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Abstract—An approach to estimate the efficiency of 

various combinations of scheduling modes and protocols for 
access to shared information resources in multi-task real-time 
software complexes is proposed. An efficiency criterion for 
such estimation is introduced. An architecture of a software 
tool to obtain concrete values of the introduced efficiency 
criterion for a given software application is described. 

I. INTRODUCTION 
A software application for real-time systems (RTS) is 

usually built as a complex of cooperative tasks �1, �2, … , �n 
(i.e., tasks which jointly reach certain common goals for the 
given system) [1]. Each j-th activation of the task �i means 
respective generation of its j-th example – the job j�i. An 
RTS distinguishing feature is that its tasks are expected to 
be executed on time; this may be formally expressed as 
follows: duration r(j�i) of the existence interval of any 
example j�i of the task �i shall never exceed some limiting 
value Di. With the notion of the task response time 
Ri = max{r(1�i), r(2�i), ... } the requirement of on time 
execution may be reformulated as Ri < Di. One 
distinguishes between hard and soft RTS [2]. For a hard 
RTS violation of the inequality Ri < Di is not allowed. For a 
soft RTS violation of this inequality is acceptable for some 
small percentage of jobs or only the average value of 
durations r(j�i) of tasks �i is bounded. 

Feasibility of a multi-task software application is its 
property which ensures that the inequality Ri < Di holds for 
any task �i under any acceptable scenario of system events. 
To check feasibility of a software application some 
structured task models are built and analyzed, estimates of 
response time are performed for each task taking into 
account all factors which may impact the values Ri . These 
factors are: 

• external factors (primarily variants of possible task 
activation scenarios for tasks which compose the system); 

• performance of execution resources used for system 
implementation – the number of processors (processor 
cores) and their frequency;  

• the application structure (includes details of the 
internal structure of each task and peculiar features of the 
inter-task interfaces nomenclature);  

• methods used to access shared resources – scheduling 
modes which define the ordering of providing execution 

resources to active jobs and access protocols to shared 
information resources. 

The most significant external factor for each task �i is 
the value Ti of its period which specifies the minimal 
duration of a time interval between arriving of similar jobs 
j�i and j+1�i. The value Di of the maximal acceptable 
response time of the task �i is also an external factor 
because it indicates the acceptable duration of external 
processes waiting for a control signal. In this paper a 
derivative parameter Hi = Ti / Di  is considered which is the 
task period divided by the maximal duration of its 
execution. Hi characterizes the degree of hardness required 
for  RTS tasks execution. The constraint Hi < 1 means that 
existence intervals of similar jobs j�i and j+1�i do not 
intersect. The reverse condition Hi > 1 means that existence 
intervals of jobs j�i and j+1�i of the same type may intersect. 

Performance P of the processor or its core may be 
represented as a number of some standard operations 
performed within one second. Floating point operations 
(flop) are often used as such standard ones; in this case P is 
characterized by the number of flop/sec (flops).   

In order to verify feasibility of particular tasks and of 
the software application as a whole, structured task models 
are built – e.g., by means of route networks [3]. With this 
formalism the task code is represented as a series of 
segments separated by system operations of send/receive 
synchronizing information signals. Each segment is 
characterized by its weight w and the type of terminating 
operation. The segment weight represents the maximal 
possible amount of computational work performed within 
this segment and is measured with the number of standard 
operations. The total weight Wi of segments composing a 
task �i is the absolute task weight – the maximal possible 
number of standard operations performed within one 
activation of the task �i. 

An alternative representation of the task weight takes 
into account the performance of a particular processor – the 
relative weight Ci of the task �i which is the absolute task  
weight Wi divided by the processor performance P 
(Ci = Wi/P) and is expressed in seconds (actually these are 
the number of seconds of processor work at the concrete 
performance). 
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A derivative parameter characterizing the task weight is 
the task utility ui = Ci/Ti which specifies the portion of the 
processor time which is needed for executing the task �i. 
Summing up all values ui for all tasks produces the value of 
the overall utility U = �1 < i  <  n ui (the portion of the processor 
time needed for the whole multi-task application). The 
value 1 – U specifies which portion of the processor time is 
not used by the application (the processor is either idle or is 
loaded with calculations unrelated to the RTS processing). 
Evidently, the overall utility depends on the processor 
performance. Increasing of the processor performance leads 
to an increase of the processor idle time (from the 
prospective of the given RTS software application).  

