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Abstract—This paper presents an approach to a driver 

assistant system for a two-wheeled self-balancing mobility 
vehicles in particular for a Segway. The approach is aimed for 
the readily available mobile devices, which become a part of 
our daily life such as a smartphone or a tablet. If a mobile 
device is well-positioned on a mobility vehicle, its front and 
rear cameras can be utilized as sensors to capture the ride 
related information about the rider’s intention(s) and the 
interaction of the rider with the environment. In addition, 
attached to the handle bar of the mobility vehicle, this mobile 
device can be used to alert the driver using the motion and 
location sensor as well as cameras and gather ride 
characteristics. In this study, we describe a context-aware 
system that continuously observes both the rider and the 
dynamical characteristics of the ride and provides alerts to the 
rider anticipating the hazards, collision, the route of the other 
public road users, and the stability of the current ride 
characteristics. 

I. INTRODUCTION 
Rider Assistance Systems are the systems that assist the 

rider during the driving process. They are designed with a 
safe human-machine interface aiming to increase vehicle 
and road safety. It is common practice that such kind of 
systems are designed for car riders by the third party 
manufacturers that are specialized on them and can develop 
similar applications for the smartphones and tablets. 

Development of the rider assistance systems for the two-
wheeled self-balancing mobility devices has drawn a great 
deal of attention of the mobile application developers, as the 
use of robotic mobility devices has become in vogue in the 
recent years. 

The authors in the study [1] propose that a paradigm shift 
is necessary in solving traffic issues in favor of promoting 
public transport instead the use of individual vehicles. 
However, when the elderly people are concerned, from the 
closest transportation hub to the final destination might arise 
complications for these cohort as their motor and mobility 
skills greatly decrease.  

Two-wheeled self-balancing vehicles are the remedy for 
elderly people to solve the last-mile problem. However, the 
number of fatal accidents in Japan due to elderly riders has 
increased nearly three-fold in the past 17 years, while the 
total number of fatal accidents has decreased by nearly 30% 
during the same period [2]. 

Having been invented in 2001, the Segway Personal 
Transporter (PT) (trademarked by the Segway Inc. of New 
Hampshire, USA) is the first two-wheeled self-balancing 
mobility device introduced in the market. In most of the 
states in USA, the use of Segway is permitted under a new 
regulation which categorizes Segway in a newly introduced 
vehicle category, “Electric Personal Assistive Mobility 
Device (EPAMD)”. 

Many countries around the world such as United 
Kingdom, Australia and Japan do not allow the use of 
Segway on the public roads except private properties and 
designated zones due to the fact that, they still don’t have 
regulations because of the vehicle category as Segway lacks 
of brakes and the software limited upper speed limit exceeds 
the limits defined for the EPAMDS.  

A scant number of research papers is available in the 
literature that are limited to some empirically gathered data, 
dynamical characteristics and subjective assessments which 
were aimed to guide the  policy-makers and traffic 
regulation bodies. 

In the study [3, 4], the authors conducts experiments to 
find out the approaching distance and velocities of the 
Segway riders with respect to various obstacles, pedestrians 
and objects at the different velocity profiles.   

The experiments were implemented under the controlled 
conditions by recruiting ten novices and ten experienced 
operators. A similar study [5] reports the stopping distance 
for the different driving maneuvers including emergency 
braking and response time of the riders when braking. The 
collected Segway riding data were also compared to the 
running characteristics bicycles. In the study [6], the 
observed reactions of the vehicle riders and passing distance 
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to the different types of personal mobility devices including 
the Segway are given in detail. The experiments in the study 
were performed on road crossings while the riders turning 
left. 

Some pilot projects [7, 8] in the literature report and 
discuss the safety requirements for Segway on the shared 
public road related areas. The reports also reflect the opinion 
of the various stakeholders and institutions as well as the 
subjective assessments from the recruited riders in the 
experiments.  

The available limited literature does not cover all aspects 
of the interaction of Segway or the PTs with the other public 
road users in a consistent and methodological way. The 
listed experimental studies were performed under the 
controlled conditions and statistical data is not sufficient to 
have opinion for the law and regulation authorities. On the 
contrary, even though a small amount of statistical data is 
available, Segway has been used in many countries in the 
designated zones for patrolling or recreational purposes. A 
tremendous amount of data can be taken out in these real 
ride conditions by mounding a common spread smart device 
on Segways on the grounds that each travel and riding 
experience induces precious statistical information that can 
contribute into the development of more reliable mobility 
robots and alleviate the limitations for the public use of 
these devices. 

