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 Abstract—In this paper we propose a method for solving the 
SLAM problem for mobile robot when moving in an unknown 
environment. Our method takes computational advantages of 
the FastSLAM algorithm. To estimate the position of the 
robot, we use a particle filter. The weights for the set of 
particles that characterize the expected position of the robot, 
are determined by the condition number of the plane 
homography matrix. It can be considered as the projective 
mapping of points of the scene on the two-dimensional surface 
of camera sensor. A set of unscented Kalman filters is used to 
estimate the positions of detected landmarks which are 
forming the map of the observed environment. Methods for 
detecting and description of landmarks were not considered in 
this paper, as it is beyond the scope of this work.  

I.    INTRODUCTION 
  Autonomous navigation is one of the most important 
tasks of modern robotics. Methods for simultaneous 
localization of the robot and environment mapping (also 
known as SLAM algorithms - Simultaneous Localization 
and Mapping) are carried out by many research groups 
around the world.  

  The object of the application of these algorithms in most 
cases is a mobile robotic platform, equipped with a set of 
sensors. The type of the sensor is determined by the scope 
of the problem: the precision in estimating the trajectory 
and mapping, lighting conditions and the geometry of 
space. This can be laser rangefinders, digital cameras - 
visible or infrared, sonar, etc. 

  The task of the robot consists of computing motion 
trajectory and space mapping, which are not known a 
priori. It is also necessary to have the possibility of 
subsequent positioning within a resulting map. Despite the 
fact that the type of calculated map is entirely dependent on 
the characteristics of sensors and the conditions of the 
surrounding area, most often the problem reduces to finding 
specific areas of space, the so-called features, characterized 
by a stable identity within the stream of data coming from 
the sensors. 

  Recent years have seen a significant increase in interest 
in the complex SLAM algorithms based on the use of 
digital cameras as the main sensor. The main reason for this 

is a significant increase in computing power and reduce the 
cost of image processing devices. The practical application 
of many algorithms goes to real time. Restrictions on the 
resolution of the original image is weakening. Although the 
use of high-resolution images are still associated with 
certain difficulties, low cost cameras in comparison with 
other sensors, traditionally used in real-SLAM, allowing 
them to find a wide range of applications.  

  In each particular case the position of the camera on a 
mobile platform is selected according to the external 
conditions. The presence of moving objects in the camera 
field of view makes the direct optical axis of the camera 
closer to the line perpendicular to the plane of the platform 
motion to offset the distortions introduced by such objects 
(car, pedestrian). In extreme cases, the field of view is 
focused directly on the ground or the ceiling, in the case of 
indoor navigation. 

The proposed method of finding the trajectory of motion 
is based on the use of particle filter to estimate the position 
of the robot and the unscented Kalman filter to estimate the 
position of feature points in the image. The weights for the 
cloud particles that characterize the expected position of the 
robot, are determined by the value of the matrix plane 
homography as projective mapping of points of the scene on 
the two-dimensional surface of camera sensor. 

II.    PROBLEM STATEMENT 
  Over the last decade, the field of application of 
simultaneous localization and mapping algorithms has 
grown tremendously. The most frequent argument in favor 
of these methods is the need for robot navigation in the 
absence of the possibility of using global positioning 
systems, as well as in applications requiring greater 
accuracy than satellite solutions can provide. 

  In general, the task of localization is to estimate the 
current position of the mobile robot in space, depending on 
the previous positions, available measurements,             
control commands and the observation model of the 
surrounding space. The result of the whole set of algorithms 
is the map of the surrounding area, as well as full or partial 
path of mobile robot within the resulting map. 
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  Location of the robot is usually seen in the local 
coordinate system related to the initial position, as there is 
no a priori information about the initial coordinates. The 
requirements to constructed map are defined by the 
possibility of using it in localization task. Otherwise, 
localization and mapping are carried out independently, 
which is leading to a continuous growth of errors. Fig. 1 
shows an example of the algorithm usage. It depicts two 
paths - a real robot trajectory and the trajectory calculated 
by the SLAM algorithm. 

 
Fig. 1. Calculating the trajectory of the robot and mapping with  landmarks 

 The actual positions of landmarks are denoted by letters    
�1..�3, �'1..�'3 are estimated position of landmarks. Error in 
constructing the estimated path Pe increases over time. 
Actual path is denoted as P. As can be seen, the error 
accumulates with each successive step. In this case, the 
constructed map is a two-dimensional map of landmarks. 

