
Verification-Enabling Interaction Model
for Services in Smart Space: a TAIS Case

Andrew Ponomarev*†, Vladimir Parfenov†
*SPIIRAS, St.Petersburg, Russia

†ITMO University, St.Petersburg, Russia
ponomarev@iias.spb.su, parfenov@mail.ifmo.ru

Abstract—Smart spaces are used to build semantically

enriched communication media for integration of different
services. Generally, the services functioning in one particular
smart space can be developed by different teams and without
some general perspective. This may result in instability of
different kinds and improper functioning of smart space-
based system overall. In this paper, an interaction model is
proposed for Tourist assistant – TAIS, a smart space-based
service-oriented mobile application that provides a tourist
information about attractions around based on his/her
preferences and current situation in location region. The
proposed interaction model is backed by a two-layered
ontology of tourism domain and a formal model that can be
used to ensure stability of the overall application.

I. INTRODUCTION
There are currently many mobile systems and prototypes

that offer tourist services such as restaurants, museums,
architectural attractions. In many cases, however, these
services are treated independently and are not integrated
with each other. It means that a typical service that aims to
provide an information support for a tourist has its own
database of tourist attractions (and/or hotels, events,
restaurants) and a specialized mobile application that
interacts with a user and displays the information from the
service database. Incompleteness of each particular
database gives rise to a variety of integrative approaches
where information from several service databases is merged
and reconciled. A thorough review of different approaches
to tourist information support can be found, for example,
in [1].

In this paper a goal- and data- centric approach is
applied to tourist information support. Informally, that
means a user does not associate received value
(information) with some particular service but enjoys the
result of the work of co-existing (and possibly
collaborating) services in the smart space.

This paper continues the work on the Tourist Assistant –
TAIS mobile application described in [1], [2]. The goal of
this paper is to address some particularity of TAIS design
that may hamper the development of third-party services
for tourist information support communicating with
available TAIS services. Specifically, structured description

of tourist attractions and context used during services’
interchange involves two kinds of representation: RDF
syntax enforced by Smart-M3 smart space platform, which
is used as communication media between TAIS services,
and XML syntax that is, according to current TAIS
implementation, embedded in some RDF triples [2].

In this paper, an RDFS ontology for tourist information
is proposed, that enables pure RDF exchange between
tourist information services and allows using only RDF
tools to process and browse any tourist information
circulating in smart space. The proposed ontology is
supplemented by an interaction model describing how
exactly services should interact in the smart space using
this ontology. TAIS is based on Smart-M3 smart space
platform, therefore blackboard interaction model and
several kinds of limitations (discussed in detail in the
respective section) imposed by this platform have severely
influenced the proposed design.

Another contribution of this paper is a formal model that
compliments the proposed interaction model. Intent of this
formal model is to build and develop a method of
verification of ensemble of services to make sure that this
particular ensemble plays together well. The proposed
formal model introduces a notion of type for a service, and
some formal rules that help to analyze possible activation
sequences of services, communicating via an RDF-based
smart space, based on their types. This opens way to
implement more predictable and stable smart space-based
system, though sacrificing a versatility of service behavior
(as all actions performed by service should conform to a
predefined type). In some ways, this is similar to how some
kind of errors are avoided during compile-type in statically
typed programming languages.

In a wider perspective, a goal of this paper is to
contribute to a development of a smart space-based
information bus for tourist information that would be a
convenient communication media for tourist information
services of various vendors and would enable the creation
of integrated tourist information support systems based on
Semantic Web and smart space technologies.

Rest of the paper structured as following. Section II
briefly describes related work on tourist support systems

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

and relevant ontologies. Section III introduces TAIS and
contains some basic information about smart space
implementation – Smart-M3, TAIS is based on. Section IV
introduces the tourist information ontology design. Section
V presents the interaction model. Sections VI contains an
example of one service definition to follow the proposed
interaction model. Section VII introduces the formal model
and Section VIII contains some experimental data about
SPARQL subscriptions performance on Smart-M3.

II. RELATED WORK

One of the contributions of this paper is the ontology for
communication between various tourist information
services. This ontology should be expressive enough to
describe all types of tourist information that are processed
by TAIS and be able to describe other types of tourist
information that may be useful in the future. For better
understanding of potential types of information, ontology
should be able to describe, available ontologies in the
domain of tourism were analyzed. Another reason for a
thorough analysis of currently available ontologies in the
domain of tourism is that the number of structured
information sources is increasing and the ontology being
developed should be easily mapped to other common
ontologies in the field as chances are that a potential
provider of tourist information is already using one of these
ontologies internally.

The difficulty of creating ontology of tourism domain is
discussed in detail, for example, in [4]. The idea is that
during a tourist trip a person can do almost anything he/she
can do in an everyday life: go shopping, eat out, go
sightseeing etc. Therefore, an ontology of tourism can
include almost entire ontology of customer services
coupled with cultural one. On the other hand, this ontology
should somehow deal with dates, time intervals, geography
and other common concepts that are best dealt with by
some upper-level ontology.

