
Modeling Stateless Transport Protocols in ns-3

Dmitry Ju. Chalyy
P.G. Demidov Yaroslavl State University

Yaroslavl, Russia

chaly@uniyar.ac.ru

Abstract—Development of transport protocols have received
a great deal of attention of network research community at
several past decades. One of the general directions of such an
effort was to improve a congestion control mechanism of the
TCP (Transmission Control Protocol), which is tightly bounded
with other components of the protocol responsible, for example,
for robust delivery of data and loss detection. Such a solid
architecture complicates innovations in this area and leads to
inefficient or misleading functioning in different network settings.

Last decade has shown the emergence of new communication
paradigms such as cloud computing, software-defined networks,
sensor networks, fog networks etc. Thus, rethinking architecture
of the transport protocol can be useful to comply new demands.
The standard TCP approach ties the transport connection to
its endpoints however approaching network applications in new
network settings may demand more flexible and transparent data
transfer. For example, in cloud computing architectures, servers
can dynamically power on or shutdown and such a behavior must
be transparent for clients. This can be difficult or even impossible
to achieve if the transport protocol’s state is distributed between
both sides of the connection. We consider a protocol called
the Trickles [1], which is one of the first efforts to migrate
all connection state to one endpoint allowing its counterpart to
operate without any per-connection state.

In this paper we describe the architecture of the model of
such a stateless protocol and describe a framework that can be
used to model such protocols in ns-3. Another contribution of the
paper is an approach based on ideas of literate programming [3]
to achieve reproducible results of analysis of network protocols.

I. INTRODUCTION

Since its appearance in 1980 the Transmission Control
Protocol (TCP) [11] was established as a connection-oriented
protocol which provides a reliable service with a congestion
control in a contrast to the Unified Datagram Protocol (UDP)
which does not guarantee delivery. The transport layer con-
nection is a virtual arrangement provided by a synchronization
scheme which lies under the hood of the protocol. The protocol
itself is a distributed algorithm which changes the values of two
sets of variables settled on each of two sides of the connection.
This two sets of variables constitute the transport connection
state. The transport connection is established by three-way
handshake algorithm which synchronizes both endpoints. Dur-
ing data transfer both endpoints must maintain consistent local
states. Tight synchronization of local states leads to various
deficiencies which are critical for modern network applications
and can lead to a number of vulnerabilities involving misbe-
having endpoints, connection hijacking, connection disruption,
half-open connection denial-of-service attacks etc.

Another motivation to consider stateless protocols are
modern information systems which impose special demands

on networking. One of the such a prominent applications
are cloud computing and its enabler technology, software-
defined networks. Processing units in cloud environments are
highly flexible, that is can be stopped, started or moved across
the cloud dynamically. This can lead to loss of the local
state of the stopped endpoint, so the transport connection
becomes half-open. This scenario can be considered from the
other perspective. Processing unit in a cloud environment can
provide a service to a large number of mobile clients each of
which can dynamically connect to various hotspots obtaining
different IP address, so the mobile unit can loss its local
state or the state can become obsolete. This leads to a large
number half-open connection at processing unit side and can
overwhelm it. Such a behavior is similar also in a DoS-attack
case where an attacker opens a lot of half-open connections
at server side exhausting its resources. Tightly synchronized
endpoints cause impossibility of finer-granular load balancing
in cloud environments different from connection-level granu-
larity. Stateless transport protocols have shown its advantages
in load balancing applications using anycast communication in
software-defined networks [5]. Considered examples illustrate
drawbacks of existing TCP architecture.

Moving the state to one side of the connection can break
such a tied synchronization and will promote more effective
use cases of transport service. One of such efforts to solve
this problem is the Trickles protocol [1] which promotes all
the connection state to a client side leaving the server stateless.
So, the server does not store any connection information, thus,
it has no drawbacks considered earlier. In next section we con-
sider the design of the stateless transport protocol and revise
challenges in such a protocol development. In the section III
we consider our implementation of stateless protocols in ns-
3. The section IV presents a reproducible methodology for
experimental network research and experimental results.