The response time Ri of each task in the RTS software 
application depends substantially on the applied scheduling 
mode and the used protocol to access the shared system 
resources. Therefore, it is vital to know which combination 
of possible scheduling modes and access protocols is the 
most efficient for implementation of the given software 
application under the given circumstances. The maximal 
value of the overall utility which corresponds to the 
minimal processor performance with which the application 
is still feasible may serve as a criterion of such efficiency. 
Let's denote this extreme value of the overall utility as Dens 
and let's call it the application density. The value Dens is 
determined by external factors and structural features of the 
application, as well as by selection of the scheduling modes 
and protocols of access to shared informational resources.  
It may be used as a criterion of efficiency of the given 
combination the scheduling mode and access protocol. Use 
of a software tool that simulates the sequence of processor 
switching between the RTS tasks is a universal approach to 
determining the application density.  

The following sections provide necessary information 
on scheduling modes and protocols for access to shared 
resources. Then an approach is described how to build a 
simulating software tool which estimates the task response 
time when executed under particular external conditions. 

II. SCHEDULING MODES  
Any scheduling mode may be expressed through a 

method of assigning integral priorities prio(j�i, t). If this is 
defined, then the inequality prio(k�x, t) < prio(l�y, t) means 
that at the time moment t the task k�x has a preference (with 
respect to l�y) for the processor resource. For some 
scheduling modes this way of defining the order in which 
the processor time is provided is possible, but it is not 
convenient; in this case scheduling modes are presented 
through a sorted list of active jobs and a way of modifying 
this list when particular system events occur. 

The set of all possible scheduling modes is split into 
classes characterized by constraints on the allowed changes 
of task priorities. Class S0 corresponds to modes with static 

task priorities (task priorities defined when the system is 
developed remain unchanged during the system work). 

The class S0 contains the most widely used Rate 
Monotonic (RM) mode: task priorities decrease as the value 
of Ti increases. For a set of independent tasks on a single 
core processor with the hardness value H = 1 efficiency of 
the RM scheduling mode is characterized with the 
inequality U < ln2: the task feasibility is guaranteed if the 
overall utility is less than ln2 [4]. 

Weakening the constraints on task priority changes 
allows for selecting scheduling modes with higher 
efficiency of processor time usage. 

With scheduling modes of the class S1 priorities of jobs 
of the same type j�i and k�i  (j � k) may be different; i.e., 
different copies of the same task may have different 
priorities. A constraint on priority change for the class S1 
consists in that priority of a particular job j�i stays 
unchanged within the whole interval of its existence. 

Due to this weakening (with respect to the class S0) of 
constraints on priority change, scheduling modes of the 
class S1 allow to increase the efficiency of processor usage. 
Thus, the EDF mode (Earliest Deadline First – job 
priorities decrease as their deadlines increase on the time 
axe) ensures the maximal possible efficiency of processor 
time usage in a single processor RTS with a classical single 
core processor. When the EDF mode is used in such RTS, 
the sufficient condition of on time task feasibility is 
specified by the inequality U< 1 [4]. 

Scheduling modes RM and EDF turn out to be 
inefficient [5] for RTS on multi-core processors. Therefore, 
modified versions of these modes have been developed. 
Scheduling mode RM_US of the class S0 ensures the 
application feasibility if the inequality U < m/(3m–2) holds 
(m being the number of processor cores). Efficiency of the 
mode RM_US varies from 1/2 to 1/3 depending on the 
number of processor cores [6-8]. 

Elimination of constraints on job priority changing 
corresponds to the class S2 – priorities of active jobs may 
change during their execution. This elimination makes 
possible to increase the efficiency of processor usage in 
RTS on multi-core processors. The Pfair scheduling mode 
of the class S2 ensures feasibility of application if the 
inequality U < m holds (that means 100% efficiency of the 
processor resource usage) [8]; i.e., for systems implemented 
on multi-core processors efficiency of processor usage may 
be increased at 2-3 times with scheduling modes of the 
class S2 compared to the ones of the class S0. 

III. PROTOCOLS OF ACCESS TO INFORMATION RESOURCES  
A piece of code with an implemented access to a global 

resource g is usually called a critical interval w.r.t. g. 
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Critical intervals are of the same type if they contain access 
to the same global resource. In order to ensure integrity of 
global resources, mechanisms should be used which 
prevent simultaneous access of the same resource by 
different jobs. To do this, a synchronizing element mut_i 
of the mutex type is formed in the software code for each 
shared resource g. Each piece of program code which 
implements access to the resource g (each critical interval 
with access to the resource g) is framed with operations on 
the mutex mut_i. A critical interval starts with the operator 
lock(mut_i) – lock the mutex  mut_i and ends with the 
operator unlock(mut_i) – unlock the mutex  mut_i. If 
the mutex mut is in the locked state when the operator 
lock(mut) is performed, then job execution is suspended 
until another job which owns the respective resource 
unlocks it by performing the operation unlock(mut). 