The paper proposes an approach for mobile application 
development that assists the Segway rider during the travel 
by providing visual and tactile feedback if an unsafe 
situation is predicted. 

The front camera facing up to the rider allows the 
application to determine the rider’s mental states, whereas 
the rear camera, GPS, motion and orientation sensors to 
detect the external environment as well as the dynamical 
characteristics of the vehicle. 

The proposed reference system model in this paper 
incorporates different services and algorithms. The reference 
model is based on the ontological knowledge representation 
that allows providing for ontology-based information 
sharing between different services in the developed system. 
The ontological rider and Segway models portray them 
formally in terms of comprehensibility of the information 
systems and using these descriptions in the assisting 
processes. For assistive functionalities, the motion related 
parameters are observed and evaluated simultaneously.  

The rest of the paper is structured as follows. The 
reference model of Segway rider assistant system is 
presented in Section II. Section III and Section IV present 
ontological models of rider and Segway. Segway motion 
detection using Android-based smartphone algorithm is 
given in Section V. The results are summarized in 
Conclusion. 

II. REFERENCE MODEL 
The reference model of the smartphone-based Segway 

rider assistant system is presented in Fig. 1. It consists of 
five main modules: mobile application, cameras, sensors, 
local database and cloud service. For accessing to the 
smartphone’s sensors (accelerometer, gyroscope, 
magnetometer, and GPS) the Android “SensorManager” 
class is used. Data from the device’s different sensors 
collected by Sensor fusion component caters for estimating 
the various useful quantities such as the speed, the 
acceleration, and the location. The Android Camera API is 
used to work with front-facing and rear-facing cameras. 
Inner components of the mobile application are context-
aware camera switching algorithm, multi-core computation 
planner and image processing unit. Today’s smartphones do 
not have the capability to process video streams from both 
of the front and the rear cameras simultaneously. In this 
respect, we use a context-aware algorithm that switches 
between the two cameras while processing the data real-time 
with the goal of minimizing missed events inside. The 
image processing unit is responsible for extracting the visual 
features from the images taken by the rear and front 
cameras. The computation planner aims to effectively 
leverage the multi-core architecture of modern smartphones 
to perform heavy calculations.  

As for storage options we rely on user preferences, local 
database and cloud service. User preferences module allows 
saving and retrieving persistent key-value pairs of primitive 
data types. We save calibration options and other application 
settings accepted by user. If the Internet connection is not 
available, local database is responsible for storing data 
collected from the smartphone. As soon as the Internet 
connection becomes available, we are ready to synchronize 
a local database with the cloud service. Synchronization 
service is a component of the assistant system responsible 
for managing the information flows to/from the database 
located on the smartphone and to/from the cloud. Such 
information as smartphone characteristics, application usage 
statistics, and dangerous events occurred during trip is 
stored for using in the future. Smartphone characteristics are 
GPU, sensors (GPS, Accelerometer, Gyroscope, 
Magnetometer), cameras (front-facing / rear-facing), 
memory & battery capacity, and version of operation 
system. In addition, the cloud storage is used for keeping 
behavior patterns and driving style patterns. Operations that 
can be carried out in the cloud storage are: 

• Recognition of true and false responses due to 
occurrence of dangerous events. 

• Matching of behavior and driving style patterns. 
• Analysis and classification of driver behavior and 

driving style for further making recommendations for 
safe driving. 
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Fig. 1. Reference model of the Segway rider assistant
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developed for the use with hidden Markov models. By using 
these methods to identify a user’s current pattern of control 
and predict the most likely pattern of subsequent control 
states, it is possible to recognize human behaviors accurately 
and anticipate and their projections for several seconds in 
the future. 

The people in fatigue exhibit certain type of visual 
behaviors that can easily be observed from the changes in 
their facial expressions and features from the eyes, head, and 
face. The typical visual characteristics observable on a face 
image of a person are the reduced alertness level that 
includes slow eyelid movement [9, 10], smaller degree of 
eye openness (or even closed), frequent nodding [11], 
yawning, gaze (narrowness in the line of sight), sluggish in 
facial expression, and sagging posture. To make the use of 
these visual cues, another increasingly popular and non-
invasive approach for monitoring fatigue is to assess a 
rider’s vigilance level through visual observation the 
physical conditions of the face using a camera and computer 
vision technologies. The techniques using computer vision 
are aimed for extracting visual characteristics that typically 
characterize a rider’s vigilance level from the video images 
of the monitored face. The features that can be assessed are 
given as follows: 

• PERCLOS – PERcentage of CLOSure of eyelid. 
• Eye blink time. 
• Eye-blinking rate. 
• Eye gaze. 
• Pupil movement. 
• Eyelid movement. 
• Postures. 
• Head pose. 

