
Density of Multi-Task Real-Time Applications

Sergey Baranov, Victor Nikiforov
SPIIRAS, ITMO University

St.Petersburg, Russia
snbaranov@gmail.com, nik@iias.spb.su

Abstract—An approach to estimate the efficiency of

various combinations of scheduling modes and protocols for
access to shared information resources in multi-task real-time
software complexes is proposed. An efficiency criterion for
such estimation is introduced. An architecture of a software
tool to obtain concrete values of the introduced efficiency
criterion for a given software application is described.

I. INTRODUCTION
A software application for real-time systems (RTS) is

usually built as a complex of cooperative tasks �1, �2, … , �n
(i.e., tasks which jointly reach certain common goals for the
given system) [1]. Each j-th activation of the task �i means
respective generation of its j-th example – the job j�i. An
RTS distinguishing feature is that its tasks are expected to
be executed on time; this may be formally expressed as
follows: duration r(j�i) of the existence interval of any
example j�i of the task �i shall never exceed some limiting
value Di. With the notion of the task response time
Ri = max{r(1�i), r(2�i), ... } the requirement of on time
execution may be reformulated as Ri < Di. One
distinguishes between hard and soft RTS [2]. For a hard
RTS violation of the inequality Ri < Di is not allowed. For a
soft RTS violation of this inequality is acceptable for some
small percentage of jobs or only the average value of
durations r(j�i) of tasks �i is bounded.

Feasibility of a multi-task software application is its
property which ensures that the inequality Ri < Di holds for
any task �i under any acceptable scenario of system events.
To check feasibility of a software application some
structured task models are built and analyzed, estimates of
response time are performed for each task taking into
account all factors which may impact the values Ri . These
factors are:

• external factors (primarily variants of possible task
activation scenarios for tasks which compose the system);

• performance of execution resources used for system
implementation – the number of processors (processor
cores) and their frequency;

• the application structure (includes details of the
internal structure of each task and peculiar features of the
inter-task interfaces nomenclature);

• methods used to access shared resources – scheduling
modes which define the ordering of providing execution

resources to active jobs and access protocols to shared
information resources.

The most significant external factor for each task �i is
the value Ti of its period which specifies the minimal
duration of a time interval between arriving of similar jobs
j�i and j+1�i. The value Di of the maximal acceptable
response time of the task �i is also an external factor
because it indicates the acceptable duration of external
processes waiting for a control signal. In this paper a
derivative parameter Hi = Ti / Di is considered which is the
task period divided by the maximal duration of its
execution. Hi characterizes the degree of hardness required
for RTS tasks execution. The constraint Hi < 1 means that
existence intervals of similar jobs j�i and j+1�i do not
intersect. The reverse condition Hi > 1 means that existence
intervals of jobs j�i and j+1�i of the same type may intersect.

Performance P of the processor or its core may be
represented as a number of some standard operations
performed within one second. Floating point operations
(flop) are often used as such standard ones; in this case P is
characterized by the number of flop/sec (flops).

In order to verify feasibility of particular tasks and of
the software application as a whole, structured task models
are built – e.g., by means of route networks [3]. With this
formalism the task code is represented as a series of
segments separated by system operations of send/receive
synchronizing information signals. Each segment is
characterized by its weight w and the type of terminating
operation. The segment weight represents the maximal
possible amount of computational work performed within
this segment and is measured with the number of standard
operations. The total weight Wi of segments composing a
task �i is the absolute task weight – the maximal possible
number of standard operations performed within one
activation of the task �i.

An alternative representation of the task weight takes
into account the performance of a particular processor – the
relative weight Ci of the task �i which is the absolute task
weight Wi divided by the processor performance P
(Ci = Wi/P) and is expressed in seconds (actually these are
the number of seconds of processor work at the concrete
performance).

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

A derivative parameter characterizing the task weight is
the task utility ui = Ci/Ti which specifies the portion of the
processor time which is needed for executing the task �i.
Summing up all values ui for all tasks produces the value of
the overall utility U = �1 < i < n ui (the portion of the processor
time needed for the whole multi-task application). The
value 1 – U specifies which portion of the processor time is
not used by the application (the processor is either idle or is
loaded with calculations unrelated to the RTS processing).
Evidently, the overall utility depends on the processor
performance. Increasing of the processor performance leads
to an increase of the processor idle time (from the
prospective of the given RTS software application).