Operators lock/unlock split the task code into 
segments. 

Fig.1 represents an interconnection structure of two 
tasks according to the approach proposed in [3] for 
representing inter-task interfaces with route networks.  

Critical interval  
for mut_1

�1

�2

mut_1 mut_1mut_2 mut_2

Critical interval for mut_1

Critical interval for mut_2

Critical interval for mut_2

mut_1

mut_2

mut_1mut_1 mut_2mut_2

 

Fig. 1. Application Structure Represented as a Route Network 

Each task in Fig.1 consists of 5 code segments and 
contains two critical intervals. Critical interval of the task 
�1 on the resource g1 contains its code segments 2 and 3; 
critical interval on the resource g2 contains its code 
segments 3 and 4. Critical interval of the task �2 on the 
resource g1 consists of its code segment 3; critical interval 
on the resource g2 contains its code segments 2, 3, and 4. 
It's essential that both tasks contain intersecting critical 
intervals: 

• in �1 critical intervals are concatenated – segment 3, on 
one hand, terminates the critical interval on g1 and, on the 
other hand, starts the critical interval on g2;  

• in �2 the critical interval on g1 is nested into the critical 
interval on g2. 

When a software application contains tasks with 
intersecting critical intervals, mutual blocking of active jobs 
becomes possible. One can demonstrate that such situation 
may arise when running an application with the task code 
structure represented in Fig.1. 

A standard approach to preventing mutual task blocking 
is based on providing the synchronization mechanisms of 
the mutex type with additional conditions and/or actions to 
be performed when executing operations on mutexes. The 
contents of such conditions-actions is called protocols for 
access to the shared informational resources.  

When implementing software applications on single 
processor systems with classical single core processors, 
preventing mutual task blocking is performed through using 
the Protocol of Preventive Inheritance of Priorities (PPIP); 
for multi-processor systems and systems with multi-core 
processors the Protocol of Threshold Priorities (PTP) is 
used [9]. Both protocols assume scheduling modes of the 
class S0 to be used. 

Therefore, when building systems with intersecting 
critical intervals, developers prefer to use access protocols 
which do not allow more efficient scheduling modes of the 
classes S1 or S2. However, intersecting critical intervals do 
not assume a real threat of mutual task blocking. A method 
described in [10] checks whether mutual blocking is really 
possible. 

The method is based on analysis of structural features of 
a special multi-partite graph – the graph of critical interval 
bundles. Based on this method, the developer can check 
whether the configuration of task interrelations requires 
standard access protocols to shared resources.  If this check 
provides a negative answer (i.e., there's no option for 
mutual task blocking in spite of intersecting critical 
intervals), then there's no need to use PPIP or PTP. In this 
case the simplest protocol (SP) may be used for 
implementation of this RTS application, which does not 
require any additional conditions/actions when entering  
critical intervals for access to share resources; for SP it is 
sufficient that the respective mutex is unlocked. 

In contrast to PPIP and PTP, using SP does not impose 
constraints on the scheduling mode – when SP is used any 
scheduling mode may be used instead of the modes from 
the class S0. This option may turn out to be important 
because for multi-core processors scheduling modes of the 
class S2 may provide 2-3 times increase of processor usage 
efficiency compared to modes of the class S0. 

The Protocol Preventing Mutual Blocking (PPMB) – is 
described in [11]. An advantage of PPMB is that, on one 
hand, it guarantees system protection from deadlocks and 
clinches along with PPIP and PTP; and on the other hand, it 
does not consider task priorities (and therefore, it may be 
combined with efficient scheduling modes of the classes S1 
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and S2). At the same time, as with other task priority 
ignorant protocols, the PPMB protocol allows for task 
chain blocking which results in increase of the response 
time and therefore in decrease of the software application 
density. One may ask: whether chain blocking 
compromises the advantages of scheduling modes of the 
classes S1 or S2? The answer may be yes and no depending 
on the structure and use conditions of a particular 
application. Instruments for simulating the sequence of 
processor switches between the RTS tasks are a universal 
tool for answering this question. 

