
PEG-Based Language Workbench

Yuriy Korenkov, Ivan Loginov, Arthur Lazdin
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

Saint Petersburg, Russia
{ ged.yuko, ivan.p.loginov }@gmail.com, lazdin@yandex.ru

Abstract—In this article we present a new tool for

language-oriented programming which provides to user
convenient means to describe the domain specific languages in
the form of language based on parsing expression grammars
and helpful tools for grammar debugging. Also we consider
the sample of using this toolkit as a part of an integrated
development environment.

I. INTRODUCTION
Computers are widely used in different areas therefore

mass creation of corresponding software for them
represents a very important problem. For example
economic problems are characterized by a large amount of
calculations and data that is used, including presence of
complex logical structures, use of various input and output
result tables such as applications, statements, reports, etc.
Manual programming of such tasks potentially is a very
slow process associated with a large number of bugs that
can be detected only during the debugging and testing
process.

Automatic programming which purpose is a generation
of a program using computers themselves can eliminate
these difficulties. To make this possible we need a formal
language that can be used to describe the solution of the
problem in terms of a particular domain. Such languages
are called Domain Specific Languages (DSL) [1].

There are many examples where such languages are used
in a variety of areas. Some of them are directly related to
software development while others are very specific.

As an example of such language the Perl language [2]
can be mentioned. It was designed for work with texts,
allowing extraction of information from them and
generation of reports that are based on this information. To
perform these tasks Perl needs implementation of
mechanisms that can do processing of text file contents in a
convenient way. One of such mechanisms is the support of
regular expressions.

A good example of a domain specific language is SQL.
This language was designed specifically to work with
relational databases. Additionally, some languages that
were created for data manipulation are based on SQL. For
example LINQ (Language Integrated Query) [3], the built-
in C# for querying collections of data. Also there is a large

number of languages that are specialized for different areas
of business and production.

For example languages for hardware description
(VHDL, Verilog), languages for symbolic computations
(Mathematica, Maple, Maxima, etc.).

At present many domain specific languages are created
for many different subject areas. On the other hand
continuous attempts to develop a new solution for
language-oriented programming indicate that further work
in this area is needed. Such work includes improving
usability (convenience) of the created DSL by integration
with existing development environments or creation of a
new tool. Such tool can be oriented on the specific tasks
(within project for concrete DSL) or can represent general
solution (like MPS [4]). In this article convenience is
understood as presence of program features such as syntax
highlighting, auto-completion of a text, etc.

II. STATE OF ART
Quite a lot of tools for language-oriented programming

have been created already: various template engines, visual
editors of data models and processes, markup tools,
integrated with the program code, and so on.

Two categories of existing solutions can be
distinguished:

1) Highly specialized in the private subject area of a
specific project. Usually they represent an
implementation of the most nowhere used DSL.

2) Tools with opportunities for language-oriented
programming [5], whereby new DSL can be created.

Highly specialized solutions are implemented through
prototyping tool (in this case they inherit appropriate
opportunities) or created "from scratch".

Some of latest existing solutions can be categorized as
language workbench. This definition describes a new set of
tools that are used for creation of domain specific
languages. Such tools allow to define the abstract syntax
that can be used to acquire corresponding language. This
language will be then accessible in the integrated
development environment (IDE). Language workbench can
be defined as one of language-oriented programming
means.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

One of the most famous examples of tools for language-
oriented programming is JetBrains Meta Programming
System (MPS). During the process of language
development this system provides all the features that are
typical for modern IDE including auto-complete, syntax
highlighting “on the fly”, error checking and others. MPS is
shipped with many samples for extending the Java
language. It should be mentioned that MPS is independent
from the programming languages.

Definition of a language with MPS consists of three
stages:

• The description of the abstract syntax (in the
terminology of MPS concepts);

• description of a code generator;
• description of an editor for the language.

The dnq language can be mentioned as one of the
examples of using MPS in practice. This language provides
support for databases. For example it is used in the issue
tracker called YouTrack [6] that is based on MPS
(implements language-oriented approach) and which syntax
reminds LINQ.

Another example of language workbenches is Nitra [7].
Nitra is a set of tools that aims to facilitate the creation of
programming languages and DSLs in particular.