II. STATELESS PROTOCOL DESIGN

In a context of transport layer interaction, modern networks
can be seen as a graph where nodes are computing systems
and edges represent transport layer connections. Some of these
nodes are high degree nodes so they have a lot of interaction
with the rest of network. We will call such nodes as servers.
Servers are sources of data traffic and transmit the valuable
information to the other nodes in a network that we will call
clients. We would like to focus attention on two essential
differencies between servers and clients: first, servers have
many established connections and second, they mostly transmit
data to clients. We will use such an abstract but still useful
client-server model in our discussion.

Transport layer connection between a server and a client
using TCP protocol is established via three-way handshake

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Network

Network

TCP server

Local state

Stateless server

Application

Data

Application

Data

Application

DataData

TCP client

Local state

Data

Stateless client

Connection state

Data

Acks

Data

Application

Data

Stateless
packet
processing

Request Request

Data

Requests

Fig. 1. TCP-like distributed state transport protocol (top); Stateless transport protocol (bottom)

algorithm [11]. Every byte in a data stream is numbered and
the reception of data is acknowledged by a client. The role
of the server side is to push data to the client using the
sliding window protocol and a congestion control algorithm
trying not to overwhelm the client and a network. The client
role is rather passive; the client must acknowledge received
data as soon as possible using Nagle algorithm. The big
picture is shown on Fig. 1. The client and the server maintain
distributed synchronized state variables in transmission control
block (TCB) structures. Packets contain data and a signal (e.g.
acknowledgements) information. The algorithm is distributed
between the client and the server and it changes the state of
the connection upon receiving a packet or when an event (e.g.
retransmit timeout) occurs.

Stateless protocol model leads to substantial changes in
the transport protocol architecture. Instead of pushing data
to a client, the server waits for a data request. This request
is originally initiated by an application at the client side.
The application could request any size of data. The purpose
of the stateless protocol is to cut the request into small
chunks and pass these smaller requests to the server. Stateless
protocol at the server side just passes the requests to server
application which fulfills them with data. In this setting a
server is a stateless part of the connection thus it must recover
necessary state to process requests. This is done by using self-
describing request packets which contain encapsulated state
data. Successful delivery of requested data to the client plays
the role of the acknowledgement. Despite the statelessness the
server side of the protocol is responsible for making congestion
control decisions as in case of TCP.

As an example of a such a stateless protocol we consider
the Trickles protocol [1]. The Trickles connection exchanges
data in a parallel manner using two key abstractions: a trickles
and a continuation. Since the server does not tracks the state,
the client must encapsulate relevant parts of the state to the
request packet. Server considers received state, updates it and
attaches to response packets. The piggybacked state is called a
continuation since it contains all necessary information for the
server to resume processing data stream later (see Fig. 2). After
receiving response packets client can fuse several continuations

to obtain a new global connection state. The client side is
stateful providing reliable delivery of requests and data to the
stateless server. The request-continuation model is not only
applicable to transport layer but stateless approach encourages
communication services developers to create stateless applica-
tions in a similar manner. For example, many web services
using HTTP protocol can be considered in such a way.

Server

Client

time

A

Fig. 2. A sample Trickles connection. Each line pattern corresponds to a
different trickle

Transport protocol must be efficient in terms of perfor-
mance. So each Trickles connection maintain multiple trickles
each encapsulating partial connection state. These parallel
states are the source of complexity of stateless protocols.
The Fig. 2 shows the typical data exchange in transport
connection. Series of related packets that trace a series of state
transitions forms a trickle. A trickle is a control and data flow
management unit. A server can terminate a trickle decreasing
network congestion or split trickles (as shown at time A on
Fig. 2) trying to increase network usage.

The original Trickles protocol [1] mimics TCP Reno [8]
congestion control algorithm as close as possible. The con-
gestion control algorithm operates at the stateless server side
which deals with each trickles independently. The original TCP
Reno algorithm ensures that there are cwnd in-flight packets
in a given moment of time, so the Trickles server side tries
to limit the number of simultaneous trickles in the network to
cwnd. When a packet arrives to a server side it can permit the
application to send one packet in response, which is a most
common case, continuing the trickle; if packets were lost due
to a network congestion the server may terminate the current
trickle by not permitting the response. The server may also
split the current trickle into k response packets beginning k−1
new trickles.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 29 ----------------------------------------------------------------------------



The server statelessly performs these decisions trying to
follow congestion control mechanisms in TCP Reno [8]: slow
start/congestion avoidance, fast recovery, fast retransmit. Each
packet has a unique sequence number k and contain the
following information as a partial connection state to support
these mechanisms:

• TCPBase — sequence number of the first packet in
slow start phase;

• startCwnd — initial value of cwnd at TCPBase
packet;

• ssthresh — threshold value which determines
whether the protocol should do slow start or conges-
tion avoidance;

• SACK — selective acknowledgements (SACKs) [9]
which are the compact representation of losses the
client has incurred. The Trickles protocol relies heav-
ily on SACKs to detect losses.