The response time Ri of each task in the RTS software
application depends substantially on the applied scheduling
mode and the used protocol to access the shared system
resources. Therefore, it is vital to know which combination
of possible scheduling modes and access protocols is the
most efficient for implementation of the given software
application under the given circumstances. The maximal
value of the overall utility which corresponds to the
minimal processor performance with which the application
is still feasible may serve as a criterion of such efficiency.
Let's denote this extreme value of the overall utility as Dens
and let's call it the application density. The value Dens is
determined by external factors and structural features of the
application, as well as by selection of the scheduling modes
and protocols of access to shared informational resources.
It may be used as a criterion of efficiency of the given
combination the scheduling mode and access protocol. Use
of a software tool that simulates the sequence of processor
switching between the RTS tasks is a universal approach to
determining the application density.

The following sections provide necessary information
on scheduling modes and protocols for access to shared
resources. Then an approach is described how to build a
simulating software tool which estimates the task response
time when executed under particular external conditions.

II. SCHEDULING MODES
Any scheduling mode may be expressed through a

method of assigning integral priorities prio(j�i, t). If this is
defined, then the inequality prio(k�x, t) < prio(l�y, t) means
that at the time moment t the task k�x has a preference (with
respect to l�y) for the processor resource. For some
scheduling modes this way of defining the order in which
the processor time is provided is possible, but it is not
convenient; in this case scheduling modes are presented
through a sorted list of active jobs and a way of modifying
this list when particular system events occur.

The set of all possible scheduling modes is split into
classes characterized by constraints on the allowed changes
of task priorities. Class S0 corresponds to modes with static

task priorities (task priorities defined when the system is
developed remain unchanged during the system work).

The class S0 contains the most widely used Rate
Monotonic (RM) mode: task priorities decrease as the value
of Ti increases. For a set of independent tasks on a single
core processor with the hardness value H = 1 efficiency of
the RM scheduling mode is characterized with the
inequality U < ln2: the task feasibility is guaranteed if the
overall utility is less than ln2 [4].

Weakening the constraints on task priority changes
allows for selecting scheduling modes with higher
efficiency of processor time usage.

With scheduling modes of the class S1 priorities of jobs
of the same type j�i and k�i (j � k) may be different; i.e.,
different copies of the same task may have different
priorities. A constraint on priority change for the class S1
consists in that priority of a particular job j�i stays
unchanged within the whole interval of its existence.

Due to this weakening (with respect to the class S0) of
constraints on priority change, scheduling modes of the
class S1 allow to increase the efficiency of processor usage.
Thus, the EDF mode (Earliest Deadline First – job
priorities decrease as their deadlines increase on the time
axe) ensures the maximal possible efficiency of processor
time usage in a single processor RTS with a classical single
core processor. When the EDF mode is used in such RTS,
the sufficient condition of on time task feasibility is
specified by the inequality U< 1 [4].

Scheduling modes RM and EDF turn out to be
inefficient [5] for RTS on multi-core processors. Therefore,
modified versions of these modes have been developed.
Scheduling mode RM_US of the class S0 ensures the
application feasibility if the inequality U < m/(3m–2) holds
(m being the number of processor cores). Efficiency of the
mode RM_US varies from 1/2 to 1/3 depending on the
number of processor cores [6-8].

Elimination of constraints on job priority changing
corresponds to the class S2 – priorities of active jobs may
change during their execution. This elimination makes
possible to increase the efficiency of processor usage in
RTS on multi-core processors. The Pfair scheduling mode
of the class S2 ensures feasibility of application if the
inequality U < m holds (that means 100% efficiency of the
processor resource usage) [8]; i.e., for systems implemented
on multi-core processors efficiency of processor usage may
be increased at 2-3 times with scheduling modes of the
class S2 compared to the ones of the class S0.

III. PROTOCOLS OF ACCESS TO INFORMATION RESOURCES
A piece of code with an implemented access to a global

resource g is usually called a critical interval w.r.t. g.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 10 --

Critical intervals are of the same type if they contain access
to the same global resource. In order to ensure integrity of
global resources, mechanisms should be used which
prevent simultaneous access of the same resource by
different jobs. To do this, a synchronizing element mut_i
of the mutex type is formed in the software code for each
shared resource g. Each piece of program code which
implements access to the resource g (each critical interval
with access to the resource g) is framed with operations on
the mutex mut_i. A critical interval starts with the operator
lock(mut_i) – lock the mutex mut_i and ends with the
operator unlock(mut_i) – unlock the mutex mut_i. If
the mutex mut is in the locked state when the operator
lock(mut) is performed, then job execution is suspended
until another job which owns the respective resource
unlocks it by performing the operation unlock(mut).