At present Nitra supports development of parser
generators for the .NET Framework. However the system is
designed in the way that it also allows creation of parsers
for the other platforms. Potentially it can be used to
generate code of parsers in pure C or code for a virtual
machine like LLVM or Java.

The development of programming language with Nitra
starts with the creation of syntax module.

Below (see Listing 1) is an example of Nitra-grammar
[8], which describes the language of arithmetic expressions.

This article introduces a solution that allows creation of
domain-specific languages that can be used in a wide range
of general-purpose programming languages (over 50
languages, such as C#, C++/CLI, VB.NET, F#, etc.). The
proposed solution does not use any additional
dependencies, unlike other tools. For example Nitra is built
on the Nemerle and because of that infrastructure of this
language is needed for the usage of resulting DSL by the
end user.

III. CONFIGURABLE PARSER
To be able to create a DSL by flexible way mechanism

that allows parsing the source code of various types
(describing various grammars) is required. Therefore the
parser should have possibility to be configured in
different ways.

It should be mentioned that for the effective usage of
DSLs, this configuration must be made as flexible as
possible. The classical parser building tools don’t provide
that because they are based on generative grammars by
Chomsky classification, which leads to the need of complex
transformations of a formalized language for parser
creation.

Possible solution of the above problem is to use
analytical grammar class PEG (Parsing Expression
Grammar) [9]. PEG essentially consists of a set of rules
similar to the set of nonterminals from grammars of
Chomsky's hierarchy that are got from the analyzed text. In
this case, a grammar parser can be easily constructed from
a stack-machine whose configuration can be set
dynamically. In addition, PEG does not require a separate
phase of parsing, because the rules for it can be determined
together with other rules for non-terminals.

Listing 1 Nitra simple grammar example

syntax module Calc
{
 using Whitespaces;

 [StartRule, ExplicitSpaces]
 syntax Start = s Expr !Any;

 syntax Expr
 {
 | Number
 {
 regex Digitd = ['0'..'9'];
 regex Number = Digitd+ ('.' Digitd+)?;
 }

 | Number;
 | Parentheses = '(' Expr ')';
 | Add = Expr '+' Expr precedence 10;
 | Sub = Expr '-' Expr precedence 10;
 | Mul = Expr '*' Expr precedence 20;
 | Div = Expr '/' Expr precedence 20;
 | Pow = Expr '^' Expr precedence 30
 right-associative;
 | Neg = '-' Expr precedence 100;
 }
}

IV. OUR APPROACH TO IMPLEMENTATION
In this research the PEG-parser was implemented. This

parser processes PEG, presented as a set of named rules
that describe expression of parsing. It contains rich features
for describing rules of grammars of varying complexity.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 76 --

Rules can be parameterized by the expressions-
arguments passed into them. That makes it possible to
describe a kind of macro-rules, forming the final expression
of this rule already in the time of use.

Also there is a possibility to set pattern of skipping
globally for the entire grammar. Such pattern defines the
ignorable parts of the text. This allows distinguishing
different parts of the text in terms of their need for the user
and from the viewpoint of the analysis model, which
represents parsing result. One of the examples is ordinary
and documenting comments that should be distinguished
from each other to allow syntax highlighting in the editor.
This pattern represents an expression that is similar to the
root expression of grammar. Root expression is an
expression from which the parsing of text with given
grammar starts.

Table I lists main types of expressions used for the
grammar of the implemented parser.

TABLE I. GRAMMAR EXPRESSION TYPES

Expression
type Purpose Description

Symbols Parsing Parsing of fixed sequence of
characters.

Regex Parsing
Parsing the sequence of

characters defined by the
regular expression.

RuleUsage Parsing Nested call another rule by
name.

SpecialUsage Call the internal
function parser.

Used to perform actions not
directly related to the process
of parsing - transmission of

information about an error in
the text, logging of parsing

process.

And Control, Parsing Executes a sequence of calls
of child expressions.

Or Control, Parsing

Executes a sequence of calls
to the first successful call of

the child expression,
confirming only his change of

position in the parsed text.

MatchNumber Control, Parsing
Executes a sequence of calls

of a one child expression
specified number of times.

Not Control,
introspection

Checks that the further text
could not be parsed by

specified subexpression. Does
not move the position of the

text-pointer.

Check Control,
introspection

Checks that the further text
could be parsed by specified

subexpression. Does not move
the position of the text-

pointer.

