
Software Architecture for Scalable Computing
Systems with Automatic Granularity Selection of

Executable Code

Mikhail Pavlov
NPP SATEK plus LTD

Rybinsk, Russia
pavlovma007@gmail.com

Alexander Petrov
Soloviev Rybinsk State Aviation Technical University

Rybinsk, Russia
gmdidro@gmail.com

Abstract—The problem of developing software

architecture and its platform implementation for scalable
cloud services is addressed in the paper. New scheme of
distributed software developing and executing is presented
with argumentation and main principles behind solution.
Performance evaluation of one of the platform components
(data storage) is described.

I. INTRODUCTION AND RELATED WORKS
Modern software systems could be described as

heterogeneous, distributed, high load services. The growth
of client devices number and pervasion of information
technologies in our life leads to the problem, that extensive
computing power capacity couldn’t be a foundation for
future processing systems. New software platform and
architecture for such application as IoT and big data with
data mining is urgent. It is required, that such software tool
takes into account demand of modern network architectures
and cross-platform software with existence of legacy code.
In general we need new approaches to application design.

We present new cloud virtual machine (VM) with
multiple programming languages support and automatic
granularity selection of executable code. We describe main
principles behind our VM architecture and demonstrate
some preliminary experimental results in part of data access
solution. Like some software platform development project,
our project involves questions of the structure of executable
code, its execution, optimization, storage and data access.
Our virtual machine could be classified as PaaS in terms of
category of cloud computing services.

Some of a previous research in new approaches to high
load cloud services and high performance software
application design, that comparable with our work,
includes: [1] describes parallel programming models and
run-time system support for interactive multimedia
applications, author proposes typical software patterns for
parallel software application design. In [2] the main
attention is paid to implementation of parallel VM based on

functional operation basis. [3] which propose method of
automatic extraction of pipeline parallelism for embedded
heterogeneous multi-core platforms. [4] poses a solution for
cloud data processing service design problem and propose
new programming language, compiler, runtime and new
data representation and storage system.

Previous research in concurrent data access methods and
thread safe data structures, that have some common parts
with our work, includes: [5], which considers the problem
of runtime parallelization of legacy code on a transactional
memory system. In [6] authors address a lock-free
algorithm for concurrent bags. The [7] article address a
question of could software transactional memory make
concurrent programs simple and safe. [8] describes a
hierarchical transaction concept for runtime adaptation in
real-time, networked systems.

To sum up above said, there exists numerous related
works which are devoted to different aspects of distributed,
high load services development. But in contrast with our
work part of them address only some problems of such
system construction, part of them lack of conceptual
framework and architecture model, and others don’t address
a problem of automatic code parallelization.

We compare our work with some top of the art software
tools in detail in the next section of article.

II. MAIN PRINCIPLES BEHIND PROPOSED ARCHITECTURE

A. Supercompilation by evaluation during normal system
operation

We base on such use case scenario:

1) Developer create a solution for his task in sequential
program (single thread).

2) Virtual machine automatically split the code of
program in fragments of optimal granularity for given
computation nodes.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

3) During its operation system collect information about
different types dependencies and optimize parallel
structure of program.

One could compare this idea with supercompilation by
evaluation technique [9]. But from such point of view our
approach is different in that VM do optimization all the
time, during normal system operation, not in the special
stage of system development.

B. Program code fragmentation
We represent software application as a process of data

and operation graph construction.

By code fragmentation we mean process of program’s
decomposition on two parts:

1) Program structure part (PS) that describes
dependences between data and operation. Not all
dependences could be extracted from source code of
program, so we need special runtime for dynamic
dependences extraction.

2) Program model part (PM) – operation execution
approach and it’s properties such as:

• which code fragment should execute asynchronous;
• does this operation lazy, strict or background;
• where this operation should be deployed;
• should me decompose this operation on

suboperation or not.

Answers on these question depends on several quality
criteria, such as:

1) total execution time minimization;
2) minimal computation resources occupation;
3) minimal price for cloud’s resources using;

and so on.

C. Intensive transactions use
Virtual machine should solve a task of computation

balancing and data distribution. From our point of view
data distribution task require an existence of transaction
manager in system. Our approach suggests intensive using
of transaction and even more using a hierarchical
transaction storage. Transactions help not only to save data
consistence, but also increase system performance.

