
Improved Algorithm for Identification of Switch
Tables in Executable Code

Andrei Gedich, Artur Lazdin
Saint–Petersburg National Research University of Information Technologies, Mechanics and Optics

Saint-Petersburg, Russia
muzhedgehog@list.ru, lazdin@yandex.ru

Abstract—This paper introduces novel approach for

identification of switch tables in executable code. Compared to
existing solutions based on SSA intermediate representation
and different propagation techniques, developed algorithm is
more accurate and has greater flexibility. Set of iterative
algorithms based on Pearson, weighted Pearson and
Spearman correlation coefficients is introduced in this paper.
Simple noise value filtering and improved segmentation
algorithm are described.

I. INTRODUCTION
Switch-case statement is used in many modern high

level programming languages (HLL). It allows transfer of
program control flow to executable code block, based on
value of index expression [1]. First work that stated
problems of executable code generation for switch-case
statement was [2]. It contained only two basic switch-case
implementations, using switch tables and balanced trees.

Identification of switch tables in executable code during
code analysis is critical, because switch-case statement is
one of the commonly used constructs. Switch tables store
addresses of unconditional control transfer and their
identification has great impact on code coverage percentage,
when applying recursive traversal algorithm for executable
code analysis.

In this paper switch-case statement is considered as low
level language (LLL) implementation that utilizes switch
tables. Any other implementations, such as binary trees,
hash functions [3], index tables and other optimization
strategies [2] are not considered, as they do not affect code
coverage.

There is number of existing solutions that may allow
switch table identification. They rely on static analysis
method called slicing. Slicing is computation of set of
programs statements called program slice that may affect
values at some point of interest, referred as a slicing
criterion. Slicing methods try to evaluate and predict range
of indexes, used to access switch table elements through
index register. Prediction can be based on slice [4, 5, 6]
retrieved during control flow graph backtrace, using SSA
intermediate representation [7], range calculation [8],
constant propagation through control flow graph [8] etc.

II. SWITCH-CASE STATEMENT TYPES
Standard switch-case statement is composed from three

parts: unconditional control transfer instruction that
accesses switch table, switch table that contains control
flow destination addresses and case expressions, where
control is transferred. Default case in this context is special
case of case expression. Typically compilers generate
following instruction to access switch table:

JMP DWORD PTR DS:[reg*ptrsize+address].

Reg is register used as index of switch table element.
Ptrsize is size of pointer. For 32-bit architecture size of
pointer will be 4. Address is associated address of switch
table. Associated address is stored as displacement in
instruction and may not be equal to real address of switch
table because sometimes compilers align switch tables with
nop or semantically equivalent nop instructions. When
associated address is not equal to real table address switch
statement is called N-Based where N is number of switch
table elements that do not exist due to alignment. Number
of different types of N-Based switch constructions do exist
and are described in [9].

Typical switch-case statement that can be generated by
compiler is illustrated by the next assembly listing example
which shows index expression and corresponding switch
table containing destination addresses:

N-Based switch negative Index expression
00754CFD: JMP DWORD PTR DS:[EAX*4+754D10]
00754D04: JMP DWORD PTR DS:[ECX*4+754E0C]
00754D0B: NOP

N-Based switch negative Table data, surrounding code

00754DF3: JMP DWORD PTR DS:[EDX*4+754DFC]
00754DFA: MOV EDI,EDI
00754DFC: DD PoL_NoCd.00754E0C
00754E00: DD PoL_NoCd.00754E14
00754E04: DD PoL_NoCd.00754E20
00754E08: DD PoL_NoCd.00754E34
00754E0C: MOV EAX,DWORD PTR SS:[EBP+8]

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Desirable result of the switch table identification can be
shown in the Table I.

TABLE I. RESULT OF SWITCH TABLE IDENTIFICATION

index element address destination
-4 0x00754DFC 0x00754E0C
-3 0x00754E00 0x00754E14
-2 0x00754E04 0x00754E20
-1 0x00754E08 0x00754E34

To organize access through additional index table,
compilers generate pairs of following instructions. First
pair assumes that index is signed value while second
example assumes it is unsigned.