Operators lock/unlock split the task code into
segments.

Fig.1 represents an interconnection structure of two
tasks according to the approach proposed in [3] for
representing inter-task interfaces with route networks.

Critical interval
for mut_1

�1

�2

mut_1 mut_1mut_2 mut_2

Critical interval for mut_1

Critical interval for mut_2

Critical interval for mut_2

mut_1

mut_2

mut_1mut_1 mut_2mut_2

Fig. 1. Application Structure Represented as a Route Network

Each task in Fig.1 consists of 5 code segments and
contains two critical intervals. Critical interval of the task
�1 on the resource g1 contains its code segments 2 and 3;
critical interval on the resource g2 contains its code
segments 3 and 4. Critical interval of the task �2 on the
resource g1 consists of its code segment 3; critical interval
on the resource g2 contains its code segments 2, 3, and 4.
It's essential that both tasks contain intersecting critical
intervals:

• in �1 critical intervals are concatenated – segment 3, on
one hand, terminates the critical interval on g1 and, on the
other hand, starts the critical interval on g2;

• in �2 the critical interval on g1 is nested into the critical
interval on g2.

When a software application contains tasks with
intersecting critical intervals, mutual blocking of active jobs
becomes possible. One can demonstrate that such situation
may arise when running an application with the task code
structure represented in Fig.1.

A standard approach to preventing mutual task blocking
is based on providing the synchronization mechanisms of
the mutex type with additional conditions and/or actions to
be performed when executing operations on mutexes. The
contents of such conditions-actions is called protocols for
access to the shared informational resources.

When implementing software applications on single
processor systems with classical single core processors,
preventing mutual task blocking is performed through using
the Protocol of Preventive Inheritance of Priorities (PPIP);
for multi-processor systems and systems with multi-core
processors the Protocol of Threshold Priorities (PTP) is
used [9]. Both protocols assume scheduling modes of the
class S0 to be used.

Therefore, when building systems with intersecting
critical intervals, developers prefer to use access protocols
which do not allow more efficient scheduling modes of the
classes S1 or S2. However, intersecting critical intervals do
not assume a real threat of mutual task blocking. A method
described in [10] checks whether mutual blocking is really
possible.

The method is based on analysis of structural features of
a special multi-partite graph – the graph of critical interval
bundles. Based on this method, the developer can check
whether the configuration of task interrelations requires
standard access protocols to shared resources. If this check
provides a negative answer (i.e., there's no option for
mutual task blocking in spite of intersecting critical
intervals), then there's no need to use PPIP or PTP. In this
case the simplest protocol (SP) may be used for
implementation of this RTS application, which does not
require any additional conditions/actions when entering
critical intervals for access to share resources; for SP it is
sufficient that the respective mutex is unlocked.

In contrast to PPIP and PTP, using SP does not impose
constraints on the scheduling mode – when SP is used any
scheduling mode may be used instead of the modes from
the class S0. This option may turn out to be important
because for multi-core processors scheduling modes of the
class S2 may provide 2-3 times increase of processor usage
efficiency compared to modes of the class S0.

The Protocol Preventing Mutual Blocking (PPMB) – is
described in [11]. An advantage of PPMB is that, on one
hand, it guarantees system protection from deadlocks and
clinches along with PPIP and PTP; and on the other hand, it
does not consider task priorities (and therefore, it may be
combined with efficient scheduling modes of the classes S1

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 11 --

and S2). At the same time, as with other task priority
ignorant protocols, the PPMB protocol allows for task
chain blocking which results in increase of the response
time and therefore in decrease of the software application
density. One may ask: whether chain blocking
compromises the advantages of scheduling modes of the
classes S1 or S2? The answer may be yes and no depending
on the structure and use conditions of a particular
application. Instruments for simulating the sequence of
processor switches between the RTS tasks are a universal
tool for answering this question.

IV. AN APPROACH TO MODELING OF EXECUTION
A MULTI-TASK SOFTWARE APPLICATION

The proposed approach to building a system for
simulate execution of RTS is illustrated on a simplified
software application with independent tasks (tasks without
synchronizing inter-task interfaces). Moreover, only
scheduling modes of S0 class are supposed. However, the
nomenclature of objects and procedures which ensure
functioning of the simplified application may be modified
and extended in a natural way to model the work of systems
with arbitrary scheduling modes and with sharing
information resources under arbitrary access protocols.