D. Practical approach to system exploitation
It is quite common that software developers hard-code

program structure (and so a scheme for domain problem
solution searching) and program model (and so limit
possible computation methods). After that changes in
program structure and model are expensive.

In current practice control over software system passes
after the creation into the hands of deployment and support

departments. At that moment feature and bug request begin
to appear, but nobody except programmers could respond
to these request. Either way during the operation period
program structure and model are developing. We propose,
that a practical approach to system exploitation is to pass
some part of control over software to VM, that could
collect information to adapt program structure and optimize
program model in terms of code granularity and lazyness
and so on. In such approach one could imagine, that after
long period of software application operation VM collect
enough information about PS and PM to generate new
implementation that will have higher quality in terms of
selected criteria.

Main principles behind proposed approach are shown on
Fig.1.

Fig. 1. Main principles behind proposed architecture

III. SOFTWARE ARCHITECTURE FOR SCALABLE
COMPUTING SYSTEMS

To realize described approach we propose new
architecture that based on several requirements and
assumptions:

1) All data are in special storage – TVM (transaction
value manager). TVM is hierarchical transaction storage. In
fact TVM is only interface that provide access to data within
hierarchy of transactions and it could be implemented upon
different data storage platforms.

2) Program split into fragments of different granularity.
Fragment is a lightweight thread. Fragment could call thee
system to execute other fragments. Computation is a
fragment that is executed within transaction.

3) Fragment could be external and internal against the
system. External fragments are the code that executed in
separate processes. Internal fragments are executed in the
system’s processes. External fragments export additional
function to system (like a plugin system).

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 152 --

4) Fragments could work only with data from TVM and
all version of processed data and new data are saved in
TVM.

5) The system decides when and on which computation
node start fragment execution. Fragment execution could be
interrupt by system in any time and fragment’s transaction
could be rollback on rerun. So fragment have to have the
ability of restarting.

6) There are several requirements on input\output
operations that caused by transactional nature of
computations:

• the goal of input\output operation should be mapped
on TVM value;

• input\output operations are executed by system core
only;

• input\output operations will have really be executed
only if their transaction is succeeded.

Main components of proposed architecture are presented
on Fig.2.

Fig. 2. Main components of proposed architecture

TVM component stores operational data and it’s
versions. The main function of TVM is monitoring the
correct sequence of access to data. If there are violations of
the access sequence, it reports the system. TVM could be
based on any objective DB (e.g. Objectivity [10]) or
document store like MongoDB [11]. The main difference of

TVM from other data storage services is hierarchy of
transactions function. TVM stores not only data, but
fragments of program too.

Runtime component responsible to searching optimal
node computation to fragment execution, to measurement of
fragment execution properties (execution time, number of
calls to TVM, permissions and so on). Runtime manages
transaction lifecycle, input\output operation to TVM
mapping and it is committed to asynchronous execution of
all operations.

One could compare our runtime with such system as
Mozart-Oz runtime [12], SEAM (Simple Extensible Abstract
Machine) [13], Splicemachine (rdbms under hadoop with
distributed computing) [14] and others. Our system differ
from these runtimes by code execution statistic collecting
and analyses and by intensive transaction using.

PMS (Polymorphism mutation system) component do
program source code translation for code analyses and
preliminary fragmentation. After the moment, when first
statistic of program execution is collected by runtime PMS
do fragment optimization and searching for optimal model of
execution.

In contrast with other optimizing compilers PMS do
optimization in runtime based on execution statistics. PMS
could do code mutation to achieve different code
fragmentation and compare results of execution.

There are two methods to automatic granularity
selection of executable code and code fragmentation:

1) method of lazy and iterative fragmentation;

2) method of generation all version of fragments and
subfragments and its compare.

Second method is a brute-force method, because we
need recursively split source code to set of fragments and its’
part and then build all combination. This is NP complex task
and so we couldn’t apply second method directly.

In our system we use first method.

To reduce number of fragmentation variants we use
knowledge about fragments dependencies. This knowledge
allows to exclude most meaningless and incorrect variants.

The optimization of granularity begins with full
decomposition of source code into the fragments with some
limited size (it is even possible to split source code to
fragments with bytecode instruction).