Visual behaviors observable from the changes in facial 
features listed above are: 

• Eyes are opened or closed. 
• Facing to the left. 
• Facing to the right. 
• Facing forwards. 
• Gaze concentration towards the road. 
• Gaze concentration not towards the road. 
• Dilated pupils. 
• Not dilated pupils. 

The developed rider ontology (Fig. 2) includes these 
visual cues and visual behaviors and determines 
relationships between them. It consists of the five main top 
level classes: “AlertLevel” (warning level), 
“DangerousEvents” (commonly occurring dangerous 
driving events), “CharacteristicParameters” (visual 
characteristics observable from the image of a person), 
“RiderProfile” (a rider profile that reflects the certain 

personal characteristics) and “VisualCues” (the visual cues 
on which we focus to detect dangerous events). 

Each rider has a profile (class “RiderProfile”) that reflects 
personal characteristics. Rider profile consists of 
background (class “Background”) and real-time (class 
“AtTheMoment”) context. Background context in its turn 
includes five elements that underpin a rider safety culture – 
behavior (class “Behavior”), attitude (class “Attitude), 
awareness (class “Awareness”), motivation (class 
“Motivation”) and skills (class “Skills”). These classes are 
associated with each other with the relationship “is_a”.  On 
the other hand we need to consider the real-time data (class 
“AtTheMoment”). It consists of wish for assistance (class 
“WishForAssistance”), driving style (class “DrivingStyle”), 
level of attention (class “LevelOfAttention”) and driving 
behavior (class “DrivingBehavior”). The relationship 
between these classes is “is_a”. System alert level (class 
“AlertLevel”) depends on rider profile. Class “AlertLevel” 
is associated with the class “RiderProfile” with the 
relationship “depends_on”. 

The basic characteristic parameters (class 
“CharacteristicParameters”) that typically characterize 
rider’s state are PERCLOS (class “PERCLOS”), eye-blink 
rate (class “Eye-BlinkRate”), eye closure speed (class 
“EyeClosureSpeed”), eye-blinking time (class 
“EyBlinkTime”), eye gaze (class “EyeGaze”), pupillary 
state (class “PupillaryState), yawning (class “Yawning”) 
and nodding level (class “HeadNodding”). The relationship 
between these classes is “is_a”. 

We infer the dangerous rider behaviors (class 
“DangerousEvents”) such as drowsiness (class 
“Drowsiness”), distraction (class “Distraction”) and fatigue 
(class “Fatigue”). In the proposed ontology, the 
corresponding classes (“Drowsiness”, “Distraction” and 
“Fatigue”) are associated with the class “DangerousEvents” 
with the relationship “is_a”. At the same time, face 
orientation and eye gaze are used to detect distraction. 
(classes “FaceOrientation” and “EyeGaze” are associated 
with the class “Distraction” with the relationship 
“is_used_to_estimate”). PERCLOS, eye-blink rate, eye 
closure speed, eye blink time, yawning and nodding level 
are used to recognize drowsiness. (Classes “PERCLOS”, 
“Eye-blinkRate”, “EyeClosureSpeed”, “EyeBlinkTime”, 
“Yawning” and “HeadNodding” are associated with the 
class “Drowsiness” with the relationship 
“is_used_to_detect”). And finally, eyelid movement, face 
orientation, gaze movement and facial expressions reflect 
level of fatigue (classes “EyelidMovement”, 
“FaceOrientation”, “GazeMovement” and 
“FacialExpressions” are associated with the class “Fatigue” 
with the relationship “reflects_level_of”). Open or closed 
eyes are a good indicator of fatigue. (Property “EyeState” is 
associated with the class “Fatigue” with the relationship 
“is_an_indicator_of”). 
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Fig. 2. The Segway rider ontology model 

IV. SEGWAY MODEL 
The Segway riders are faced with a multitude of road 

hazards and an increasing number of distractions (e.g. 
music, phone calls, smartphone texting and browsing, 
advertising information on the road, and etc.) In the 
presented approach the following five of the most 
commonly occurring dangerous driving events are 
addressed, such as: 

• Drowsy driving. 
• Vigilance decrement. 
• Inattentive driving. 
• Tailgating. 
• Ignoring blind spots during lane changes. 