  From a general point of view, we can identify three 
paradigms in the approach to solve the problem of 
simultaneous localization and mapping: 

• Extended Kalman Filter (EKF) based 
• Particle Filter (PF) based 
• Graph based 

As a rule, the choice of a solution is determined by the 
characteristics of technical realization of the robot, the 
external conditions, as well as the performance 
requirements for a software system. 

III.    PARTICLE FILTER BASED APPROACH 

A. FastSLAM Technique 
  Currently, most approaches to solve SLAM problem use 
techniques based on extended Kalman filter. The main 
disadvantage of this solution is that the computational 
complexity of the algorithm depends strongly on the 
number of landmarks. This is due to the fact that the 
covariance matrix of the filter P is of dimension n×n, 
where n - number of landmarks. At each step of renovation  
 

matrix P, each element must be renewed, and therefore the 
complexity of the algorithm is about O(n2). Thus, the 
extended Kalman filter is most applicable in situations 
where the environment has a small number of stable 
tracked features, which in most practical cases, several 
hundred items. To solve this problem in 2002 Montemerlo, 
Thrun, Koller, and Wegbreit developed a new approach to 
solve the problem of simultaneous localization and 
mapping [1].  

  FastSLAM method separates the task into many 
equivalent subtasks, using the independence of individual 
elements of the SLAM model. FastSLAM algorithm based 
on the use of probabilistic model of Bayesian network. The 
diagram of this process is schematically represented in  
Fig. 2. 

 
Fig. 2. Explanation of the SLAM problem 

 The robot moves from pose xt-1 through a sequence of 
controls ut-1..ut+1. Observable landmark � has estimates      
zt-1..zt+1 at the time t-1 .. t+1. Each measurement is a 
function of the coordinates z1..zn �i landmark, as well as the 
position of the robot at the time of measurement. As can be 
seen in the figure, the SLAM  task involves important 
condition of independence of measurements from each 
other. Thus, this problem can be considered as n 
independent computational tasks to evaluate path of each of 
the landmarks. This observation is discussed in detail in [2] 
to develop an effective particle filter.  

  Based on the above mentioned conclusion, we can 
consider the problem of simultaneous localization of 
mobile robot and mapping as a problem, consisting of two 
parts: evaluation of robot trajectory and the landmarks 
position estimation, which in turn depend on the 
coordinates of the robot at the time of each measurement. 
Of course, in reality the position of the robot never known 
exactly, this is the very essence of the problem of SLAM. 
Nevertheless, the independence of landmarks from each 
other sufficiently motivated FastSLAM creators process 
each landmark separately.  
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  The original version of the algorithm FastSLAM uses a 
modified particle filter for posterior estimating of the robot 
position. Each particle is characterized by a certain weight, 
determined by the state  of n Kalman filters which are used 
to estimate the landmarks positions. This algorithm utilizes 
a Rao-Blackwellized representation of the posterior 
estimation, integrating particle filter and Kalman filter 
representations [3]. A naive implementation of this method 
has the algorithmic complexity equal to O(MK), where M is 
the number of particles that uses a filter, and K - number of 
landmarks. Using tree structures storage complexity can be 
reduced to the value of O(M log K), which leads to 
significant performance benefits compared with SLAM 
solutions, based on extended Kalman filter. 

B. Probabilistic Formulation of the SLAM Task 
  Now let's turn to the probabilistic formulation of the 
simultaneous localization and mapping task. Assume that 
the robot is in a one-dimensional space, and its position is 
characterized by a single variable x. Then p(x) is the 
probability distribution of x, having a Gaussian shape. 
Now, if x represents the position of the robot and landmarks 
in a multidimensional space, the probability distribution 
p(x) determines the probabilities of all possible state 
variables. Thus, the expression p(x | {u0, u1, … ui}, {z0, z1, 
… zi}) describes the probability of all the values of the 
system - sensor values and information about robot position 
at the time i.  

  The same role is played by the value of Pi and Xi in the 
extended Kalman filter, but there they are presented in a 
much more complex form. For convenience, let us 
introduce the notations Ui = {u0, u1, … ui} and Zi = {z0, z1, 
… zi}. The variable x in its turn characterizes the positions 
of the robot v and landmarks p0, p1, ... pm. The probability 
p(x | Ui, Zi) can be represented as follows: 
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  To simplify the SLAM problem it is convenient to use 
the laws of the foundations of probability theory. Suppose 
that there are two independent random variables A and B. It 
can be said that p(A, B) = p(A) * p(B). However, this 
expression is not valid for the case when A depends on B. 
In this case it will have the form p(A, B) = p(A) * p(B|A).  