One of the most elaborate ontologies in the domain of
tourism is Harmonise ontology originally proposed in [3],
now being the central element of HarmoNET
(Harmonization Network for Exchange of Travel and
Tourism Information) that aims to create a framework for
data exchange in the tourism industry. The focus of this
ontology is on events and accommodation.

A modular ontology is proposed in [4]. The authors of
that paper use some ideas of Harmonise and propose an
ontology that is centered around concepts Entity (which, in
its turn, may be Spatial, SpatialTemporal, or Temporal),
Service, Activity and TouristType. These concepts structure
the ontology and for more specific activities
(Accomodation, Gastronomy) or more general concepts
(Weather, Time) other ontologies are used. Tourist types
are taken from [5].

The [6] considers generic tasks and task ontology based
on travelers’ perspectives, and intelligent tourist

information services using them. Therefore, they propose 1)
a task model of travelers’ perspective based on their needs
and activities, 2) a task ontology using the generic tasks,
their activities, relations, and properties, and 3) an
intelligent tourist information system using task ontology
based on various tasks and activities of travelers. The
system consists of Tourist Contents Service (TCS) and
Task-Orient Menu Service (TMS) parts, and can provide
various intelligent tourist information services through
task-oriented menus. Tourism domain ontology is centered
around following concepts: Accommodation, Attraction,
Entertainment, Festival/Event, Food, History/Culture,
Location, Weather, Shopping, Transportation.

In [7] intelligent recommendation system based on Jeju
travel ontology is proposed. The system can recommend
the tourist more intelligent information using properties,
relationships of travel ontology. It is also responsible for
finding personalized attractions and plotting location of
traveler.

The authors of [8] propose the Ontology-based
Intelligent Ubiquitous Tourist Information System
(OiUTIS) for an interactive tourist information service
tailored to both tour services and travelers in ubiquitous
environments.

The e-tourism ontology in [9] is built mostly as an
example of Semantic Web technology stack and to the best
of authors’ knowledge is not mature enough to be used in a
production system. It is based on three main questions that
can be asked when developing tourism applications:
a) What can a tourist see, visit and what can he do while
staying at a tourism destination? b) Where are the
interesting places to see and visit located? c) When can the
tourist visit a particular place?

There are also several ontologies that are not exactly
deal with tourist information, but may be useful, as they
describe either broader part of world than tourism or cover
in detail some subset of information usually relevant for
tourists.

Shema.org project [10] provides a collection of schemas
that webmasters can use to markup HTML pages in ways
recognized by major search providers, and that can also be
used for structured data interoperability (e.g. in JSON).
Search engines including Bing, Google, Yahoo! and
Yandex rely on this markup to improve the display of
search results, making it easier for people to find the right
Web pages. There are several concepts and relations
relevant to tourism domain. Upper level structure (of the
relevant subset) includes: Action, CreativeWork, Event,
Intangible (e.g., Rating, StructuredValue, such as Contact
or GeoCoordinates), Organization, Person, Place (including
TouristAttraction).

GoodRelations [11] is a vocabulary for publishing all of
the details of products and services in a way friendly to
search engines, mobile applications, and browser
extensions. It is by design more tailored to electronic

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 164 --

commerce and is centered around BusinessEntity, Offering,
ProductOrService and Location.

III. TOURIST ASSISTANT - TAIS

Tourist assistant – TAIS is an intelligent mobile tourist
guide that allows tourists to get information about
attractions around the current geographic location based on
tourist context and ratings assigned by other tourists.
Information about attractions is extracted from different
internet services (like Wikipedia, Wikivoyage, Wikitravel,
Panoramio, Flickr) “on the fly” that allows to use the guide
in any region of the world and get actual at the moment
information. Tourist assistant – TAIS provides information
about public transport and car sharing possibilities for the
tourist with drivers nearby for comfortable reaching
preferred attractions.

Tourist assistant - TAIS includes several components
[2, 12, 13, 14], this paper focuses on interaction of the
following subset of them:

• client application installed to the user mobile device
that shares tourist context with the smart space and
provides the tourist results of guide application
operation;

• attraction information service that implements
retrieving and caching the information about
attractions;

• recommendation service that evaluates
attraction/image/description scores based on ratings
that have been saved to internal database earlier.

Main tasks of client application are: share information
about tourist context, profile, and actions; communication
with smart space; provide results to the tourist; and share
tourist ratings of attended attractions, browsed descriptions
and images with the smart space.

The attraction information service is responsible for
providing information about attractions with description
and photos around location.

The recommendation service implements ranking
attractions, images, and descriptions for providing the
tourist the best attractions to see and the best images and
description of chosen attraction for acquaintance.

Interaction between components of TAIS is performed
by means of smart space platform Smart-M3, described
in [15].

The Smart-M3 platform consists of two main parts:
information agents and kernel. The kernel, in its turn,
consists of two elements: Semantic Information Broker
(SIB) and data storage. Information agents are software
entities installed on the mobile devices of the smart space
users or on some server machines providing services to all
users of the smart space. For example, TAIS client
application as well as TAIS services (attraction information

service, recommendation service and others) are all
information agents in terms of Smart-M3 platform.