A. Input Data for the Modeling Process
The proposed architecture of a simulating software tool

is based on using three chained lists:

TaskList – list of task descriptors;
ReadyList – list of active jobs;
EventList – list of scheduled system events.

The list TaskList of task descriptors, which compose
the software application being modeled is the source data
for the simulatng. Each task is characterized with three
parameters:

Period – the length of the time interval between two
adjacent activations;

C_size – the amount of processor time necessary for
task execution;

Piority – an integer defining the task priority.

The nomenclature of tasks and the values of the
enumerated parameters stay constant within the modeling
session.

All objects, linked in the lists TaskList, ReadyList,
and EventList belong to classes inherited from the class
ListNode:

class ListNode {
 ListNode *Next;

 ListNode* Pop(){

 ListNode *ret_ptr = Next;
 if(ret_ptr != 0) Next = ret_ptr->Next;

 return(ret_ptr);
 }
 void Push(ListNode *chain){
 if(chain != 0) {
 chain->Next = Next;
 Next = chain;
 }
 }
}

The method Push(ListNode *chain) allows to
insert a new element chain into the list; the method
Pop() performs the reverse operation – deleting an element
from the list. Joint usage of these methods allows to modify
a list in the LIFO-buffering mode.

The class OrderedNode is the closest heir of the class
ListNode; it is used to construct a list of objects sorted
with respect to the special attribute Ordering:

class OrderedNode:ListNode {
 int Ordering;
 OrderedNode* Find(int key) {
 OrderedNode *suc_ptr;
 ListNode *pre_ptr = this;
 while((suc_ptr = (OrderedNode *)
 pre_ptr->Next) != 0) {
 if(suc_ptr->Ordering >= key) break;
 pre_ptr = suc_ptr;
 }
 return(pre_ptr);
 }
}

The method Find(int key) ensures a search of the
place in the list which corresponds to the value key. Sorted
lists which contain objects of the class OrderedNode are
intended to sort (according to priorities) objects used as
task descriptors in the list TaskList.

Descriptor of each task is an object of the class Task
which is a direct heir of the class OrderedNode (and
therefore, an indirect heir of the class ListNode):

class Task:OrderedNode {
 int Period;
 int C_size;
 int R_time;
}

In addition to attributes of the class OrderedNode the
task descriptor has attributes Period and C_size to
represent the respective task parameters. The attribute
R_time is used to represent the result of modeling: the
maximal task response time.

Task descriptors are generated and stored in the list
TaskList (sorted on priorities) during execution of the
procedure TaskBuild(), which ensures construction of a
task description either in a dialog with the user, or by a
special generating program.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 12 --

Task descriptors are linked into a chained list
TaskList via the attribute Next, inherited from the class
ListNode. Sorting task descriptors on their priorities is
performed via the attribute Ordering, inherited from the
class OrderedNode.

B. Dynamically Modified Lists
The task list TaskList is formed during preparation to

modeling and remains unchanged during the modeling
session. Lists ReadyList and EventList are formed at
initialization of the modeling session and are modified
during the session.

The list ReadyList of task descriptors contains objects
of the class Job:

class Job:OrderedNode {
 int St�rt_time;
 int Rest_C_size;
 Task *Job_class;
}

Objects contained in the list ReadyList model jobs
which are active at the current moment of the job modeling
time – jobs which compete for the processor resource. The
attribute St�rt_time of an object of the class Job
specifies the moment of the modeling time when this object
was generated. The attribute Rest_C_size specifies the
portion of the processor time which has not yet been used
by the job. The attribute Job_class links the job
descriptor with the respective task descriptor.

Job descriptors are linked in a chained list via the
attribute Next, inherited from the class ListNode and are
ordered in this list with respect to the value of the attribute
Ordering, inherited from the class OrderedNode. Special
place is occupied by the job descriptor placed in the very
beginning of the list ReadyList (the descriptor which
heads the list ReadyList). This descriptor is called the
descriptor of the current job.

The list EventList contains descriptors of system
events – objects of the class Event:

class Event:OrderedNode {
 int Event_type;
 Task *Task_ptr;
 Job *Job_ptr;
}

The attribute Event_type may have one of two values
– zero (if the event consists in activation of a task pointed
to by the attribute Task_ptr) or one (if the event consists
in terminating the job pointed to by the attribute Job_ptr).

The attribute Ordering, inherited from the class
OrderedNode specifies the modeling time moment which
corresponds to the given event (descriptors of system

events are sorted with respect to this attribute in the list
EventList). Binding descriptors of system events into a
chained list is performed via the system attribute Next,
inherited from the class ListNode.