Let us briefly describe the Trickles simulation of TCP Reno
congestion control.

Slow start and congestion avoidance. The original TCP
Reno increases cwnd by one per packet acknowledgement in
slow start; cwnd increases by one per window in congestion
avoidance. Each request with sequence number k is processed
using the following algorithm:

1) Let CwndDelta = TCPCwnd(k) −
TCPCwnd(k − 1). Here TCPCwnd(k) is a
closed-form solution of TCP simulation from [1].

2) Continue the original trickle and split
CwndDelta times starting from sequence number
k + TCPCwnd(k − 1).

In particular, the TCPCwnd(k) function is defined as
follows:

TCPCwnd(k) =

=

⎧⎨
⎩

startCwnd+ (k − TCPBase) if k < A
ssthresh if A � k < A+ ssthresh
F (k −A) if A+ ssthresh � k

where

A = ssthresh− startCwnd+ TCPBase

and F (N) is the largest integer less than the positive value of
x that is a zero of

(x− 1)x− (ssthresh− 1)ssthresh

2
−N

The algorithm takes the assumption that no packets are
lost. This assumption can easily be checked looking at the
request packet SACK block. If any losses occur the overall
transfer process can be partitioned at the loss positions into
multiple loss-free epochs. Thus, TCPCwnd(k) is valid within
each individual epoch. Free parameters of the formula adapt
it to each epoch. Upon recovery from loss the Trickles recov-
ery algorithm updates values of TCPBase, startCwnd and
ssthresh.

Fast retransmit/recovery. If the client receives an out-of-
order packet it put the trickles on hold. If three out-of-order

packets are received the client transmits deferred requests. The
SACK block of each request contains information about losses.
For a request with sequence number k the Trickles performs
following operations:

1) Let firstLoss is a number of the first lost packet. It
is obtained from SACK block.

2) If k is the number of the packet right after a run
of losses, the Trickles retransmits the lost packets.
Maximum number of retransmitted packets can be
tuned using burstLimit parameter. Losses beyond
burstLimit are handled via retransmit time-out.

3) Let lossOffset = k − firstLoss and
cwndAtLoss = TCPCwnd(firstLoss− 1).

4) Compute the estimate of number of packets in the
network

numInF light = cwndAtLoss− 1.

5) New value of cwnd will be

newCwnd = �numInF light/2�.
6) If cwndAtLoss − lossOffset + 1 � newCwnd,

continue the trickle and tag it as recovery. Otherwise
terminate the trickle.

All survived trickles have a special recovery tag. This
tag helps the client to switch from lossy fast recovery epoch
to a new loss free epoch. If all losses have been recovered
using fast retransmit, the client updates new loss-free epoch
variables: TCPBase points to recovery point, ssthresh =
startCwnd = newCwnd.

Retransmit timeout. The retransmit time-out occurs at the
client. The client retransmits the last request which has special
RTO tag. The server executes the following steps:

1) Let firstLoss is a number of the first lost packet. It
is obtained from SACK block.

2) Update ssthresh = �TCPCwnd(firstLoss −
1)/2�.

3) Split startCwnd− 1 times and retransmit lost pack-
ets.

The client must remove RTO tag from outgoing packet if
its SACK block does not contain any loss information and
must update initial conditions of the next loss-free epoch.

As we can see the statelessness of the server leads to a non-
trivial congestion control mechanism. Modeling and analysis
of such a mechanism in a well-defined simulation environment
is a necessary condition for capturing essential performance
properties of the protocol.