Information agents interact with SIB through the Smart
space Access Protocol (SSAP). The SIB is the access point
for receiving the information to be stored, or retrieving the
stored information. All this information is kept in the data
storage as a graph that conforms to the rules of the
Resource Description Framework (RDF). According to
these rules, all information is represented by "Subject -
Predicate - Object" triples. Most important operations
supported by SSAP are inserting, removing, updating,
querying RDF triples and subscribing to an insertion or
deletion of a given RDF graph pattern.

The subscription to RDF graph patterns is the only way
to provide a control flow for information agents interaction
via Smart-M3 platform. Subscription can be defined either
in the form of a simple triple pattern or in the more
complex form of graph pattern described by a SPARQL
query.

IV. ONTOLOGY DESIGN

According to the FIPA specification, ontology includes a
vocabulary (i.e. a list of logical constants and predicate
symbols) for referring to the subject area, and a set of
logical statements expressing the constraints existing in the
domain and restricting the interpretation of the vocabulary.
Ontologies, therefore, provide a vocabulary for representing
and communicating knowledge about some topic and a set
of relationships and properties that hold for the entities
denoted by that vocabulary [16].

A. Ontology design goals, constraints and scope
Goals of ontology design in this research effort: a) to

provide a common vocabulary for all services participated
in tourist information interchange; b) to preserve the
information about the provider of each «information piece»
in the common knowledge space.

Formal specification of common vocabulary along with
the enumeration of allowed concept combinations (i.e., the
first goal completion) would enable third-party services to
«understand» graph patterns contained in smart space and
be able to augment them in a semantically correct way.

The second goal is to give a tourist an opportunity to
determine the supplier of different pieces of information in
common space. It may give users an opportunity to
prioritize different information suppliers in manual or
automatic way. For example, there may be several
attraction recommendation services each assigning
expected utility for attractions, but a user may think that
one of that services better predicts his/her interest as others.
This is very close to the trust layer in classical Semantic
Web stack.

From the technological point of view, there are several
ways to approach this goal. First, different ways of

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 165 --

reification – an RDF instrument that allows one to describe
RDF triples with another triples. The problem with
reification is that is requires either encoding each triple as
four triples in the triple store or it requires some native
support from RDF tools. Moreover, reification is an
overkill w.r.t. the goal analyzed, as there is no need to add
some unique information to each triple. Instead, the entire
RDF graph should be «colored» by the limited number of
service signatures. Another way to approach this problem is
named graphs model, an extension of RDF model [17].
Albeit, at best of authors’ knowledge Smart-M3 Platform
does not have a built-in support of named graphs.

To meet the second design goal, a two-level ontology is
introduced. The first layer (also called generic layer)
defines cornerstone concepts of the tourist information
domain and should be accepted and understood by any
party that is interested in tourist information exchange.
Examples of the concepts defined in the generic layer are
Attraction, Rating etc. The second layer (service layer)
defines service-specific terms for concepts of generic layer
and maps them to the respective concepts via equivalence
relation. So, in an example concerning multiple
recommendation services, there is a property in a generic
layer of the ontology corresponding to expected utility, but
those multiple recommendation services do not use this
property; instead, each service defines its own property for
expected value in its own service ontology and maps it to
generic property with a special ontology instrument.

It also must be noted, that the presented version of the
ontology contains a high-level conceptual structure of
tourist domain and a subset that covers information
demands during sightseeing only, setting aside other tourist
activities as accommodation, transportation, and so on.

B. Generic layer ontology
The proposed ontology is described in RDFS. Generic

layer ontology is based on [4] and [10] and is built around
four core classes: Tourist, Entity, Action, and Virtual.
Tourist class instance corresponds to one tourist and its
properties describe tourist’s inclinations, preferences, and
current state. Entity class’ instances correspond to places
(subclass Place) and events (subclass Event). Action class
instances represent various actions and intents of the tourist
(examine surroundings, examine place in detail etc.).
Finally, Virtual class’ subclasses define intangible concepts
like user rating, score, address, geographic coordinates, etc.

All the concepts URIs used by the generic layer ontology
are prefixed with the “http://spiiras.nw.ru/tio/gn/v1/” which
will be omitted in the following text or replaced with a
prefix “tiog” where appropriate.

Tourist class is used to state the fact that a subject is a
person who is performing a vacation trip and is ready to
receive various information about interesting surroundings
and ways to spend time in a jovial way.

Statement (hereinafter, Turtle [18] syntax is used to
write RDF triples)

<mailto:u@gmail.com> a tiog:Tourist .

is used to declare an ontology node with URI
mailto:u@gmail.com as an instance of Tourist class.

Tourist instance is an allowed domain for the following
properties (all the listed properties are defined in the
namespace tiog):

• hasKeyword – literal-valued property corresponding
to one area of interest of the tourist expressed as
keyword. May have multiple values.

• hasGeoCoordinates:lat – tourist’s coordinates.
GeoCoordinates class instance, which is a pair of
geo1:lat and geo:long.