The characteristics that can be observed by the images of 
the road and the smartphone sensors include: 

• Segway speed and acceleration. 
• Vehicle headway (measurement of the distance or 

time between vehicles). 
• Lane position and road signs. 
• Segway turns. 

The developed Segway ontology model (Fig. 3) consists 
of five main top level classes: “DangerousEvents” 
(dangerous events that can occur during driving), “Sensors” 
(embedded sensors on the phone), “Cameras” (built-in front-
facing and rear-facing cameras), 
“VehicleBehaviorParameters” (segway behavior 
parameters) and “RoadParameters” (parameters that 

characterize the road the segway moves). At the same time, 
classes “VehicleBehaviorParameters”, “Sensors” and 
“RoadParameters” are used to recognize hazards (class 
“DangerousEvents”). Classes 
“VehicleBehaviorParameters”, “Sensors” and 
“RoadParameters” are associated with the class 
“DangerousEvents” with the relationship 
“is_used_to_recognize”). 

The class ”DangerousEvents” is classified as 
“Tailgating” (riders should maintain a  minimum safe 
distance with the vehicle or moving object ahead) and 
“IgnoringBlindSpots” (executing lane changes safely also 
requires a rider to check blind spots before proceeding). In 
the proposed ontology, the corresponding classes 
(“Tailgating” and “DangerousEvents”) are associated with 
the class “DangerousEvents” with the relationship “is_a”. 

Most Android-powered devices have built-in sensors 
(class “Sensors”) such as accelerometer (class 
“Accelerometer”), gyroscope (class “Gyroscope”), 
magnetometer (class “Magnetometer”) and GPS (class 
“GPS). Corresponding classes (“Accelerometer”, 
“Magnetometer”, “Gyroscope” and “GPS”) are associated 
with the class “Sensors” with the relationship “is_a”. 

But also Android framework includes support of cameras 
(class “Cameras”) and camera features available on device, 
allowing to capture pictures and videos in applications. We 
aim to work with front-facing (“FrontFacingCamera”) and 
rear-facing (“RearFacingCamera”) cameras. Classes 
“FrontFacingCamera” and “RearFacingCamera” are 
associated with the class “Camera” with the relationship 
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“is_a”. Pictures taken from rear-facing camera help us to 
recognize behavior parameters such as turn (class “Turn”), 
vehicle headway (class “VehicleHeadway), trajectory (class 
“Trajectory”) and lane position (class “LanePosition”). 
These classes are associated with each other with the 
relationship “is_used_to_recognize”. 

The class “VehicleBehaviorParameters” includes such 
parameters such as the speed (class “Speed”), acceleration 
(class “Acceleration”), lane position (class “LanePosition”), 
trajectory (class “Trajectory), Segway turns (class “Turn”) 
and vehicle headway (class “VehicleHeadway”). They are 
associated with the class “VehicleBehaviorParameters” with 
the relationship “is_a”. 

The GPS sensor (class “GPS”) and accelerometer (class 
“Accelerometer”) are used to estimate the position, 
acceleration (class “Acceleration”) and the speed (class 
“Speed”). The classes “Acceleration” and “Speed” are 
associated with the classes “GPS” and “Accelerometer” 
with the relationship “is_used_to_estimate”. 

Besides, inertial sensors (classes “Acceletometer”, 
“Magnetometer” and “Gyroscope”) are used for trajectory 
detection (class “Trajectory) and these are associated with 
the relationship “is_used_to_detect”. The Segway turns 
(class “Turn) are detected by observing the significant 
changes in  the direction from the time-series data of the 
GPS (class “GPS”) positions. The class “GPS” is associated 
with the class “Turn” with the relationship 
“is_used_to_detect”. 

The last top level class is “RoadParameters”. It contains 
lane markers (class “LaneMarkers”), road conditions (class 
“RoadConditions”), obstacles (class “Obstacles”) and road 
signs (class “RoadSigns). Classes “LaneMarkers”, 
“RoadConditions”, “Obstacles” and “RoadSigns” are 
associated with the class “Road” with the relationship 
“is_a”. 

