module B and
the module C or the module D. The SystemC events Event1
and Event2 depend on value of reconfiguration field. As
example, when value of reconfiguration field is equal to 1,
then Event1 is notified. When value of reconfiguration field
is equal to 2, then Event2 is notified. The process F1 is
sensitive to the Event1. The process F2 is sensitive to the
Event2. It allows to run different processing functions over
received data according to reconfiguration parameters.
Using multi_passthrought_initiator_socket helps to
transmit data into module C or into module D.

The data flow corresponding to the first configuration is
represented by the dotted line on Fig. 8. The data flow
corresponding to the second configuration is represented by
the dashed line.

Fig. 8. Example of system level model with the ability to configure SoC based on the ASIC technology

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 228 --

IV. CONCLUSION
We consider different approaches for development of

dynamic reconfigurable SoC implemented on the ASIC and
FPGA technologies. Requirements for system level module
of SoC are described in details. Also we review existing
techniques for the development of the system level models
implemented on FPGA. Furthermore, we offered
approaches for the development of the system level models
of dynamic reconfigurable SoC implemented on ASIC. In
the part 3 we present the information about the simulation
of the dynamically reconfigured interconnection structure
between components and simulation of dynamically
reconfigured functional blocks.

Also, in this paper we consider features SystemC and
TLM for tasks of dynamic reconfigurable SoC modeling.
We expand advantages and disadvantages using the latest
version of the SystemC standard in the system level
modeling area.

ACKNOWLEDGMENT
The research leading to these results has received

financial support from the Ministry of Education and
Science of the Russian Federation according to the base
part of the state funding assignment in 2015 project
no. 1810 and under grant agreement
no. RFMEFI57814X0022.

REFERENCES

[1] Nikolaos S. Voros, Konstantinos Masselos System Level Design
of Reconfigurable Systems-on-Chip. Springer, 2005.

[2] S. Khawam, I. Nousias, M. Milward, Y. Ying, M. Muir, and T.
Arslan,“The reconfigurable instruction cell array,” IEEE
Transactions on Very Large Scale Integration Systems, vol.16,
no.1, Jan 2008, pp. 75–85.

[3] Stensgaard, M.B. ReNoC: A Network-on-Chip Architecture with
Reconfigurable Topology, in Proceedings of Second ACM/IEEE
International Symposium, 7-10 April 2008, pp.55-64.

[4] Yana E. Krasteva, Eduardo de la Torre, Teresa Riesgo,
“Reconfigurable Networks on Chip: DRNoC architecture”,

Journal of Systems Architecture, vol.56, issue 7, July 2010,
pp.293–302.

[5] NEC’s Dynamically Reconfigurable Processor,
Web: http://www.necel.com/drp/en/index.html.

[6] Ian O'Connor, Ilham Hassoune, David Navarro, “Fine-Grain
Reconfigurable Logic Cells Based on Double-Gate MOSFETs”,
IFIP Advances in Information and Communication Technology,
2010, pp. 97–113.

[7] I. Hassoune, I. O’Connor, “Double-Gate MOSFET Based
Reconfigurable Cells”, Electronics Letters, vol.43, issue 23, Nov.
2007, pp.1273–1274.

[8] Richard Neil Pittman, “Partial Reconfiguration: A Simple
Tutorial”, Technical Report, Redmond, February 2012.

[9] Wang Lie, Wu Fengyan, “Dynamic partial reconfiguration in
FPGAs”. Third International Symposium on Intelligent
Information Technology Application, Nov. 2009, pp. 445 - 448.

[10] Xilinx Inc Partial Reconfiguration Design with PlanAhead, Web:
http://www.xilinx.com.

[11] Vincenzo Rana, David AtienzaMarco, Domenico Santambrogio,
Donatella Sciuto, Giovanni De Micheli, “A Reconfigurable
Network-on-Chip Architecturefor Optimal Multi-Processor SoC
Communication”, VLSI-SoC: Design Methodologies for SoC and
SiP, IFIP Advances in Information and Communication
Technology, vol. 313, 2010, pp. 232–250.

[12] IEEE 1666-2011 Standard for Standard SystemC Language
Reference Manual

[13] Jeremy Bennett, “Building a Loosely Timed SoC Model with
OSCI TLM 2.0”, Embecosm, note 1, issue 2, May 2010.

[14] Kenji Asano, Junji Kitamichi, Kenichi Kuroda, “Dynamic
Module Library for System Level Modeling and Simulation of
Dynamically Reconfigurable Systems”, Journal of computers,
vol. 3, no. 2, Feb. 2008, pp.55-62.

[15] Andreas Raabe, Philipp A. Hartmann, Joachim K. Anlauf,
“ReChannel: Describing and Simulating Reconfigurable
Hardware in SystemC”, ACM Transactions on Design
Automation of Electronic Systems, vol. 13, no. 1, January 2007,
pp.1-16.

[16] ReChannel - A Reconfiguration Simulation Library for SystemC,
Web: http://www.ti.uni-bonn.de/static/research/ReChannel.

[17] Alisson Vasconcelos Brito, George Silveira and Elmar Uwe Kurt
Melcher, “A Methodology for Modelling and Simulation of
Dynamic and Partially Reconfigurable Systems”, Dynamic
Modelling, Jan. 2010, pp.29-48.

[18] F. Duhem, F. Muller, P. Lorenzini, “Methodology for Designing
Partially Reconfigurable Systems Using Transaction-Level
Modeling”, in Proc. of Conference on Design and Architectures
for Signal and Image Processing (DASIP), Nov. 2011, pp. 1 – 7.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 229 --