  It is known that estimation of landmark positions 
depends on the robot location, which means that probability 
p(x | Ui, Zi) can be represented as follows: 
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  Due to the fact that the landmarks are independent from 
each other, that in the real world is observed in most cases, 
expression p(p0, p1, … pm | Ui, Zi, v) can be divided into m 
independent expressions: 
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  Finally, the resulting expression for the probability 
distribution is given by: 

 .),,|(),|(),|( ∏⋅= m viZiUmppiZiUvpiZiUxp (4) 

 If we look at this expression, it becomes obvious that the 
problem of SLAM is divided into m + 1 tasks, and none of 
the landmark location estimates does not depend on others. 
This, in its turn, allows to solve the problem of polynomial 
complexity of the extended Kalman filter and avoid it in 
FastSLAM. The only price we have to pay for this 
simplification - is the risk to reduce precision associated 
with ignoring the correlation of landmarks estimation 
errors.  

  FastSLAM algorithm simultaneously track multiple 
possible paths, while the extended Kalman filter does not 
keep even one, but only works with the position of the 
robot - the last step of the current path. In its original form 
FastSLAM saves routes, but in the calculation uses only the 
previous step. 

C. Localization Task 
  Particle filter is a modeling method for estimating the 
state of the system that cannot be fully observed. Particle 
filter keeps the weighted normalized set of sample states 
S={s1, s2, ..., sm}, called particles. At each step, after getting 
the measurement o (or a vector of measurements), particle 
filter performs the following actions: 

1) Creating new sample m of system model states 
},...,2,1{ mxxxX ′′′=′ from X states; 

2) Jump to a new state in the Markov model of the robot 
position: P (X"| X'). This action simulates the motion 
of the robot in the space; 

3) Weighing of each state of Markov model according to 
observations; 

4) Normalization of weights for a new set of states. 

  Particle filter is well suited for solving the problem of 
localization, where we need to track the position of the 
robot, which is a hidden value. Jump between the states is 
the movement of the robot, and observation is the result of 
visual odometry algorithm. Both of these values are very 
noisy. Motion model for the different robots with different 
environmental conditions can be quite different, but they 
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are all will take into account the system
errors one way or another. 

  The data about movement are use
position of the robot. It can be obtai
odometry algorithm and the motion mo
This model allows us to determine the ne
robot using the values of the current state
For each  particle position can be predicte
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coordinate system in which the camera movement occurs in 
the plane z = 0, and the ground level is z = z0. To describe 
the camera's orientation in space we can use three camera 
rotation parameters: R�, R� and R�. Angle of rotation of the 
camera around the z-axis is characterized by R�. In the 
process of shooting the rotation angles about the axes x and 
y remains constant, while the angle � and the position of the 
optical center of the camera t = (tx, ty, 0) can vary from 
frame to frame. Thus, the position of the camera at the time 
t0 determines the projection matrix for the resulting image 
as follows: 

 xyTRconstxyTRRH ϕϕθψ ⋅==  (8) 

where R��, R�, Txy - rotation matrix and offset. The value of 
z0 in this task is equal to 1, which does not impose 
restrictions on the decision, but only defines a global 
scaling factor. 

IV.    EVALUATION OF INTERFRAME HOMOGRAPHY 
  Let's look at the images obtained sequentially while 
moving the camera. Geometric characteristics of the system 
are similar to those described above paragraph. Let the 
global coordinate system is defined by the position and 
orientation of the camera at the time of the first image. In 
this case, the projection matrices P1 and P2, connecting 
these images may be defined as follows: 

 
,01 IRP ⋅= θψ

.2 tIRxyTRP −⋅⋅⋅= ϕθψ  
(9) 

  Thus, the point X = [x y 1 1]T on the plane z = zo is 
projected on the planes of the first and second images as: 

,
1

11 	
	



�

�
�


�
⋅⋅= y

x
XRPx θψ  

,

11
22

	
	
	




�

�
�
�



�

	
	



�

�
�


�
−

−

⋅⋅⋅=
y

ty
x

tx

RRy
x

RxyTXRPx ϕθψϕθψ

.