C. Initializing the Modeling Process
Globally accessible objects TaskList, ReadyList,

and EventList of the class ListNode are generated
statically with the value NULL of the attribute Next.
Besides that, global variable are generated:

int cur_time = 0;
context_switches = 0;

The variable cur_time is used to track the flow of the
modeling time. Its maximal value is specified by the
constant TIME_LIMIT. The variable context_switches
is used to count the number of context switches.

Running the procedure TaskBuild() results in
construction of the task list TaskList, the global variable
task_number taking the respective value.

For each task an object of the class Event is generated
with the attribute values:

Ordering = 0;
Event_type = 0;
Job_ptr = NULL;

The attribute Task_ptr is tuned to point to the
descriptor of the respective task; attributes Next bind the
generated objects of the class Event in a chained list in an
arbitrary order; the list starts with the globally accessible
object EventList.

With this initialization of the modeling process
terminates, and a step-by-step processing of system event
descriptors from the list EventList starts.

D. Performing a Step of Modeling
At each modeling step a descriptor of the system event

allocated in the beginning of the list EventList (the list
head descriptor) is processed. At this processing first
specific actions of the current modeling step are performed:
depending on the value of the attribute EventList these
specific actions consist either in performing task activation,
or in performing job termination.

1) Task Activation: If Event_type = 0 for the head
system event descriptor (the descriptor prescribes task
activation) then specific actions consist in generation of the
next job of the type EventList.Next->Task_ptr. To do
this, a new job description is generated with the attribute
values:

St�rt_time = cur_time;
Job_class = EventList.Next->Task_ptr;

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 13 --

Ordering =
 EventList.Next->Job_class->Ordering;
Rest_C_size =
 EventList.Next->Job_class->C_size;

The descriptor of the generated job is inserted in the list
ReadyList of active jobs. Position of the job description
in the ReadyList corresponds to the job priority. If jobs
with equal values of the attribute Ordering are placed in
the list of active jobs, then jobs with the lower value of the
attribute St�rt_time are considered of higher priority.

A new object of the type Event is inserted into the list
EventList with the following attribute values:

Ordering = cur_time +
 ReadyList.Next->Task_ptr->Period;
Event_type = 0;
Job_ptr = NULL;
Task_ptr = ReadyList.Next->Task_ptr;

The place of the newly generated system event
descriptor in the list EventList is determined by the value
of its attribute Ordering.

If the current job changed while task activation (the
value of the attribute ReadyList.Next has changed) then
the value of the global variable context_switches
which tracks the number of context switches is incremented
by 1.

2) Job Termination: If Event_type=1 for the head job
description (i.e., the system event consists in terminating
the current job), then specific actions consist in possible
modification of the response time for the respective task:

int job_resp = cur_time -
 EventList.Next->Job_ptr->Start_time;
if(ReadyList.Next->Task_ptr->Period <
 job_resp)
 ReadyList.Next->Task_ptr->Period =
 job_resp;

The value ontext_switches is incremented by 1.

E. Mandatory Actions of a Modeling Step
Upon completion of specific actions the following

mandatory actions are performed for each step of operation
modeling.

1) The assumed duration of the next step of the
modeling process is calculated:

int step_length =
 EventList.Next->Ordering - cur_time;

2) If the list ReadyList of active jobs is not empty
(ReadyList.Next is not equal to NULL) and the value of
the attribute Rest_C_size does not exceed
step_length, then the value of the variable

step_length is decreased to the value Rest_C_size of
the current job:

step_length = ReadyList.Next->Rest_C_size;

A new element – a descriptor of the system event
consisting in termination of the current job – is inserted in
the list of system events with the following attributes:

Ordering = cur_time + step_length;
Event_type = 1;
Job_ptr = ReadyList.Next;

3) For the current job the value Rest_C_size of not
used amount of the processor time by the job is decreased:
ReadyList.Next->Rest_C_size -= step_length;

4) The value of the current moment of the modeling
time is modified:
cur_time = EventList.Next->Ordering;

5) The head descriptor of the system event list is deleted
from EventList:
EventList.Pop();

The new head descriptor in the list EventList of
system events becomes the descriptor which followed the
deleted one.

6) Conditions for terminating the modeling session are
checked. The session terminates either if the counter
cur_time exceeds the maximal acceptable value
(abnormal situation), or if there are no more active jobs
(i.e., if the list ReadyList becomes empty – normal
termination of the session).

If conditions for terminating the modeling session are
not satisfied, then upon completion of the listed mandatory
actions transition to the next modeling step is performed.