• nearBy – points to an Attraction that is near to the
tourist. May have multiple values.

TouristAttraction class (a subclass of Place, which is a
subclass of Entity) denotes some physical place that a
tourist might like to attend. Properties of the
TouristAttraction are the following (all listed properties are
defined in the namespace tiog):

• hasAddress – postal address of the attraction. Address
class instance.

• hasGeoCoordinates – geographic coordinates of the
attraction. GeoCoordinates class instance.

• hasMap – URL to a map of the place.
• hasUid – unique attraction identifier (literal).
• hasImageUrl – URL to an image of the place.
• hasName – the name of the TouristAttraction.
• hasAlternateName – an alias for the item (literal).
• hasDescription – a short description of the

TouristAttraction.
• hasRating – a rating that was assigned to a Attraction

by one user, if any. Rating class instance.
• hasExpectedScore – an expected score of how this

attraction would be interesting to the user. Score class
instance.

C. Service layer ontology
Generic layer ontology defines the set of concepts and

properties that are used to describe tourists and attractions.
However, the direct use of these terms would violate the
second goal of the ontology – the resulting network of
ontological definitions in common smart space would not
contain an inkling on the originator of some fact. To
resolve this issue the service layer ontology is introduced.
The service layer ontology is a set of properties (and only
properties) mapped to the generic ontology with special
property tiog:isImplOf.

1 W3C Geo: http://www.w3.org/2003/01/geo/wgs84_pos#

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 166 --

That is, if, for example, some service holds a huge
collection of photographs it may define a property
http://photoba.nk/tio/implementation/imageUrl (later
referred as pb:imageUrl) and declare in smart space that its
pb:imageUrl is an implementation of the tiog:imageUrl:

pb:imageUrl
tiog:isImplOf tiog:imageUrl.

After that photo service annotates nodes of the common
ontology with pb:imageUrl and other services would be
able to infer that, first, pb:imageUrl holds a URL of an
image of the attraction, second, that that image was
provided by http://photoba.nk.

For convenience, every property of the generic layer
ontology is also mapped into itself with tiog:isImplOf.

V. SERVICE INTERACTION MODEL
Service interaction model is based on the ontology

subgraph monitoring and subscription capability of the
underlying smart space implementation. Each application
that is willing to take part in the tourist information
exchange should start with identifying the ontology
subgraph patterns that provide the required input. These
patterns and events associated with them (such as creating
and dissipation) serve also as signals to perform some
actions. It is paramount that mutual dependencies between
applications be avoided. Interaction takes the form of
augmentation of the ontology graph.

When a new ontology subgraph matching the specified
pattern is detected, the service action is triggered.
Depending on the purpose of the service, its action may
include adding new facts into the common ontology graph.
When triggering specialization disappears, service must
response to it by removing all the ontology graph data that
was added into the smart space in response to creation of
that pattern, if any. The rationale here is that in each
moment of time ontology graph representing current
situation must be consistent. Parts of the graph added by the
service on detection of trigger pattern depend on parts that
form that trigger pattern and should be removed upon
dissipation of the latter to maintain ontology graph
consistency. There is also a technological reason for that,
namely any arc of the ontology graph must be controlled by
exactly one service (so that not a single graph node or edge
can become an orphan, at least in the process of normal
functioning of all the services).

So, each service design must declare:

• an input ontology graph pattern specification;
• an action that is performed by the service;
• an output ontology graph pattern specification.

Ontology graph pattern specification is a set of arcs and
nodes with ontology labels (or unbounded) that can be

looked for and matched to some parts of shared ontology in
smart space.

It is an open question whether a service action can use
any information contained in the common ontology but not
in the input pattern specification. In frequently updated
ontologies in would easily result in race conditions and
inconsistencies of different kind. Therefore, the rule of
thumb in service design is to include all information that is
needed for service operation in the input pattern.

Smart-M3 platform provides the required capabilities of
ontology graph monitoring through the mechanism of
SPARQL subscriptions. Knowledge processor can initiate a
subscription operation by sending a SPARQL request to the
SIB. SIB evaluates this request in the current smart space
contents, returns the result of the query to the knowledge
processor, and takes the responsibility to inform the
knowledge processor each time the result of this SPARQL
expression changes.

Therefore, input ontology graph pattern specification
should be encoded as a SPARQL subscription query in
such a way that each row of the result corresponds to one
instance of that pattern. Then, upon each modification of
the ontology graph the service will receive all the pattern
instances that appeared in the ontology graph and all
pattern instances that disappeared. As it was described
earlier, these events are followed by the service performing
target actions or removing output subgraph respectively.

This mechanism is clarified by the following example.
Let a service must react on a user movement and update the
list of nearby attractions. User movement is reflected in the
ontology as a mutation of one or two user coordinates. User
type must also be analyzed, because nearby attractions
should be shown only to users that currently characterize
themselves as tourists (during vacations, for example).
Input pattern for the listed service requirements is shown in
Fig. 1.