III. IMPLEMENTATION FRAMEWORK

The main goal of our implementation is to make the frame-
work as abstract as possible for further advancing research
of stateless transport protocols. We consider models of ns-
3 protocols as an example of such an implementation. The
models of particular TCP versions are derived from abstract
classes so it is possible to derive original ns-3 models of TCP
without digging deep into details. Stateless protocols have a
quite different from the standard TCP architecture. Thus, we
have to develop abstract models which hide low level details
of sockets and network layer interfaces.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 30 ----------------------------------------------------------------------------



A. Applications

The stateless approach to the transport layer encourages
the use of stateless applications. To proceed to the study of
the family of stateless protocols we decided to implement a
version of an easiest application. This application consists of a
client ns3::TricklesSink which can request data from a
socket at a given rate and a server ns3::TricklesServer
which fulfills incoming requests right after the receipt. Appli-
cations are accompanied with corresponding helper classes for
building executable ns-3 experiment setups easier.

B. Sockets

The ns-3 provides a model of Berkeley-like socket interface
to a transport layer. The original Trickles protocol contri-
butions [1], [14] introduced a specific socket model called
minisockets. Minisockets are descriptors that created in on-
demand manner when an event occurs. Introduction of the
minisockets model to ns-3 seemed to be a very complex
task. So we decided to use the existing Berkeley-like socket
interface but use a different semantics of application calls in
a stateless case.

The standard TCP connection initiated using either a Con-
nect, or a Listen call. Application use the Connect call to
initiate connection to the remote side and act as a listening
server using Listen call. Trickles protocol does not need
connection establishment process, so we use these calls as just
a notification of the endpoint role (will it behave as a server
or a client) to the local socket.

Application can send data to a socket using a Send call.
In the stateless application setting this call is used only by a
server side to send data in response to a client’s request.

The most important call in a stateless setting is the Re-
ceive(maxSize, flags) call. The server side uses this call to
receive incoming data requests from a local socket. The socket
notifies the server application of incoming request right after
its receipt. The client side can execute two different kinds of
the Receive call. The first one is obvious — if there is data in
the socket the application can read this data from. The second
kind of call is specific to the client only. It places a request of
a new portion of data from the server. The request is queued
in the socket and the protocol will cut it into smaller requests
and send them to a server. These two kinds of Receive call are
differentiated by the value of parameter flags which exists in
the implementation of the Receive call in ns-3.

C. Packets

The network communication between two Trickles end-
points is a stream of packets. The original Trickles pro-
tocol proposal [1] states that the Trickles protocol encap-
sulates transport continuation within the TCP packet which
is extended by means of variable options [11]. It is not
very convenient to redefine the existing TCP Header class
(ns3::TcpHeader), so we decided to introduce a new
header class ns3::TricklesHeader which encapsulates
all relevant information to a generic stateless protocol, for
example, packet number, SACK options, request size, recovery
tag and a timestamp. One of the main topics in transport
protocols research is a congestion control mechanism analysis

which allows us to measure the performance of the pro-
tocol. Such mechanisms may be of a different nature and
may use different sets of control variables. For the reference
implementation of the stateless protocol which mimics TCP
Reno [1] we decided to introduce one more header type called
ns3::TricklesShiehHeader which carry the conges-
tion control data like TCPBase, startCwnd and ssthresh.
We beleive that many more congestion control mechanisms
(for example, based on the rate estimation [4]) can be proposed
in a stateless setting so hard coding congestion control into a
generic header is not a solution.

Every packet which is involved in a networked interac-
tion contains three headers. The ns3::TcpHeader on top
of the packet which contains necessary socket information
and a starting sequence number of data which must be get
from the server. Below is a ns3::TricklesHeader which
contains generic stateless protocol data and if the model of
the reference protocol is used then under this header the
ns3::TricklesShiehHeader is settled.

D. Trickles implementation

Let us consider the implementation details of the Trick-
les protocol model. The overall idea of the implementa-
tion is to follow TCP implementation in ns-3. The hi-
erarchy of classes implementing the Trickles protocol is
shown on Fig. 3. The central class in the hierarchy is
the ns3::TricklesL4Protocol which models transport
layer protocols in the TCP/IP stack. Each node in the net-
work contain a unique object of this class which is re-
sponsible for passing packets to a network layer and de-
multiplexing packets to sockets The object contains refer-
ences to existing Trickles sockets which are the objects of
class ns3:TricklesSocketBase. This class models a
behaviour of a Trickles socket interpreting application calls
using semantics we have defined earlier in section III-B.
The ns3::TricklesSocketBase class provides a service
which is common for all stateless protocols. It manages queues
of sent requests and arrived data. It notifies the application
if a new data or a request have arrived. The important part
of the socket model is a round trip time estimation which
is made using timestamps and RTTM mechanisms [10]. The
ns3::TricklesSocketBase provides a couple of virtual
methods which should be overloaded when implementing the
specific stateless protocol:

• The method ::NewRequest is called whenever
socket receives a request on a new portion of data
from the client application;

• ::ProcessTricklesPacket is called if a new
packet is received from a network.