 MOVZX reg2,BYTE PTR DS:[reg1+address1]
JMP DWORD PTR DS:[reg2*4+address

MOVSX reg2,BYTE PTR DS:[reg1+address1]
JMP DWORD PTR DS:[reg2*4+address2]

Typical switch-case statement that can be generated by
compiler is illustrated by the next assembly listing example
which shows index expressions and corresponding tables.

Indexed switch positive Index expressions
00670606: MOVZX ECX,BYTE PTR DS:[ECX+670CAC]
0067060D: JMP DWORD PTR DS:[ECX*4+670C9C]
00670614: XOR EDX,EDX

Indexed switch positive Tables data, surrounding code

00670C99: LEA ECX,DWORD PTR DS:[ECX]
00670C9C: DD PoL_NoCd.006706DA
00670CA0: DD PoL_NoCd.00670800
00670CA4: DD PoL_NoCd.00670614
00670CA8: DD PoL_NoCd.006708C4
00670CAC: DB 00
00670CAD: DB 01
00670CAE: DB 02
00670CAF: DB 03

...
00670CB8: DB 03
00670CB9: DB 00
00670CBA: DB 00
00670CBB: DB 00
00670CBC: INT3

Desirable result of the switch table identification can be

shown in the Table II.
TABLE II. RESULT OF SWITCH TABLE IDENTIFICATION

index element address destination
0 0x00670C9C 0x006706DA
1 0x00670CA0 0x00670800
2 0x00670CA4 0x00670614
3 0x00670CA8 0x006708C4

There are cases when compilers use different approach
to generate switch-case statements. This approach includes
usage of offset tables instead of address tables. To organize
access through additional offset table, compilers generate
following sequences of instructions. It is important that
offset size can be either one byte as shown on fist example
or two bytes as shown on second example.

MOVZX reg2, BYTE PTR DS:[reg1 + address1]
ADD reg2, address2
JMP reg2

MOVZX reg2, WORD PTR DS:[reg1 * 2 + address1]
ADD reg2, address2
JMP reg2

Typical switch-case statement that can be generated by
compiler is illustrated by the next assembly listing example
which shows index expressions and corresponding offset
table used to calculated destination address.

Offset switch positive Index expressions
01131055:JA intel_he.011312AA
0113105B:MOV EAX,DWORD PTR SS:[EBP-24]
0113105E:MOVZX EAX,WORD PTR DS:[EAX*2+113768C]
01131066:ADD EAX,intel_he.0113106D
0113106B:JMP EAX
0113106D:MOV DWORD PTR SS:[EBP-4],0
01131074:PUSH 4

Offset switch positive Offset table

113768C:2A01
113768E: F200
1137690: BA00
1137692: 7C00
1137694: 3E00
1137696: 0000

Desirable result of the switch table identification can be

shown in the Table III.

TABLE III. RESULT OF SWITCH TABLE IDENTIFICATION

index element address destination
0 0x0113768C 0x01133A6E
1 0x0113768E 0x0114026D
2 0x01137690 0x0113CA6D
3 0x01137692 0x01138C6D
4 0x01137694 0x01134E6D
5 0x01137696 0x0113106D

There is couple of other ways in which switch-case

statements can be generated by compilers. These include
optimized versions like unwinding into sequence of
dec, cmp; dec, jcc; inc, cmp; inc, jcc instructions. Such
cases are not considered in this paper.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 45 --

III. PROPERTIES OF SWITCH TABLE ELEMENTS

If switch table elements are represented as set of values
they have following properties:

• In many cases values of switch table have low
scatter rate because they point to same location
inside procedure. Many compilers use this property
of low scatter rate when generating switch-case
statements and clustering them into multiple groups
[20]. It should be mentioned though that switch
tables can contain strong outliers that should be
taken into account.

• Elements of switch table are aligned on associated
switch table address. In other words they follow
without gaps because they are accessed by index.

• Each element of table represents address that
belongs to address space of executable.

• Values of switch table are unordered and can be
duplicated. It is obvious that number of duplicates
affects probability of value to be true value of switch
table.

• In many cases ordered set of unique switch table
values forms dependency that is close to linear. It
should be mentioned though that strong outliers may
appear.

• By using properties that are listed above it can be
stated that linear approximation model can be used
for identification of switch table borders.