Fig. 1. Example input pattern

This pattern can be described with the following
SPARQL query:

SELECT ?user ?lat ?long
{
 ?user a tiog:Tourist .
 ?user tiog:hasGeoCoordinates [
 geo:lat ?lat ;
 geo:long ?long] .
}

tiog:hasGeoCoordinates
mailto:u@gmail.com

geo:lat geo:long

tiog:Tourist

rdf:type

_:node1

59.954 30.32

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 167 --

TABLE I. EXAMPLE RESULT OF A QUERY

user lat long
<mailto:u@gmail.com> 59.954 30.32
<mailto:z@gmail.com> 57.15 65.533

Each row of this query corresponds to one instance of
the input pattern. As SPARQL subscription operation of the
Smart-M3 returns the result of query evaluation in the
current ontology, the result of this subscription query will
contain all users that are typed as tiog:Tourist with known
coordinates (Table I).

The set of the received input patterns should be
processed immediately resulting in augmenting the smart
space ontology with the list of nearby attractions
information.

For each row of this table the service generates a pack of
triples describing the nearby attractions:

<mailto:u@gmail.com> tiog:nearBy [
 a tiog:TouristAttraction ;
 tiog:hasUid “uid:8378” ;
 tiog:hasName “Palace Square”
].

Afterwards, the SIB notifies the service each time this
table is altered. For example, if the user
mailto:u@gmail.com moves and his/her mobile device
detects this and reflects the new location in smart space SIB
sends to the service a couple of data tables – deleted items
and added items. So, if mailto:u@gmail.com moves to (60,
30.33) then notification of the service looks like shown in
Table II.

TABLE II. SPARQL SUBSCRIPTION CHANGE NOTIFICATION

Deleted
mailto:u@gmail.com 59.954 30.32

Inserted
mailto:u@gmail.com 60 30.33

The obsolete (deleted) row is interpreted as a sign of
dissipation of the input pattern and results in cleaning smart
space from the triples that were previously added by the
service for user1_node. After that, new (inserted) row is
interpreted as a new input pattern and a new triples are
added into smart space:

<mailto:u@gmail.com> tiog:nearBy [
 a tiog:TouristAttraction ;
 tiog:hasUid “uid:9580” ;
 tiog:hasName “Tauride Gardens”
].

VI. EXAMPLE SERVICE INTERACTION SPECIFICATION
In the following section, a complete example of service

taking part in the proposed interaction model is explained.
It is a TAIS recommendation service. It listens to the list of
attractions that are near the user (that list is provided by
some other smart space service) and rate that attractions
based on tacit and explicit user preferences. The key point
concerning interaction specification is that input pattern
(activating this service) and output pattern should be
provided.

Service ontology includes properties for rating and score
which are declared to be implementations of the respective
properties of the generic layer ontology tiog:hasRating and
tiog:hasExpectedScore. Prefix URI for service ontology can
be http://example/tiog/rec/. Then, upon service initialization
following triples are added into smart space:

@prefix rec:
 <http://example/tiog/rec/> .
@prefix tiog:
 <http://spiiras.nw.ru/tio/gn/v1/> .
rec:hasUserRating
 tiog:isImplOf
 tiog:hasUserRating .
rec:hasExpectedScore
 tiog:isImplOf
 tiog:hasExpectedScore .

Fig. 2. Input ontology graph pattern of the recommendation service

The input for this service is an attraction list (attraction
ratings, certainly, are also input, but it is not discussed here
in detail). More specifically, input data should include user
identifier (to retrieve user preferences from the preferences
database) and attraction identifier (to ratings of that
attraction from the preferences database). To adapt this
kind of service to the proposed interaction model this input
information must be described as an ontology pattern.
Having in mind the fact, that tourist surroundings are
represented in the ontology in the way, depicted in the
Fig. 2 (input pattern arcs are highlighted by solid lines),

tiog:hasGeoCoordinates
tiog:nearBy

rdf:type

rdf:type

mailto:u@gmail.com

_:node3

geo:lat geo:long

tiog:Tourist

tiog:hasUid

tiog:TouristAttraction

_:node2

59.954 30.32

uid:8378

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 168 --

SPARQL description of the input pattern can be written as
follows:

SELECT ?user_id ?loc_node ?loc_uid
{
 ?user_id a tiog:Tourist.
 ?user_id ?nearprop ?loc_node.
 ?nearprop tiog:isImplOf
 tiog:nearBy.
 ?loc_node a tiog:TouristAttraction.
 ?loc_node tiog:hasUid ?loc_uid.
}

This query returns one row for each attraction that is said
to be in the user surroundings and the respective user
identifier.

For each new row – returned on subscription or in
notification (as inserted row) the service inserts into smart
space rating of the given attraction assigned by the user
user_id and expected score of the attraction for that user
(Fig. 3). In the Fig. 3 inserted triples are shown by dash
lines, fet:nearBy is defined by the service that added
attraction description as an implementation of tiog:nearBy.

Fig. 3. Output ontology pattern

For each deleted row of the subscription query results
recommendation service removes triples with userRating
and expected score for ?loc_node – exactly the same triples
that were inserted during the new row processing.