To reduce number of test measurement of fragments
execution properties we algorithm, that model result
properties of union several fragments based on fragments
dependencies and properties of each individual fragment
execution.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 153 --

PMS also could change fragmentation scheme based on
system execution statistics. PMS represents source code and
fragments in stacked parallel form. Such form helps PMS to
analyze fragment dependencies and regenerate new set of
fragments.

Example of such representation is shown on the Fig.3.

Fig. 3. Stacked parallel form of fragments set

In fact PMS try to solve such a task – which fragment
need be combined to give best result.

Benefit from the combination is obtained by reducing
transport costs. Then important factors are limitation of
computation power of node hardware or reducing parallel
degree of program caused by reducing number of fragments.

During optimization costs are reduced or compensated
by concurrency of program execution.

If PMS continue to combine fragments to make bigger
fragments that the moment happens when performance will
suffer, because limitation of parallel execution is more
important, then reducing transport cost.

So in such optimization process we have found optimal
granularity level - the point where size of combined
fragments is optimal for given data distribution, node
hardware and network connection and parallel degree of
algorithm (Fig.4).

Fig. 4. Finding optimal granularity point

It should be noted, that in practices development of
application with our VM and tool necessarily statistics of
application execution will be collected during application
testing. During first phases of testing performance of the

application couldn’t be important factor, so VM will have a
time to optimize program structure and model.

Described approach reduces risk of changes in PS and
PM that would be automatically happens during PMS
optimization technique working.

IV. TVM EVALUATION
At the time of this paper writing we have first version

of TVM implemented (another components are in
development now). TVM is one of important component of
VM because it holds all data access operation and could
limit overall system perfomance. Apart this runtime and
PMS need information about transaction execution.

 Scheme of working with TVM is presented on Fig.5.

Fig. 5. Working with TVM

Simplified version of access API is presented below:

tvm_cell = getGlobal(acces_token,
[kind], [purpose])
set(tvm_cell, tvm_value);
set(tvm_cell, index, tvm_value);
set(tvm_cell, string_key, tvm_value);
set(tvm_cell, number_key, tvm_value);
set(tvm_cell, boolkey_key, tvm_value);
set(tvm_cell, tvm_key, tvm_value);
set(tvm_cell, function_key, tvm_value);
set(tvm_cell, closure_key, tvm_value);
tvm_value = get(tvm_cell);
si = getisize(tvm_cell);
sf = getsize(tvm_cell);
tvm_value = get(tvm_cell, string_key);
tvm_value = get(tvm_cell, number_key);
tvm_value = get(tvm_cell, bool_key);
tvm_value = get(tvm_cell, tvm_key);
tvm_value = get(tvm_cell, function_key);

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 154 --

tvm_value = get(tvm_cell, closure_key);
subtransaction = call(tvm_cell, P)
subtransaction = call(tvm_value, P)

TVM cell is interface element that represents TVM

storage element for user. Interesting that TVM value and
even a key could be function and function closure.

To test TVM and evaluate its performance we
implement such measurement scenario:

1) generate test code with access operation to random
TVM cell within transaction of random structure;

2) run several iteration of test on local machine.

Example of test’s code is presented below:

Algorithm 1 TVM testbench code
START_BENCH(startBench);
tvm.readFH("v5","tr1.49.32.29",tforrestart);
ELAPSED_TIME(startBench,"read v5");
START_BENCH(startBench);
tvm.writeFH("v9","tr9.17.14.15.79","val1497",tforrestart
);
ELAPSED_TIME(startBench,"write v9");
START_BENCH(startBench);
tvm.writeFH("v3","tr3.40","val416",tforrestart);
ELAPSED_TIME(startBench,"write v3");
… etc

“tr1.49.32.29” and other string with such pattern are

transaction names.

We run each test 100 times with 100 operation in each
test. Each test consists of 70% write operations and 30%
read operations. We use leveldb [15] and in memory data
structures as low level data storage upon which TVM
works. Result for leveldb is represented on Fig.6.

Fig. 6. Performance evaluation of TVM upon leveldb

When we evaluate performance of TVM based on in
memory storage we have average access time equal to 10-
20 microseconds or 100000 read\write operations per
second. Such results are comparable with Redis storage
[16].

These results show that our TVM implementation could
be used in cloud services as transaction key-value data
storage.

It should be noted that TVM even more useful not as a
separate component, but a component of cloud VM –
because information about transaction execution could
provide useful knowledge to runtime and PMS component
to reorganize program structure and program model and
choose optimal code granularity for the case.