The result of analysis of the text by this parser is a tree
of StringTreeNode elements, describing corresponding
fragments of parsed text to specified grammar rules. After

analysis of this tree it is possible to translate it
automatically into a tree of any other objects for example to
abstract syntax tree of the compiler that consists of defined
structures and classes.

To use the parser firstly we need to specify its grammar.
For this purpose we use the tool that allows describing the
language in the form of grammar similar to PEG.

Listing 2 Example of the simple arithmetic grammar

[OmitPattern("[\s]*")]
[RootRule(expr)]
SimpleArithmetics {

 productOp: '*' | '/';
 sumOp: '+' | '-';

 /* arithmetic expression */
 [RewriteRecursion]
 #expr: {
 |sum: expr sumOp expr;
 |product: expr productOp expr;
 |[right]power: expr '^' expr;
 |#braces: '(' expr ')';
 |num: "[0-9]+";
 };
}

The proposed language for specifying of grammar
suggests writing of grammar in an intuitive manner.
Regular expressions and attributes for rules (written in
square brackets, for example, [right], as shown in Listing 2)
are supported. See currently supported attributes in
Table II.

Parsing alternatives can be described in two ways:

• as or-expression, which looks like a|b|c
• as extensible rule, which consists of a complex rule

definition, where each nested rule marked with '|',
like rule expr from the Listing 2.

Extensible rules provide a way to extend once described
grammar without need to change its definition.

TABLE II. GRAMMAR ATTRIBUTES

Attribute Purpose

left Marks an expression as left associative.

right Marks an expression as right associative.
OmitPattern Defines an expression for omitting.

RootRule Defines the root rule.

RewriteRecursion Marks a rule that contains alternatives to parse to
make automatically rewrite of recursion.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 77 --

V. GRAMMAR DEBUGGER
A special debugger has been created to simplify the

process of creating DSL grammars. It allows detailed
observing how the analysis of a given text works with a
given grammar, and what parsing trees are generated as a
result. Fig. 2 demonstrates debugger’s window.

Fig. 1. Grammar debugger’s window

Application window contains following areas:

1) Text-field to input text to parse.

2) Filtered parsing tree.

3) Full parsing tree.

4) Text-field for grammar definition.

5) Parsing log.

6) A set of rules used in the analysis as a tree.
The program allows controlling the granularity of the

logging process of analysis (grammar and parse text), and -
the ability to produce materialization of skipped source
code fragments.

Grammar rules tree helps to find structural errors in
expressions of rules, and detailed log of the parsed text -
logical errors. Full parsing log is very helpful to analyze the
parser behavior. For example we can look at full log with
materialization to get a lot of helpful information at the
Fig 2.

VI. CODE GENERATION
One of the most important aspects of the usage of DSL is

a generation of code, which is able to interact with code
written manually.

To do this it is necessary to get rid of the intermediate
code generation, and DSL integrate into the general-
purpose programming language. This can be done using
various techniques that are specific to the programming
language.

For example:

• In C there is a possibility of using the built-in text
macros [10], with which the subject area can be
described so that when a program is compiled this
description becomes a correct description of data
structures and functions of C language, which
oriented to solve particular problems.

Fig. 2. Grammar debugger with enabled logging

• In C# there are various elements of the syntactic
sugar, which allows to hide behind them the
formation of the object model that describes the
partial subject area in the context of object-oriented
programming. These features include the collection
initializers and extension-methods.

It is also possible to use programming language features
with the potential in terms of the introduction of built-in
DSL.

Code generation is an important issue while integrating
solution with IDE because we need to obtain a generator
from the parsing results.

Now have a possibility to generate a text model
described in C# source code for custom grammar
definitions. This source can be compiled with C# compiler
for further usage with any other CLI-compatible tools,
languages, etc.

Such statically generated text models consist of a set of
classes where each class corresponds to rule from grammar
definition. In addition, another one class is generated to

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 78 --

implement an automatic mapping of a parsing tree (in terms
of StringTreeNode) to text model (in terms of generated
classes), where MappingContext<TranslationContext>
contains mapping result and a set of information about
mapping process.

Listing 3 demonstrates part of generated classes for
arithmetic grammar from Listing 2.