The ns3::TricklesShieh class is derived from the
abstract ns3::TricklesSocketBase class. That class
implements the congestion control algorithm that we have
described in section II. So the ns3::TricklesShieh is
an implementation of the specific stateless transport protocol
defined in [1].

We have updated the source code for
ns3::InternetStackHelper class which is responsible

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 31 ----------------------------------------------------------------------------



ns3::TricklesSocketBase ns3::TricklesSocketFactoryImpl

ns3::TricklesSocketFactory

ns3::SocketFactory

ns3::TricklesShieh

ns3::TricklesSocket

ns3::Socket

ns3::InternetStackHelper

ns3::TricklesL4Protocol

ns3::IpL4Protocol

Fig. 3. Class hierarchy of the Trickles model in ns-3

ns3::TricklesSocketBase

ns3::TricklesShieh

ns3::TricklesServer

ns3::TricklesL4Protocol

ns3::TricklesSocketBase

ns3::TricklesSink

ns3::TricklesL4Protocol

::SendTo
::HandleRead

::ForwardUp
::Send

::Send
::ProcessTricklesPacket

::HandleRead
::Recv(QUEUE_RECV)

::ForwardUp
::Send

::Send
::NewRequest

ns3::TricklesShieh

Fig. 4. Flowcharts of an arbitrary packet through the ns-3 protocol stack

for creation of TCP/IP stack on a given node to add the
Trickles protocol to the stack.

The flow of a single data portion is shown on Fig. 4. Let
us follow the picture from right to left. The instance of the
ns3::TricklesSink class plays role of the client and
initiates data transfer by requesting a new portion of data.
This is done by executing ::Recv call on the instance of
the ns3::TricklesSocketBase class with the parameter
flags equals to QUEUE_RECV. This means that the client
requests a new data which is expected right after all previous
requests be fulfilled. The ns3::TricklesShieh is the ac-
tual implementation that handles congestion control by default
in a current version so the processing besides the generic one
is done using method ::NewRequest. When the congestion
control allows to emit new request the method ::Send is
triggered. The relevant headers are attached to the packet
and the packet is sent using ns3::TricklesL4Protocol
instance.

The server side receives the packet with incom-
ing data request in ns3::TricklesL4Protocol ob-
ject which forwards the packet to the specific instance
on ns3::TricklesSocketBase based on destination
port information in ns3::TcpHeader. The actual im-
plementation of the congestion control algorithm, the
ns3::TricklesShieh object processes the packet, up-
dates headers to form a correct continuation and then meth-
ods of ns3::TricklesSocketBase immediately no-

tify the ns3::TricklesServer application that the re-
quest is received. The application reads the packet from
socket, adds the data to the packet and sends it back to
the socket which passes the packet to the network via
ns3::TricklesL4Protocol.

The reception of continuation with data at the client
side is almost the same as the reception of the re-
quest at the server side. The data is placed to the
data queue and the ns3::TricklesSocketBase notifies
ns3::TricklesSink that new data arrived via handler
::HandleRead.

E. Issues

It is hard to get the reference for comparing developed
model of the Trickles protocol even though there is an im-
plementation of the protocol in Linux kernel [14]. There are
several reasons: the implementation itself can not be a model of
the protocol since it has a lot of subtle low-level details which
are not the part of the Trickles reference contribution [1]; the
implementation does not has any documentation; it is hard to
map the behaviour of the protocol in a real setting to what
we achieve under simulation. So we decided to create own
experiment and make sure that behaviour of the model is the
same as expected.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 32 ----------------------------------------------------------------------------



IV. EXPERIMENTS

A. Methodology

Transport protocols are the important part of the Internet
infrastructure, so the protocol research must be reproducible.
Reproducibility does not guarantee the correctness of the
results but can make sure that the findings can be replicated
by an independent researcher. Nevertheless, reproducibility is
not a common practice in computer science [20] but achieved
a considerable amount of attention in recent years [7]. Most
research in protocol community is done using simulations as
a source of raw data which is explored using statistics and
exploratory data analysis. We think that the approach based
on data science criteria of reproducible research [2] will be
fruitful in achieving reproducible results. These criteria states
that every research consists of the following:

• Raw data. The process of obtaining raw data must be
explicit and be accessible. However, some research is
unique and can not provide means to obtain raw data
on demand.