F. Exit from the Modeling Session
By the moment of a normal exit from the modeling

session the attribute R_time of each object of the type
Task contains the response time of the respective task. The
global variable context_switches contains the number
of context switches within the modeling time interval of the
length cur_time.

V. COMPARATIVE EFFICIENCY OF THE EDF AND RM
SCHEDULING MODES

The presented approach was tried to estimate the
dependency hardness/density for the EDF and RM
scheduling modes (the approach to constructing an
imitational model described in section IV was extended
with a possibility to model modes of the class S1).
Modeling was performed for a system of ten independent
tasks with parameters enlisted in Table I.

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 14 --

TABLE I. TASK PARAMETERS OF THE MODELED APPLICATION

Task �1 �2 �3 �4 �5 �6 �7 �8 �9 �10
Ti 100 107 114 123 132 141 151 165 174 187
Ci 7.2 7.7 8.3 8.9 9.5 10.2 10.9 11.6 12.4 13.2

Modeling results are presenting in Fig.2. The axe X
represents reverse values to hardness, the axe Y represents
density values. Performed experiments with the values of
1/H not exceeding 0.46, the density values for the
scheduling modes RM and EDF coincide. For the values of
1/H higher than 0.46 the EDF scheduling mode turns out to
be more efficient than RM.

10.9
H
1

Dens

0.80.70.60.50.40.3

1

0.9

0.8

0.7

0.6

0.5

EDF

RM

10.9
H
1

H
1

Dens

0.80.70.60.50.40.3

1

0.9

0.8

0.7

0.6

0.5

EDF

RM

Fig. 2. Hardness/density dependences for EDF and RM scheduling modes

Experiments with the RM scheduling mode were
performed for values of 1/H exceeding 1, when
intersections of existence intervals of jobs of the same type
occur. It was found that for values of 1/H not exceeding
1.3, the application density for RM is preserved at the level
of 0.72, while for 1/H exceeding 3.5 the application density
reaches 1.

VI. CONCLUSION
Using the presented simulation technique allows to

perform comparative estimates for various combinations of
scheduling modes and protocols of access to shares
informational resources from the side of tasks which
compose software real-time applications.

This work was partially financially supported by
Government of the Russian Federation, Grant 074-U01.

REFERENCES
[1] K.Ya. Davidenko, Software Engineering for Automatic Control

Systems of Technological Processes. Moscow: Energoatomizdat,
– 1985. (In Russian)

[2] J.W.S. Liu, Real-Time Systems. NJ: Prentice Hall, – 2000.
[3] V.V. Nikiforov, V.I. Shkirtil. “Route Networks – a Graphical

Formalism for Representing the Structure of Real-Time Software
Applications”, SPIIRAS Proceedings, Issue 14, SPb: Nauka,
2010, pp. 7-28. (In Russian)

[4] C. Liu, J. Layland. “Scheduling Algorithms for Multiprocessing
in a Hard Real-Time Environment”, Journal of the ACM, vol. 20,
n.1, 1973, pp. 46-61.

[5] S.K. Dhall, C.L. Liu. “On a Real-Time Scheduling Problem”,
Operating Research, vol. 26, n.1, 1978, pp. 127-140.

[6] T. Baker. “Multiprocessors EDF and Deadline Monotonic
Schedulability Analysis”, in Proc. of 24 IEEE Real-Time Systems
Symposium, 2003, pp. 120–129.

[7] B. Andersson, S. Baruah J. Jonsson “Static-priority scheduling on
multiprocessors”, in Proc. of 22nd IEEE Real-Time Systems
Symposium, London, 2001, pp. 193-202.

[8] V.V. Nikiforov. “Feasibility of Real-Time Applications on Multi-
Core Processors”, SPIIRAS Proceedings, Issue 8, – St.Petersburg:
Nauka, 2009, pp. 255-284. (In Russian)

[9] L. Sha, R. Rajkumar, J.P. Lehoczky. “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”, IEEE
Transactions on Computers. vol. 39(9), 1990, pp. 1175-1185.

[10] V.V. Nikiforov, V.A. Pavlov. “Structured Models for Multi-Task
Software System Analysis”, Information-Measuring and Control
Systems, n.9, 2011, pp.19-29. (In Russian)

[11] V.V. Nikiforov. “Protocol for Preventing of Task Blocking in
Real-Time Systems”, Priborostroenie, n.12, 2014, pp.19-29. (In
Russian)

___PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

-- 15 --