Listing 3 Example text model classes

...
public class exprBracesType
{
 public exprType expr;
 public string[] @string;

 public exprBracesType(exprType expr,
 string[] @string) { ... }

}

...
public class exprNumType
{
 public string @string;

 public exprNumType(string @string) { ... }
}

...
public class exprType
{
 public exprSumType sum;
 public exprProductType product;
 public exprPowerType power;
 public exprBracesType braces;
 public exprNumType num;

 public exprType(exprSumType sum,
 exprProductType product,
 exprPowerType power,
 exprBracesType braces,
 exprNumType num) { ... }
}
...
public class SimpleArithmeticsTypesMapping
{
 public SimpleArithmeticsTypesMapping(
 RuleSet ruleSet) { ... }

 public MappingContext<TranslationContext> Map(
 IParsingTreeNode tree,
 ISourceTextReader reader) { ... }
}

VII. IDE SUPPORT
Different ways are possible for integration with IDE. The

most frequently used way involves automatically or
manually created resources and source code, that is used to
store domain information and access to that information
from general-purpose programming language of target
development project respectively. Here as we talk about
some tools for operations with domain specific information,
representation of this information may utilize special forms
of visualization for editing and observing, including
graphical. However, such tools have to use efficiently
proccessible form to store this information (kind of XML
documents are frequently used). Depending on particularly
tool, generated code may be of any complexity, but the first
requirement for it is to be seamlessly integratable into main
development process, to be accessible for general-purpose
code completion services, etc.

Thus, there are a few bottlenecks: intermediate
representation handling inside IDE and code generation
process itself.

The first lies in the fact that the intermediate
representation needs a number of operations to deal with it:
read information to editor, store it back after changes, read it
again to generate code, and then analyze that code with
general-purpose language tools. Each of these steps is a
potential source of errors and misunderstandings between
various instruments. For example, when some error
occurred during code generation, IDE needs to translate this
error from domain of code generation process to domain of
source DSL scope.

Frequently usage scenarios is complicated because of the
necessity of calling some tool or a whole project build to
completely validate domain information modifications
and/or to update the general purpose language’s services
knowledge about generated code.

The second bottleneck lies in the fact that developers
used variety of tools for project build and development
operations automatization, and because of this it is necessary
to be able to perform code generation outside of the IDE.
For example, during build process on a build server.

In these terms, instrumentation for custom text DSLs
creation and usage have to propose following
compatibilities:

• Text editor for DSL creation and domain-specific
text editing with possibility to write language
definition and use this language instantly with all
convenient services.

• Method to rapidly integrate created DSL into target
development project.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 79 --

The proposed solution – a plugin for the IDE Microsoft
Visual Studio. It provides opportunities for syntax
highlighting of grammar that describes a specific language
as well as for the language itself, based on the same parser
implementation, which is used to provide DSL integration
for target project, as well as it does not require explicit
intermediate representation and code generation.

Text model generation is optional and may be used with
IDE command only if the DSL definition change affects
parsing tree structure. Text model generation also can be
performed with separate executable tool.

In the editor it is possible to set a custom highlighting
scheme - the style of visual design for text - the different
rules, terminals, and switch between the schemes by using
drop-down lists above the window text editor.

On Fig. 3 we present screenshot of text-editor, which
supports developed language workbench.

Fig. 3. Visual Studio integration sample

To be clear with coloring schemas, see an example for
simple arithmetic language on Listing 4.

VIII. CONCLUSION

Developed language workbench provides a convenient
syntax to describe the grammar, with support it in IDE and
in a special tool that allows debugging of developed
Domain Specific Language.

Listing 4 Coloring schema for simple arithmetic DSL.
!default {
 color: #000000;
 background: #ffffff;
}
num {
 color: #0000ff;
}
sumOp, productOp {
 color: #008800;
}
/braces, braces/braces {
 color: #888888;
}
braces {
 background: #00ffff;
}

TABLE III. LANGUAGE WORKBENCHES COMPARISON

 MPS Xtext Nitra Presented
solution

Editor capabilities.
Environment integration No Yes Yes Yes
Autocompletion Yes Yes Yes Planned
Syntax-highliting Yes Yes Yes Yes
High-level analysis Yes Yes Planned Planned
Static AST code
generation Yes Yes Yes Yes

Lack of unnecessary code
generation No No No Yes

On-the-fly grammar
update No No No Yes

Text parsing capabilities
Standalone usage No Yes Yes Yes
Usage without AST model No No No Yes
Grammar definition
loading No No No Yes

Fluent grammar definition No No No Yes
Environment components
independency No No No Yes

Table III presents a comparison of the developed

language workbench with existing tools. It is divided into
two sections. The first part describes various aspects of
DSL text editing. The second part describes sides of usage
mentioned tool as a component while creating some final
application.