• Clean data. Raw data can be represented in various
formats. Clean data is organized as a table data where
each column represents a variable and every row
represents an individual measurement.

• Analytic code. This code processes clean data and
provide answers to scientific problems which are in
the center of the research.

• Presentation code. The code is used in exploratory
data analysis and is used to make visual representa-
tions of data and results.

In a context of our research, the developed ns-3 model
of a stateless protocol and a code implementing particular
experiments are the sources of raw data in our research. The
result of execution of experiments are the traces which are text
files including time series of events occurred in the network
under consideration. The source code of our framework is
available for ns-3 (ver. 3.20) as Git repository at [12]. The
repository is organized as straightforward as possible: you
should put the code to ns-3 source code tree and compile.
Our implementation contains several unit tests which validates
the build.

Our approach is based on using R [15] as a programming
platform for cleaning data, making statistical and exploratory
data analysis. The R provides convenient tools for reading and
cleaning files as well as a solid statistical computing platform
which can be extended with vast amount of packages available
at CRAN [16]. The code for reading and cleaning ns-3 trace
files is available at repository [13].

The holy grail of reproducible research are reports which
presents the results can be compiled automatically from
the raw data using robust tools. Donald Knuth proposed a
methodology called literate programming [3] which promotes
the idea that the same program can be compiled both into
executable and into documentation. We decided to organize
our experiments in a spirit of literate programming paradigm.
The key tool in this undertaking is knitr package [19] for
R. The source file for knitr is a simple text file written in
Markdown [18] which can contain R code for data processing.

knitr compiles the source file executing the R code, starting
individual experiments, and produce html or LATEXfile which
contains full protocol of the experiment.

B. Experiments

Server Client
r Mbit/s, d ms

Fig. 5. Performance comparison of the Trickles model to the Reno model
in ns-3

For all experiments1 we use a simple network topology
shown on Fig. 5. The topology consists of a single client and
a server. The transport interaction between these counterparts
in our setting can be managed using the Trickles and the
TCP Reno protocols. For the Trickles case we have used
ns3::TricklesSink application at the client side and
the ns3::TricklesServer at the server side. For the
TCP Reno protocol we use ns3::PacketSink at the client
side and ns3::OnOffApplication at the server side. In
both cases we configure the experiments in such a way that
applications continuously push data from the server to the
client.

The network configuration has several parameters. The link
is a point-to-point link with a bandwidth and delay specified
individually for a single experiment. The bandwidth r can be
1.0, 2.0 or 3.0 Mbit/s and the delay b can be 10, 55 or 100
ms. We also vary the queue length at the server and the client
nodes from 70 packets to 100 packets with step of 5 packets.

Both TCP Reno and Trickles protocols are configured in
a similar way. They both start with cwnd equals to 2 packets
and ssthresh value equals to 65 packets. The data payload
size of each packet is set to 1000 bytes.

The results of the experiments are shown on Fig. 6. The
x-axis shows the queue length and the y-axis shows the
performance achieved by each protocol in different network
settings. We can see that the Trickles shows lower performance
in contrast to the TCP Reno as expected since it has a
more sophisticated request-response algorithm than TCP. With
more queue length the performance of the Trickles protocol
becomes close to the Reno results as expected. In general the
experimental results confirm the hypothesis that the Trickles
performance must be close to the Reno performance.