VII. FORMAL MODEL
To analyze a multi-agent system, based on smart space

interactions as it was described in the previous sections, a
formal model is introduced. The analysis is needed to
ensure that a particular system constructed is stable and
viable. For example, to ensure that functioning of some set
of services won’t result in an endless “loop” of mutual
service activations and an unbounded growth of operational
ontology stored in a smart space. In this section, the
proposed formal model and formal technique are described.

Let a system consist of a shared RDF graph G and a set
of actors Q. Another representation of G is a subset of LU ×
LU × (LU ∪ LL), where LU is a set of URIs, LL – a set of
literals.

Let the system consist of a shared directed graph G build
according to RDF rules. and a set of actors Q. The nodes of
graph V = {vi} and arcs D = {di} have labels from the set L
associated with them, i.e. l: V ∪ D → L, l(vi) will denote
the label associated with the node vi. This graph represents
a common RDF-based ontology that is accessed by
multiple actors. It actually greatly simplifies (broadens)
RDF model, that distinguishes between literal nodes and
URI nodes and imposes several restrictions on how nodes
can be connected, however, it is not important from the
point of view of this formal model.

Actors can do two things: to listen to changes in the
common graph and to change common graph in some way.
They can be of two types: initiative and reactive. The
difference is that initiative actors can make changes in the
common graph G in an arbitrary moment, they represent
uncontrollable inputs to the system, and reactive actors
perform graph G modifications only in response to some
other modifications in graph, therefore, they represent
logics of the system itself. Moreover, among initiative
actors producers and consumers are distinguished. The
former can only add some graph to G, and the latter can
only remove some graph from G. Let’s denote producers by
adding «+» sign to an actor, like A+ = {ai

+}, consumers by
adding “-“ sign, like A- = {ai-}, and reactive actors simply
by A = {ai}, hence Q = A+ ∪ A- ∪ A.

A type of an agent specifies input and output graph
patterns. Input pattern is a graph structure the actor is
processing, so the agent activates each time a new instance
of input pattern is detected in G. Output pattern is a
subgraph structure that is inserted by the actor in response
to each insertion of an input pattern instance and is
removed in response to removal of each input pattern
instance.

Input pattern P is formed from a set of 3-tuples of
extended sets LU and LL, and a set of variables. Formally,
let B be a set of variables, LU’ = LU ∪ {*} ∪ B, LL’ = LL
∪ {*} ∪ B, here «*» is a special element, whose role will
be clarified later. Then P ⊂ LU’ × LU’ × LL’. Output
pattern O is formed in a similar manner from a set of 3-
tuples and a set of variables: LU’’ = LU ∪ B, LL’’ = LL ∪
{@} ∪ B, O = LU’’ × LU’’ × LL’’.

Actor’s type will be denoted as T(a). Producer’s type
consists of a set of variables and an output pattern,
consumer’s type consists of a set of variables and an input
pattern, whereas reactor’s type consists of a set of variables,
input and output patterns. For clarity, elements of variables
set will be prefixed with a question mark (e.g., ?x),
elements of LU set will be surrounded by angular brackets
(e.g., <lat>), and elements of LL will be enclosed in quotes
(e.g., “river”). Example of some reactor agent follows:

T(a) = ({?u, ?l, ?g, ?lt, ?lg, ?_},

 {(?u, <lat>, ?l), (?l <isa> ?g),

 (?l <lat> ?lt), (?l <long> ?lg)},

rdf:type

rdf:type

tiog:scoreValue

tiog:ratingValue

rec:hasExpectedScore

rec:hasRating

fet:nearBy

mailto:u@gmail.com

_:node3

tiog:hasUid

uid:8378
_:node5

_:node4 5

0.87

tiog:Score

tiog:Rating

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 169 --

 {(?u, <near>, ?_), (?_, <type>, <attr>),

 (?_, <name>, @)})

The evolution of a system consisting of a shared graph G
and a set of actors Q starts with an empty graph (G0 = ∅).
The graph may change only as a result of execution of
some initiative actor. Let the executed actor is as

+. Upon
execution, it adds some subgraph to G, according to its
type, producing a new version of the shared graph G1. After
that, each actor is tested whether its input pattern matches
some subgraph of G1.

Graph G matches input pattern P = {pi}, iff there is such
a binding of variables (and “*”), used in input pattern, to a
set LU ∪ LL, that for every element of P (a, b, c) there is a
triple (a’, b’, c’) in RDF graph G, such that a’ = a, b’ = b,
c’ = c. If there are several possible bindings, then each of
them is processed by actor independently. Special element
“*” can be bound to any node or arc. As a result of
execution, each actor adds a subgraph, conforming to the
output pattern to a common graph. Special element “@” is
used to describe any literal value.

A process of graph evolution (and its state in the
specified moment) can be described by a chain of actors’
activations. Let’s formally define in the following way:

1) empty sequence of invocations is a chain;

2) a is a chain, iff a ∈ A+ (i.e., a single producer
invocation forms a valid chain);

3) c • a is a chain, iff c is a chain and a ∈ A+ ∪ A- (i.e.,
initiator can be appended to any chain forming a new
valid chain);

4) c • q • {ai} is a chain, iff c is a chain, c • q is a chain,
ai ∈ A, for every i, ai is active, and there is no active s
∈ A, s ∉ {ai}. Actor a is active, iff a graph that is
produced as a result of c • q matches input pattern of
a, whereas, graph, produced by c doesn’t match input
pattern of a.