There is number of dependencies that can be formed by
values of switch table. Some of them are illustrated by next
figures Fig. 1, 2, 3. These figures were plotted by using
scatter plot from R package called car. Fig. 1 shows strong
linear dependency of switch table values, Fig. 2 shows that
polygonal curve formed by switch table values can be
approximated using straight line. Fig. 3 shows that there are
cases where dependency is even more closer to linear.

IV. GENERALIZED ALGORITHM
Generalized algorithm consists of two steps where each

step contains several sub steps. In general this algorithm
can be described as algorithm that reads set of possible
switch table values near associated switch table address that
is specified in index expression. Then set of values is
filtered to exclude irrelevant noise values. After filtering
few linear models are applied to estimate quality of the set.

During first step of the algorithm possible switch table is
read from executable. Algorithm iteratively performs scan
in both directions starting from associated switch table
address. Scan in corresponding direction is stopped when
invalid address value or another code or data block is
encountered. In case of N-Based switch algorithm first
locates accessible element and only then performs scan.

Fig. 1. Strong linear dependency between values

Fig. 2. Polygonal curve fit by straight line

Fig. 3. Smoother polygonal curve fit by straight line

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 46 --

During second step algorithm analyzes value set that was
acquired on step 1. In case when acquired set contains two
or less values algorithm throws an error. Compilers
typically optimize such cases into sequence of if-then-else
statements instead of generating switch statement.

If acquired value set contains more than two values then
Pearson correlation coefficient (PCC) is calculated. To
calculate PCC two variables are needed. One is represented
by switch table values. Another is acquired by ranking the
values just as it is done when calculating Spearman
correlation coefficient. If PCC value is greater than
specified threshold then switch table is considered to be
identified. Otherwise iterative algorithm is applied to
possible switch table values to filter noise values located on
outer borders of the value set.

Filtered value set is again approximated using PCC
value. If calculated PCC value is greater than specified
threshold then switch table is considered to be identified.
Otherwise iterative segmentation algorithm is applied to
value set. When segmentation is over segmentation quality
criterion is calculated. If criterion value is greater than
specified threshold then switch table is considered to be
identified. Otherwise iterative algorithm that uses weighted
PCC value for approximation is applied.

If weighted PCC value is greater than specified threshold
switch table is considered to be identified. Otherwise
iterative algorithm that uses Spearman correlation
coefficient (SCC) is applied. If calculated SCC value is
greater than specified threshold then switch table is
considered to be identified. Otherwise algorithm throws the
error being unable to identify switch table.

V. ITERATIVE NOISE FILTERING ALGORITHM
Main task of this algorithm is to find special data points

that are located at outer borders of possible switch table
value set. This points form sharp corners on the graph
leading to deviation from linear dependency. Such points
can come from initial scan step. These noise values are
introduced by code that was misinterpreted as data-address
or by displacement part of nearest instruction.

To identify corners algorithm scans value set two times-
from the start and from the end. On each iteration of the
algorithm last data point is excluded from the value set and
PCC value is calculated for the subset. Calculated value is
then compared to the value from previous iteration. If
absolute value of delta between calculated values is greater
than specified threshold and current PCC value is greater
than PCC value from previous iteration then algorithm
continues its work. Otherwise algorithm stops.

Usage of absolute value allows small deviation of PCC
value from linear dependency even if on intermediate
iteration current value of PCC is less than previous value of
PCC. In this case increase of PCC value means
improvement of linear dependency.

VI. APPLYING PEARSON CORRELATION
As is was said before PCC value is used to approximate

switch table values with linear model because PCC is a
classical measure of linear dependency between two
variables. It takes values from +1 to -1 where +1 is
maximum positive correlation and -1 is maximum negative
correlation. In general case PCC is calculated as (1).

()()

() ()��

�

==

=

−−

−−
=

n

i
i

n

i
i

n

i
ii

YYXX

YYXX
p

1

2

1

2

1

(1)

This equation is inconvenient because it requires
calculation of mean. To calculate PCC equivalent formula
(2) was used.