And finally, the road parameters (class “Road 
parameters”), sensors (class “Sensors”) and the Segway 
behavior parameters (“VehicleBehaviorParameters”) are 
used to recognize dangerous events. These classes are 
associated with each other with the relationship 
“are_used_to_recognize”. 

Each driver has his own skills, motivation, attitude and 
qualifications that we should consider in monitoring and 
detecting dangerous events occurring throughout the trip. 
That’s why the rider and Segway models are rather closely 
related. 

For instance, executing lane changes safely requires a 
driver to check blind spots before proceeding. The driver 
does this by looking in the side and front mirrors of the car 
to check for unexpected vehicles. Segway application 
should be capable of recognising the head position of the 
driver using the phone’s front camera, allowing the app to 

ensure the appropriate mirror checks are performed before 
each lane change. Lane changing itself can be detected 
using the rear camera and inertial sensors, as described 
above. 

V. SEGWAY MOTION DETECTION USING 
ANDROID-BASED SMARTPHONE 

A standard Android-based smartphone has a built-in 3-
axis accelerometer sensor and a gyroscope which measure 
acceleration acting on the device and the angular rates in 
the three axes. The accelerometer also measures the gravity 
component on the each axis. Thus, the gravity component 
must be subtracted from the measurements for the analyses. 

Fig. 4 illustrates the body coordinate system of the 
smartphone. The rotated y-axis is the forward direction of 
the motion in the current Segway - smartphone 
configuration. For the motion classification such as that of 
the braking modes, the best discriminative features can be 
obtained from the inertial sensors are the rotation angle and 
the angular rate of the Segway’s handle bar around the x-
axis which are the pitch angle and angular rate. 

The handle bar of Segway has 2 Degree of Freedom 
(DOF); pitch and roll angles that are  the rotations around 
the x and y axes. 

The measurements must be aligned in respect to the 
body coordinate system of the Segway. To do this, the only 
parameters are the pitch and roll angles. Even though 
provided by the Android APIs the reported measurements 
for the orientation angles are not reliable at the higher 
frequencies. Thus, we compute  these  parameters  using  
the trigonometric relationships between the accelerometer 
measurements on the three axes. The pitch and roll angles 
can also be computed by integrating the gyroscope 
measurements. However, both of the Micro Electro 
Mechanical System (MEMS) sensors suffer from inherent 
error characteristics errors such as the bias (drift), scale 
factor, cross-coupling, environmental conditions and 
random noise [12].  

The accelerometers report reliable measurements at the 
lower frequencies and they are not discriminative for the 
braking mode classification. The reported measurements at 
the high frequencies are highly noisy and inaccurate when 
especially at the braking situations, whereas, those of 
gyroscopes are susceptible to low error levels at the higher 
frequencies [12]. Therefore, the rotation, roll and pitch 
angles derived from the measurements of the single sensor 
either exhibit a high signal-to-noise ratio or drift over a 
period of time (Fig. 5 and Fig. 6).  

Both of the gyroscope and accelerometer sensors have 
pros and cons over each other in certain frequency ranges, 
therefore, the error stem from each sensor domain can be 
compensated by combining the measurements, namely 
sensor fusion. 
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Fig. 3. Segway ontology model 

 
Fig. 4. Android-Based Smartphone Body Coordinate System 

The Kalman or digital complementary filters can be 
used in that case. The use of Kalman filter incurs the 
system additional computational complexity, hence we opt 
for a complementary filter to obtain the filtered pitch (�) 
and roll ( ). 

The complementary filter is of 3rd order and easier to 
implement thand the Kalman filter algorithms. The 
complementary filter exploits the low and high frequency 
regions of the accelerometer and gyroscope respectively 
which are complementary to each other (Fig. 7). 

The pitch and roll angles are computed by using the 
accelerometer measurements of the each axis directions 
(ax; ay; az) subtracting the gravity vector appears on the 
each acceleration readings [12]. If no rotation is exist and 

the smartphone lies down on the ground, the gravity vector 
is expressed in the form. 