A chain is called simple if it contains exactly one
initiative actor invocation (starts with it), other chain
elements (if any) are reactive actors’ invocations.

For example, let’s consider a system consisting of one
initiative actor a+, T(a+) = ({?u, ?o}, {(?u, <near>, ?o)})
and three reactive actors a1, a2, and a3 whose types are
defined as follows:

T(a1) = ({?u, ?o},

 {(?u, <near>, ?o)},

 {(?o, <name>, @)})

T(a2) = ({?u, ?o},

 {(?u, <near>, ?o)},

 {(?o, <rating>, @)})

T(a3) = ({?n, ?o, ?r},

 {(?o, <name>, ?n), (?o, <rating>, ?r)},

 {(?u, <rec>, @)})

In such a system there may exist only one simple chain
(as there is only one initiative actor), and it is the following:
a+ • {a1, a2} • a3.

Let’s consider another example system, consisting of
one initiative actor a+, T(a+) = ({?u, ?o}, {(?u, <near>,
?o)}) and two reactive actors a1, a2 with the following
types:

T(a1) = ({?u, ?o},

 {(?u, <near>, ?o)},

 {(?u, <near>, ?o)})

T(a2) = ({?u, ?o},

 {(?u, <name>, ?o)},

 {(?u, <rec>, @)})

In a system like that, the only simple chain is following:
a+ • {a1} • {a1} • … . In other words, we may notice that:
a) this system has an infinite chain, b) that some actors are
not involved in that chain.

The first task to be solved with the help of this formal
representation is to ensure that the provided set of actors
coordinate well, i.e. doesn’t bear a risk of eternal loops.
Formal interpretation of this is to prove that each possible
chain is finite. As the number of possible chains (allowing
initiative execution at any point of time) may be large. The
first step is to show that each simple chain in this system is
finite, making an assumption that chain executions are
unlikely to interleave.

A proposed technique to do so is to emulate building of
all possible chains using type definitions of actors.

VIII. EXPERIMENTS
As the proposed approach is based on SPARQL

subscription feature, it is important to know how well the
chosen smart space implementation (i.e., Smart-M3)
handles this kind of subscriptions. To find this out, an
experiment was made. The setup included two computers: a
virtual machine (VMWare, 1500 MB RAM) on an Intel®
Xeon® 2.4GHz server running SIB (RedSIB 0.9.0), and a
workstation (Intel® Core™ i7 3.9GHz 8GB RAM) running
multiple KPs. The goal of the experiment was to evaluate a
delay between making a change in smart space and
receiving a notification about that change through SPARQL
subscription. The influence of two parameters on this delay
was analyzed: number of SPARQL subscriptions that
should be notified upon change and the number of triples in
subscription pattern. To accomplish the goal several
experiments were performed. Each experiment included

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 170 --

creation on the workstation n KPs each with one SPARQL
subscription (all subscriptions were the same and included
patsize triples), making a change in the smart space from
workstation that fired the subscription

Fig. 4. Median notification delay from the number of SPARQL
subscriptions with different subscription pattern sizes

notification process and logging notification delays from
the moment of making the change. For each combination of
n and patsize 10 changes were made to obtain average
values.

The results are summarized in Fig. 4. It shows median
notification delay (in milliseconds) for n subscriptions and
different pattern sizes. It can be seen that in simplest cases
delay was about 200 ms, which is probably “the cost” of
parsing, network communication etc. For small patterns,
consisting of 2 triples, delay grows rather slow for small
number of subscriptions, for patterns as large as 20 triples
(which are unlikely to be used widely) median delay
exceeds 1 sec with less than 300 subscriptions.

It also important to note, that with the number of
subscriptions more than 500 RedSIB failures were not
uncommon.

IX. CONCLUSION
In this paper an interaction model and an ontology are

proposed for smart space services providing tourist
information support. The principle that lies behind the
interaction model is incremental growth of an ontology
graph as a result of contribution of different services.
Service design guidelines are discussed and analyzed.

A formal computational model based on common graph
mutation was also proposed. This model can potentially
describe a wide range of applications based on blackboard
exchange. It is evident, that formal verification technique
can be used only if each actor actively provides its type.
However, in current implementation of Smart-M3 any KP
can join and add/remove any triple and define any
subscription without sharing information about its possible
future actions. Of course, it gives versatility to this
framework and systems based on this, but severely limits

possibilities for any stability checking. Therefore, for the
systems, based on the proposed interaction model it is
reasonable to implement an additional layer between KPs
and Smart-M3 shadowing the current Smart-M3 interface,
but offering a type-based one instead. The type-based
interface layer would require from any KP joining to smart
space to provide its type (in the sense discussed in this
paper) and limit modifications initiated by that KP to those
that conform to previously defined type.