()

�
�
�

�

�
�
�

�
	

�
�

�−××
�
�
�

�

�
�
�

�
	

�
�

�−×

	

�
�

� ×−××
=

����

���

====

===

2

11

2
2

11

2

111

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

yynxxn

yxyxn
px

(2)

As it was said two variables X and Y are required to
calculate PCC. In this case X stands for possible values of
switch table which are ordered because this is not
guaranteed by compilers. Y is calculated by ranking values
of variable X as it is done when calculating SCC. Values of
variable X are ordered.

VII. SEGMENTATION ALGORITHM
In some cases acquired switch table value set has low

value of PCC. This can be related to the fact that values set
consist of segments where each segment has linear
dependency. This situation happens when compilers put
two switch tables together without gap between them.
Segmentation algorithm is used to split original value set
into groups and select one that belongs to switch table
accessed by index expression.

In this paper improved segmentation algorithm based on
[9] is introduced. First, initial value set is formed which is
subset that contains first two data points from original
switch table value set that is analyzed. Next, algorithm
iteratively scans original value set and includes each value
in the subset. Calculating PCC value allows detecting rapid
change of linear dependency. If inclusion of the data point
in the subset changes PCC value so that delta is greater than
specified threshold then data point is considered to be
beginning of next segment. Algorithm continues its work
until original value set is scanned till the end.

It should be mentioned that this algorithm is applicable
only if original value set contains 4 or more points that can
form at least two linear segments. Original value set should
not contain noise values on the outer borders which are
removed on previous step.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 47 --

VIII. SEGMENTATION QUALITY CRITERION
To give an estimate of segmentation quality some

numeric criterion that can be compared with specified
threshold is required. In this paper criterion Q1 is
introduced which is calculated as (3). This criterion is
product of segment sizes containing unique values.

∏
=

=
k

i
iUU SSQ

1
)(1)(.

(3)

SU–segment set where each segment represents set of
unique values.
U()–unique value set operator.
SU(i)–i'th segment containing unique values, calculated as:

)()(iiU SUS = .

(4)

Si–i'th segment of original segment set.
S–segment set where each segment represents value set.
||–set size operator.
k–number of segments that is calculated as:

USk = .

(5)

For Q1 criterion to be estimated it should be normalized.
For normalization min and max value of criterion should be
known. Normalized Q1 criterion is calculated as:

min1max1

min11
1 QQ

QQQ norm −
−= .

(6)

Q1max–max product of segment sizes from SU segment set
that is calculated as:

),mod(),mod(

max1 1
kmkmk

k
m

k
mQ 		

�
��

� +��
�

��
�∗��

�
��
�=

−

.

(7)

Q1min–min product of segment sizes from SU segment set
that is calculated as:

1min1 +−= kmQ . (8)

[]–integer division operator.

mod(n,d)–modulo operator.
m–number of elements in PU set that is calculated as:

UPm = .

(9)

PU–original value set of unique values calculated as:

)(PUPU = . (10)

P–original value set.

Introduced criterion Q1norm represents normalized
product of segment sizes containing unique values from
original value set. Criterion takes values in range of 0 to 1.
This criterion can be interpreted as maximum equal filling
of segments with elements. If criterion value is low then
segments are unbalanced. In this case it can be stated that
segmentation failed. If criterion value is high then segments
are nearly equally filled. In this case it can be stated that
segmentation has succeeded.

IX. APPLYING WEIGHTED PEARSON CORRELATION
As it was said before segmentation is applied when PCC

value is low for original value set that represents possible
switch table values. In some cases segmentation may fail.
Typically this can happen when value set is unordered
because ordering cannot be applied during segmentation.

In some cases there can be data points in the set that
have duplicates. Such points represent strong outliers that
cannot be removed by methods described above because
they are located in the middle of value set.

This paper introduces iterative algorithm that allows to
estimate deviation of strong outliers from main value set
when PCC value is low. This algorithm is based on
calculation of weighted PCC value.

As in the case of PCC original value set is ordered
before calculations. Task of the algorithm is to distribute
weights between elements of original value set and
calculated weighted PCC value.

PCC parameterized by weight can be calculated as:

),,cov();,cov(
);,cov();,(

wyywxx
wyxwyxcorr = .