Here is brief description of some comparison criteria:

• Environment integration is about kind of editor
implementation: MPS is implemented as a full-
featured IDE and requires corresponding
development process, while other mentioned
workbenches are implemented as extensions for
existing general-purpose IDE so they can be easily
integrated into existing development process.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 80 --

• High-level analysis is about checking of constraints
between parts of an AST, type systems, multiple
sources handling etc.

• Unnecessary code generation means generation of
some sources, packages or other external
representations to pass them between independent
parts of workbench during DSL grammar editing
and testing.

• On-the-fly grammar update is a possibility to change
DSL grammar and see updated parser behavior
immediately, without building, compiling or
generating something explicitly. For example, Xtext
requires another instance of an Eclipse editor to be
started for DSL definition testing.

• Usage without AST model gives a possibility to use
parser without definition of explicit types for AST or
with manually defined AST construction.

• Grammar definition loading makes possible to load
DSL definition and change parser behavior during
final application execution.

• Fluent grammar definition is a feature for creation of
a particular DSL definition from source code in
general-purpose language.

• Environment components independency is a lack of
necessity in other components or packages except
parser itself. For example, Nitra parser requires
Nemerle language runtime libraries.

In the nearest future, we plan to implement features:

• Autocompletion of text with respect to its grammar
– one of the most important features, because people
want to write code on their own DSLs in modern
text editors with functions that make process faster
and easier.

• Careful failure recovery. It is necessary to clearly
and accurately tell the user about any errors, and
ensure fast recovery after an error to continue to
search for other errors. In particular, this mechanism
should not slow down text editor.

• Own regular expressions engine to enable parallel
parsing of alternative branches for ambiguity
resolution (like in GLR-parsers). It also can be used
to partially parallelize parsing algorithm.

• Recursion rethinking. As presented on Listing 2,
now we use attribute [RewriteRecursion] to specify,
that it is necessary to rewrite recursive calls of expr
rule inside its alternative branches as it follows from
PEG principles of left recursion handling. Firstly, it
is possible to detect such things automatically.
Secondly, with parallel alternative branches parsing
we can try to reinterpret left recursion calls in a way
when there is no need to rewrite recursion at all.

• Extend coloring schema definitions support to
provide more rich and flexible ways to describe
highlighting rules, especially for extendable
languages.

• Extendable grammars support in Visual Studio
integration – a way to use a set of grammars in one
instance of an editor simultaneously.

REFERENCES
[1] Martin Fowler website, DomainSpecificLanguage, Web:

http://martinfowler.com/bliki/DomainSpecificLanguage.html.
[2] M.P.Ward, “Language Oriented Programming” Computer

Science Department, Science Labs, South Rd Durham, DH1 3LE,
October 1994, pp. 15-16.

[3] Pro LINQ: Language Integrated Query in C# 2010. — �.:
«Williams», 2011. p. 656.

[4] Martin Fowler website, A Language Workbench in Action - MPS,
Web: http://martinfowler.com/articles/mpsAgree.html.

[5] Martin Fowler website, A Language Workbench in Action - MPS,
Web: http://martinfowler.com/bliki/LanguageWorkbench.html

[6] Official JetBrains website, web:
https://www.jetbrains.com/youtrack/

[7] An introduction to Nitra, web:
http://blog.jetbrains.com/blog/2013/11/12/an-introduction-to-
nitra/.

[8] RSDN Magazine: “�������	
��� �������
 ������
	���
����	��� «Nitra»”, web: https://rsdn.ru/article/nitra/Nitra-
doc5.xml //Description of a language for description extensible
parsers «Nitra».

[9] Bryan Ford, “Parsing Expression Grammars: A Recognition-
Based Syntactic Foundation”, Massachusetts Institute of
Technology, Cambridge, MA.

[10] International Standard ISO/IEC 9899:201x “Programming
languages — C”, p. 166.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 81 --