Another direction of future work is to develop
techniques to prove formally a broader set of properties of
smart space-based systems using this interaction model.

Finally, the proposed interaction model and the
respective formal model are centered around uniform
chains, i.e. when adding of some subgraph to the shared
graph may cause only adding another subgraph, but may
not cause removal. This is not true for many applications
and interactions patterns (e.g. ordinary message passing),
which limits practical impact of this work. Therefore, a
more general case need to be considered.

ACKNOWLEDGMENT
The presented results are a part of the research carried

out within the project funded by grants #13-07-00271, #14-
07-00345 of the Russian Foundation for Basic Research.
This work was also partially financially supported by
Government of Russian Federation, Grant 074-U01.

REFERENCES

[1] A. Smirnov, A. Kashevnik, N. Shilov, N. Teslya, A. Shabaev
“Mobile Application for Guiding Tourist Activities: Tourist
Assistant – TAIS”, in Proceedings of the 16th Conference of
Open Innovations Association FRUCT, 2014, pp. 95-100.

[2] A. Smirnov, A. Kashevnik, A. Ponomarev, N. Shilov, M.
Shchekotov, N. Teslya, “Smart Space-Based Intelligent Mobile
Tourist Guide: Service-Based Implementation”, in Proc. of the
15th Conference of Open Innovations Association FRUCT, 2014,
Saint-Petersburg, Russia, pp. 126-134.

[3] O. Fodor, H. Werthner “Harmonise: A Step toward an
Interoperable E-Tourism Merketplace”, International Journal of
Electronic Commerce, Vol. 9, No. 2, Winter 2004/2005, pp. 11-
39.

[4] R. Barta, C. Feilmayr, B. Pröll, C. Grün, H. Werthner “Covering
the Semantic Space of Tourism: An Approach Based on
Modularized Ontologies”, Proceedings of the 1st Workshop on
Context, Information and Ontologies, 2009, article 1.

[5] H. Gibson, A. Yiannakis, “Tourist Roles, Needs and the Life
Course”. Annals of Tourism Research 29, 2002, pp. 358–383.

[6] H. Park, A. Yoon, H.-C. Kwon “Task Model and Task Ontology
for Intelligent Tourist Information Service”, International
Journal of u- and e- Service, Science and Technology, vol. 5, no.
2, 2012, pp. 43-57.

[7] C. Choi, M. Cho, J. Choi, M. Hwang et al. “Travel ontology for
Intelligent Recommendation System”, in Proc. of the 3rd Asi
International Conference on Modelling and Simulation, 2009, pp.
637-642.

[8] H. Park, S. Kwon, H.-C. Kwon “Ontology-based Approach to
Intelligent Ubiquitous Tourist Information System”, in Proc. of
the 4th International Conference on Ubiquitous Information
Technologies and Applications, 2009, pp. 1-6.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 171 --

[9] J. Cardoso, “Developing an OWL Ontology for E-Tourism”, in
Semantic Web Services, Processes and Applications, Springer,
2006.

[10] Schema.org official site. Web: schema.org.
[11] GoodRelations official site. Web:

http://www.heppnetz.de/projects/ goodrelations/.
[12] A. Smirnov, A. Kashevnik, A. Ponomarev, N. Shilov, M.

Shchekotov, N. Teslya, “Recommendation System for Tourist
Attraction Information Service”, Proceedings of the 14th
Conference of Open Innovations Association FRUCT, State
University of Aerospace Instrumentation, 2013, pp. 148-155.

[13] A. Smirnov, N. Shilov, A. Kashevnik, N. Teslya, S. Laizane,
“Smart Space-based Ridesharing Service in e-Tourism
Application for Karelia Region Accessibility. Ontology-based
Approach and Implementation”, in proc. 8th Int. Joint Conference
on Software Technologies, July 29-31, 2013, Reykjavik, Iceland,
pp. 591-598.

[14] A. Smirnov, A. Kashevnik, S. Balandin, S. Laizane, “Intelligent
Mobile Tourist Guide: Context-Based Approach and
Implementation”, Internet of Things, Smart Spaces, and Next
Generation Networking, Lecture Notes in Computer Science, vol.
8121, Aug. 2013, pp 94-106.

[15] J. Honkola, H. Laine, R. Brown, O. Tyrkko, “Smart-M3
Information Sharing Platform”, in Proceedings IEEE Symp.
Computers and Communications (ISCC’10). IEEE Comp. Soc.;
Jun. 2010, pp. 1041-1046.

[16] FIPA 98 Specification. Part 12 - Ontology Service. Geneva,
Switzerland, Foundation for Intelligent Physical Agents (FIPA),
1998. Version 1.0. Web: http://www.fipa.org.

[17] J. Carroll, C. Bizer, P. Hayes, P. Stickler “Named graphs,
provenance and trust”, Proc. of the 14th International Conference
on World Wide Web, 2005, pp. 613-622.

[18] RDF 1.1 Turtle. Terse RDF Triple Language. Web:
http://www.w3.org/TR/turtle.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 172 --