V. CONCLUSION
Described virtual machine could be used for solve

BigData problems. Proposed architecture addresses both
effective algorithm parallel implementation and data access
and distribution aspects of every high load cloud service.
One could argue, that such project requires significant
resources , a large development team and infrastructure to
support. We understand these and publish our work to
collaborate with specialist who could be interested in
solution like ours.

Proposed system should be used not only as data analyses
tool, but also as an instrument for algorithm evaluation and
generation its’ new version capable work on scalable parallel
cloud operation systems.

As a conclusion we could point out, that our
implementation of virtual machine is in progress. We plan to
present our fragmentation algorithm in more detail form and
publish more samples of code transformation to illustrate
main principles behind architecture.

We did not pay attention to such interesting aspects of our
project as cross platform and multilanguage of VM (one
could note that runtime use different VM to execute code
fragments), also we didn’t write about message passing and
routing algorithm, which of course very important for any
scalable cloud service. These are the points of most interest
for us in near future.

ACKNOWLEDGMENT
This work was supported by the Ministry of Education

and Science of the Russian Federation (No 14.607.21.0012
(RFMEFI60714X0012) agreement for a grant on
'Conducting applied research for the development of
intelligent technology and software systems, navigation and
control of mobile technical equipment using machine vision
techniques and high-performance distributed computing').

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 155 --

REFERENCES

[1] P.B. Beskow, “Parallel programming models and run-time system
support for interactive multimedia applications”, Web:
http://heim.ifi.uio.no/~paalh/students/PaulBeskow-phd.pdf

[2] S. Marlow, “Parallel and Concurrent Programming in Haskell,
Microsoft Research Ltd., Cambridge, U.K. 2013”, Web:
http://community.haskell.org/~simonmar/par-tutorial.pdf

[3] D. Cordes, M. Engel, O. Neugebauer, P. Marwedel, “Automatic
Extraction of pipeline parallelism for embedded heterogeneous
multi-core platforms”, in Proc. 2013 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems
(CASES '13), Article 4, pp, 1-10.

[4] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S.
Weaver, and J. Zhou, “SCOPE: easy and efficient parallel
processing of massive data sets”, in Proc. VLDB Endow. 1, 2,
August 2008, pp. 1265-1276.

[5] M. DeVuyst, D. M. Tullsen, and S. W. Kim, “Runtime
parallelization of legacy code on a transactional memory system”,
in Proc. 6th International Conference on High Performance and
Embedded Architectures and Compilers (HiPEAC '11), pp. 127-
136

[6] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “A
lock-free algorithm for concurrent bags”, in Proc. twenty-third
annual ACM symposium on Parallelism in algorithms and

architectures (SPAA '11), pp. 335-344
[7] K. Malde, “Can Software Transactional Memory Make

Concurrent Programs Simple and Safe?”, in Proc. International
Conference on Bioinformatics Models, Methods and Algorithms
(BIOINFORMATICS 2013)

[8] C. Prehofer, M. Zeller, "A hierarchical transaction concept for
runtime adaptation in real-time, networked embedded systems",
in Proc. IEEE 17th Conference on Emerging Technologies &
Factory Automation (ETFA), 17-21 Sept. 2012

[9] M. Bolingbroke, S.P. Jones, "Supercompilation by Evaluation",
Web: http://research.microsoft.com/en-us/um/people/simonpj/
papers/supercompilation/supercomp-by-eval.pdf

[10] Objectivity DB, Web: http://www.objectivity.com/
[11] Mongo-DB, Web: http://www.mongodb.org/
[12] L. Kornstaedt, "An Interoperability-based Implementation of a

Functional Language on Top of a Relational Language",
Electronic Notes in Theoretical Computer Science 59 No. 1,
2001.

[13] T. Brunklaus, L. Kornstaedt, “A Virtual Machine for Multi-
Language Execution. Technical report, Programming Systems
Lab”, Web: https://www.ps.uni-saarland.de/seam/

[14] Spice Machine, Web: http://www.splicemachine.com/
[15] LevelDB, Google, Web: http://leveldb.org
[16] J. L. Carlson Redis in Action, Web:

http://www.manning.com/carlson/RiAch4sample.pdf

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 156 --