V. CONCLUSION

The stateless protocols is the interesting family of transport
layer protocols. The modern applications such as cloud envi-
ronments, high-load applications, software-defined networks,
sensor networks can benefit from stateless protocol architec-
tural advantages and absence of hard synchronization between
endpoints. Nevertheless each protocol must be thoroughly
investigated before its adoption in real networks. The main
methodology of transport protocol research is simulation and
experimental analysis. Building an executable model of a
stateless protocol in the ns-3 simulator is a first step for

1the source code of the experiment and its knitr protocol is available at [12]

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 33 ----------------------------------------------------------------------------



Fig. 6. Performance comparison of the Trickles model to the Reno model in ns-3

encouraging research in this direction. The paper presents such
a model which source code is available at [12]. Of course
the model must be further investigated and reviewed by the
protocol research community. More to be done in the exper-
imental analysis of the stateless protocols in various network
settings. The reproducibility of such a research is essential. The
paper advocates a methodology based on the ideas of literate
programming and using R statistical framework to achieve
high level of reproducibility. The tools which provide interface
between ns-3 and R are available at [13] and must be further
developed.

ACKNOWLEDGMENT

The authors would like to appreciate the Russian Fund for
Basic Research (RFBR) for partial support under project 14-
01-31539.

The research was conducted at P.G. Demidov Yaroslavl

State University using financial support of the Ministry of Ed-
ucation and Science of the Russian Federation under contract
ID RFMEFI57414X0036.

REFERENCES

[1] A. Shieh, A.C. Myers, E.G. Sirer, ”A Stateless Approach to Connection-
Oriented Protocols”, ACM Trans. Comput. Syst.”, Vol. 26, No 3, Septem-
ber, 2008, 50 p.

[2] R.D. Peng, ”Reproducible research in computational science”, Science,
Vol. 334, No 6060, 2011, pp. 1226-1227.

[3] , D. Knuth, ”Literate Programming”, The Computer Journal, Vol. 27,
1984, pp. 97-111.

[4] I.V. Alekseev, V.A. Sokolov, ”ARTCP: Efficient Algorithm for Transport
Protocol for Packet Switched Networks”, Proc. of Parallel Computing
Technologies (PaCT-2001), September, 2001, pp. 159-174.

[5] M.A. Nikitinskiy, I.V. Alekseev, ”A stateless transport protocol in soft-
ware defined networks”, Science and Technology Conference (Modern
Networking Technologies) (MoNeTeC), October, 2014, pp. 108-114.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 34 ----------------------------------------------------------------------------



[6] A.C. Snoeren, D.G. Andersen, H. Balakrishnan, ”Fine-Grained Failover
Using Connection Migration”, Proc. of 3rd USENIX USITS, March, 2001.

[7] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, ”Repro-
ducible Network Experiments Using Container-Based Emulation”, Proc.
of ACM CoNEXT-12, December, 2012, pp. 253-264.

[8] M. Allman, V. Paxson, W. Stevens, ”RFC 2581: TCP Congestion
Control”, 1999.

[9] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, ”RFC 2018: TCP
Selective Acknowledgement Option”, 1996.

[10] V. Jacobson, R. Braden, D. Borman, ”RFC 1323: TCP Extensions for
High Performance”, 1992.

[11] DARPA, ”RFC 793: Transmission Control Protocol”, 1981.

[12] Dmitry Ju. Chalyy, ”Git repository of stateless transport protocol models
for ns-3”, URL: https://github.com/dchaly/stateless, Accessed: 2015-02-
28.

[13] Dmirty Ju. Chalyy, ”Git repository of ns-3 trace analysis code in R”,
URL: https://github.com/dchaly/ns3r, Accessed: 2015-02-28.

[14] Alan Shieh, ”Trickles source code for Linux Kernel”, URL:
http://www.cs.cornell.edu/w8/ ashieh/trickles-release/, Accessed: 2015-
02-28.

[15] The R Project for statistical computing, URL: http://www.r-project.org,
Accessed: 2015-02-28.

[16] The comprehensive R archive network”, URL: http://cran.r-project.org,
Accessed: 2015-02-28.

[17] ns-3 network simulator, URL: http://www.nsnam.org, Accessed: 2015-
02-28.

[18] Daring Fireball: Markdown”, URL:
http://daringfireball.net/projects/markdown/, Accessed: 2015-02-28.

[19] knitr: elegant, flexible and fast dynamic report generation with R, URL:
http://yihui.name/knitr/, Accessed: 2015-02-28.

[20] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, A.M.
Warren, ”Measuring Reproducibility in Computer Systems Research”,
URL:http://reproducibility.cs.arizona.edu/v1/tr.pdf, Accessed: 2015-02-
28.

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 35 ----------------------------------------------------------------------------