100

01

01

	
	
	




�

�
�
�



�
−

−

=
y

t
x

t

T  

(10) 

  Based on the above conclusions homography matrix 
generally can be written as: 

 
.θψϕθψ

TRxyTRRH ⋅⋅⋅=  (11) 

  Thus, homography matrix can be determined with a 
finite accuracy for two partially overlapping images of the 

observing scene [6]. Since the rotation matrices R�� and R� 
are orthogonal, the matrix H and T must have the same 
condition number, this value is denoted as k.  

  Based on this conclusion we can assume that there is a 
formula that relates the value of the condition number k and 
the distance between the two frames. To find this relation 
we define k using eigenvalues TT·T. The characteristic 
polynomial for TT·T is: 

 ).1)222(2)(1( +++−− σσσ ytxt  (12) 

 Singular value of T is equal to 1, as the multiplication of 
the other two singular numbers for which we have: 
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  Now let us introduce the value of the distance z between 
the images and define this value through the condition 
number: 
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 This value characterizes the weights of the particles in the 
task of predicting the position of the robot.  

  Next, we have to validate proposed relationship between 
the traveled distance and the condition number of a 
homography matrix through experiments.  

We use the test set of images obtained in an urban 
environment with a digital camera mounted on the vehicle 
[7]. For each pair of successive positions of the camera the 
actual traveled distance and the angle of the camera rotation 
are known. For images we can build homography matrix 
and calculate the distance using the last equation.  

As can be seen from the Fig. 5, the data repeats general 
trend. Deviation from the true values obtained using global 
satellite positioning system, can be explained by several 
factors. The test suite is the actual data obtained from a 
digital camera, hence, external conditions (contrast lighting, 
extra movement in the image), and the characteristics of the 
optical system of the camera brings an additional error in 
the calculation results. 
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Fig. 5. The instantaneous values of the distance traveled in the time 
interval between adjacent frames: 1) estimated values, 2) actual values, 3) 
values obtained at the output of the unscented Kalman filter 

V.    RESULTS 
  So, we have developed the method of finding the 
trajectory of motion using particle filter to estimate the 
position of the robot and the unscented Kalman filter to 
estimate the position of feature points in the images. The 
weights for the set of particles that characterize the 
expected position of the robot, are determined by the value 
of the matrix plane homography as projective mapping of 
points of the scene on the two-dimensional surface of 
camera sensor. An example of the resulting trajectory is 
shown in the Fig. 6. 

 

Fig. 6. The trajectory of the camera within 360 frames: 1) real path, 
obtained with the help of GPS, 2) estimated path, obtained using proposed 
method 

  Classical variant of the FastSLAM algorithm uses 2x2 
versions of extended Kalman filter to estimate coordinates 
of landmarks. In our approach we solve nonlinear nature of 
the landmark movement using sigma-point type of Kalman 
filter. Tests show that the use of the unscented Kalman 
filter allows to increase the accuracy up to 5% compared 
with the extended Kalman filter.  

  However, one should mention that the results are highly 
dependent on external conditions, motion model and 

geometry of the system. In the future, to obtain more 
accurate estimates characterizing the accuracy and range of 
applicability of the proposed method, we plan to fulfill a 
series of tests on several test sets with different types of 
digital cameras and external conditions. 

VI.    CONCLUSION 
  In this paper we propose a method for solving the SLAM 
problem. Our method takes computational advantages of 
the FastSLAM algorithm. To estimate the position of the 
robot, we use a particle filter. The weights for the set of 
particles that characterize the expected position of the 
robot, are determined by the value of the plane homography 
matrix as the projective mapping of points of the scene on 
the two-dimensional surface of camera sensor. A set of 
unscented Kalman filters is used to estimate the positions of 
detected landmarks which are forming the map of the 
observed environment. Methods for detecting and 
description of landmarks were not considered in this paper, 
as it is beyond the scope of this work. 

  Research has shown that the movement of the camera 
between adjacent frames can be characterized by the 
condition number of the homography matrix. In the task of 
the landmarks locations estimation, unscented Kalman 
filters allows to increase the accuracy up to 5% compared 
with the extended Kalman filters. However, the results are 
highly dependent on external conditions, motion model and 
geometry of the system. Development of the SLAM 
algorithm that works well in all conditions, is a very urgent 
task today. 
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