 
Fig. 5. Noisy and Filtered Pitch Angles Derived from the Motion Sensors 

 

Fig. 6. The Roll Angles derived and filtered from the Accelerometer 
readings 
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Fig. 7. Complementary Filter Block Diagram 

Assuming that there are two sequential rotations around 
the x and y axes, and the rotation sequence is not known, 
two different rotation matrices can be obtained (1) and (2), 
as the multiplication of the rotation matrices for the pitch 
(3) and roll (4) are not commutative. 
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The last columns of the matrices in the (4) and (5) are 
the gravity vectors. In order to avoid ending up with two 
solutions for the pitch and roll angles, the range of either is 
restricted between [-�; �]. On the Android SDK, the roll 
and the pitch rotations around the y and x axes are restricted 
between the ranges �� �

� � �
�� and [-�; �] respectively. In this 

case, using the trigonometric identities, the roll and pitch 
angles are expressed as given in the (5).  

� � ���������� ���� ���� � 
(5) � � � ���������� !��� " ����. 

The computed pitch and roll rotations are given in Fig. 
5 and 6. When computed in this manner, the roll and pitch 
rotation from the accelerometer readings exhibits a noisy 
characteristics in comparision to the filtered measurements 
as shown in the figures. We employ a Proportional-Integral 
(PI) controller to compute the coefficients of the 
complementary filter. 

We first compute the rotations by integrating the 
gyroscope readings. The initial values are taken from the 
rotation angles computed by using the accelerometer 
readings. The difference between the rotations obtained 
from the gyroscope and accelerometer readings are the 

inputs to the PI controller.  The outputs are the filtered pitch 
and roll angles; the complementary filter outputs. 

The transfer function for the estimated pitch and roll 
angles in this case becomes. 

�# � �$ �% " &'$ �() � (#� " &*$� �() � (#� (6) 
 
 

After organizing (7), the transfer function for the roll 
and pitch angles is obtained as in (8). 

�# � $�$� " &'$ " &* +
�$ �%, " &'$ " &*$� " &'$ " &* �- (8) 

The PI coefficients Kp and Ki must be fine-tuned. We 
exploit the PID tuning toolbox of Matlab to find the 
optimum filter coefficients. Once the transfer function and 
the coefficients are obtained, the difference equation for the 
digital filter are computed using the bilinear transformation.  

The coefficients that Matlab’s PID tuning toolbox gives 
are the optimum coefficients and the toolbox yields them as 
Kp = 7.5924 and Ki = 20.7015. After the bilinear 
transformation, the difference equation for the roll rotation 
(9) is obtained as follows. 

In the (7), (8), and (9), �# , �. and �) represent the 
filtered roll rotations, the roll rotations obtained from the 
gyroscope and accelerometer measurements. 

�#
� /�01�2345 � �06�734� " �06�13489�%� � �06�1�345 " �06�6634�
" /�0�1:345 " �0��734� " �0�663489�-� � �06�1�345 " �06�6634�  

(9) 

The same difference equation is used to compute the 
filtered pitch angle. The resultant filtered rotation angles 
are given in the Fig. 5 and Fig. 6. As seen in the figures, the 
pitch and roll angles obtained from the trigonometric 
entities of gravity vector measurements of the 
accelerometer are highly noisy and it gives inaccurate 
values at the higher acceleration rates. In addition, the drift 
can be seen in the Fig. 5 on the integrated pitch and roll 
angle of the gyroscopes. The rotation matrix is obtained 
using these filtered pitch and roll rotations. 

The accelerometer measurements are aligned with the 
body coordinate system using the rotation matrix, the input 
of which are the filtered rotation angles Fig.8 shows the 
aligned and un-aligned accelerometer readings. The dark 
curve represents the unaligned measurements in the body 
coordinate system in Fig. 8 while the other the aligned 
measurements. As seen in the figure, the gravity measured 
on the z-axis fluctuates around the gravity value during a 
sudden stop experiment. 
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VI. CONCLUSION 
We present a reference model of a two-wheeled self-

balancing vehicles rider assistant system in this paper. The 
model consists of five main modules: mobile application, 
cameras, sensors, local database and cloud service. These 
modules allow the system to recognize rider and vehicle 
behavior and producing alerts and warnings when 
dangerous situations are detected. We also detailed 
appropriate ontologies for the rider and vehicle behavior 
recognized as well as the Segway motion detection 
algorithms using an Android-based smartphone. 

The smartphone-based solutions we elaborate here can 
be used for all types vehicles (new or old) in Segway 
category Manifesting itself as an affordable technology as a 
rider assistant system. 

 
Fig. 8. Aligned and Unaligned Accelerometer Measurements during a 
Sudden Stop Experiment 
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