(11)

Where cov(x,y;w) – is covariance parameterized by
weight and calculated as:

()()

�

�

=

=
	

�
�

� −−
= n

i
i

n

i
iii

w

wymywxmxw
wyx

1

1

);();(
);,cov(

(12)

Where m(x;y)–is mean parameterized by weight and
calculated as:

() ��
==

÷	

�
�

�=
n

i
i

n

i
ii wxwwxm

11
; .

(13)

To calculate weighted PCC value additional weight set is
required that contains weight for each element of original
value set. It is obvious that number of duplicates can be
used as weight but experiments showed that in some cases
it is not enough.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 48 --

This paper introduces weight function that allows
calculation of series of weight sets and can be manipulated
by additional input parameter called factor.

First, mean weight value is calculated as:

nWW
n

i
i ÷	

�
�

�= �
=1

.

(14)

Wi – element of original weight set that is composed of
duplicate element counts as it was described before.

Parameterized function that gives weight set as result
can be calculated as:

fWWWfWWf ×−+=)();(,

(15)

f–degree of amplitude distortion of weight curve.

When algorithm is applied it iteratively increases factor f
that has start value of 1. On each iteration it calculates
weight set using equation (15). Each element of weight set
represents f times increased sum of mean weight value and
deviation of i’th value from the mean.

When weight set is calculated weighted PCC value is
calculated for current iteration. If calculated value is greater
than specified threshold then switch table is considered to
be identified. Otherwise algorithm continues its work till it
converges or reaches limit specified for parameter f. It is
important that algorithm is not guaranteed to converge so if
limit f is reached then identification of switch table is
considered to be failed.

X. APPLYING SPEARMAN CORRELATION
There can be cases where previously introduced

algorithms fail to identify switch tables. This paper
introduces last approach based on SCC value. This criterion
represents non parametric measure of dependency between
two variables. It shows how well can dependency be
expressed using monotonic function. Advantage of this
method is lower sensitivity to strong outliers compared to
PCC. Value of SCC can be calculated as:

()()

() ()��

�

==

=

−−

−−
=

n

i
i

n

i
i

n

i
ii

yyxx

yyxx
s

1

2

1

2

1

(16)

It should be mentioned that during calculation of SCC
value ordering of original value set is restricted because this
automatically leads to monotonic dependency. SCC
estimate should be used only as last approach when trying
to identify switch table.

XI. CONCLUSION
This paper introduces improved algorithm for

identification of switch tables in executable code which is
based on [9]. Main advantage of this algorithm is simplicity
in implementation and understanding compared to methods
based on slicing techniques. Moreover, introduced
algorithm has higher accuracy and can be configured in
multiple ways by its user.

XII. ACKNOWLEDGMENTS
Research was supported and funded by grant

12-07-00376-a of the Russian Foundation for Basic
Research

REFERENCES
[1] R.A. Sayle, “A Superoptimizer Analysis of Multiway Branch

Code Generation”, Proceedings of the GCC Developers Summit,
2008,
pp. 1–16.

[2] A. Sale, “The Implementation of Case Statements in Pascal”,
Software – Practice and Experience, vol. 11, 1981, pp. 929–942.

[3] H.G. Dietz, “Coding Multiway Branches Using Customized Hash
Functions”, ECE Technical Report, School of Electrical
Engineering, 1992, pp. 1–30.

[4] C. Cifuentes, A. Fraboulet, “Intraprocedural static slicing of
binary executables”, In International Conference on Software
Maintenance, 1997, pp. 188–195.

[5] H. Agrawal, “On Slicing Programs with Jump Statements”, In
Proceedings of ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation, 1994, pp. 60–73.

[6] C. Cifuentes, M. Van Emmerik, “Recovery of Jump Table Case
Statements from Binary Code”, Science of Computer
Programming, 2001, pp. 171–188.

[7] M. Van Emmerik, “Static Single Assignment for Decompilation”,
School of Information Technology and Electrical Engineering,
The University of Queensland, 2007

[8] J. Patterson, “Accurate Static Branch Prediction by Value Range
Propagation”, Proceedings of the ACM SIGPLAN'95 Conference
on Programming Language Design and Implementation, 1995,
pp. 67–78.

[9] A. Gedich, “Automatic search of switch-case statements and
identification of switch tables in executable code”, Science and
Education, vol. 5(2), 2014, pp. 308-316.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 49 --