IV. AN APPROACH TO MODELING OF EXECUTION 
A MULTI-TASK SOFTWARE APPLICATION   

The proposed approach to building a system for 
simulate execution of RTS is illustrated on a simplified 
software application with independent tasks (tasks without 
synchronizing inter-task interfaces). Moreover, only 
scheduling modes of S0 class are supposed. However, the 
nomenclature of objects and procedures which ensure 
functioning of the simplified application may be modified 
and extended in a natural way to model the work of systems 
with arbitrary scheduling modes and with sharing 
information resources under arbitrary access protocols.  

A. Input Data for the Modeling Process 
The proposed architecture of a simulating software tool  

is based on using three chained lists:  

TaskList – list of task descriptors;     
ReadyList – list of active jobs; 
EventList – list of scheduled system events.       

The list TaskList of task descriptors, which compose 
the software application being modeled is the source data 
for the simulatng. Each task is characterized with three 
parameters:  

Period – the length of the time interval between two 
adjacent activations;    

C_size –  the amount of processor time necessary for 
task execution; 

Piority – an integer defining the task priority. 

The nomenclature of tasks and the values of the 
enumerated parameters stay constant within the modeling 
session. 

All objects, linked in the lists TaskList, ReadyList, 
and EventList belong to classes inherited from the class 
ListNode: 

class ListNode { 
  ListNode *Next; 

  ListNode* Pop(){ 

    ListNode *ret_ptr = Next; 
    if(ret_ptr != 0) Next = ret_ptr->Next; 

    return(ret_ptr); 
  } 
  void Push(ListNode *chain){ 
    if(chain != 0) { 
      chain->Next = Next; 
      Next = chain; 
    } 
  } 
} 

The method Push(ListNode *chain) allows to 
insert a new element chain into the list; the method 
Pop() performs the reverse operation – deleting an element 
from the list. Joint usage of these methods allows to modify 
a list in the LIFO-buffering mode. 

The class OrderedNode is the closest heir of the class  
ListNode; it is used to construct a list of objects sorted 
with respect to the special attribute Ordering: 

class OrderedNode:ListNode { 
  int Ordering; 
  OrderedNode* Find(int key) { 
    OrderedNode *suc_ptr; 
    ListNode *pre_ptr = this; 
    while((suc_ptr = (OrderedNode *) 
                   pre_ptr->Next) != 0) { 
      if(suc_ptr->Ordering >= key) break; 
      pre_ptr = suc_ptr; 
    } 
    return(pre_ptr); 
  } 
} 

The method Find(int key) ensures a search of the 
place in the list which corresponds to the value key. Sorted 
lists which contain objects of the class OrderedNode are 
intended to sort (according to priorities) objects used as 
task descriptors in the list TaskList.  

Descriptor of each task is an object of the class Task 
which is a direct heir of the class OrderedNode  (and 
therefore, an indirect heir of the class ListNode): 

class Task:OrderedNode { 
   int Period; 
   int C_size; 
   int R_time; 
} 

In addition to attributes of the class OrderedNode the 
task descriptor has attributes Period and C_size to 
represent the respective task parameters. The attribute 
R_time is used to represent the result of modeling: the 
maximal task response time. 

Task descriptors are generated and stored in the list 
TaskList (sorted on priorities) during execution of the 
procedure TaskBuild(), which ensures construction of a 
task description either in a dialog with the user, or by a 
special generating program. 
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Task descriptors are linked into a chained list 
TaskList via the attribute Next, inherited from the class 
ListNode. Sorting task descriptors on their priorities is 
performed via the attribute Ordering, inherited from the 
class OrderedNode. 

B. Dynamically Modified Lists 
The task list TaskList is formed during preparation to 

modeling and remains unchanged during the modeling 
session. Lists ReadyList and EventList are formed at 
initialization of the modeling session and are modified 
during the session. 

The list ReadyList of task descriptors contains objects 
of the class Job: 

class Job:OrderedNode { 
   int St�rt_time; 
   int Rest_C_size; 
   Task *Job_class;  
} 

Objects contained in the list ReadyList model jobs 
which are active at the current moment of the job modeling 
time – jobs which compete for the processor resource. The 
attribute St�rt_time of an object of the class Job 
specifies the moment of the modeling time when this object 
was generated. The attribute Rest_C_size specifies the 
portion of the processor time which has not yet been used 
by the job. The attribute Job_class links the job 
descriptor with the respective task descriptor.  

Job descriptors are linked in a chained list via the 
attribute Next, inherited from the class ListNode and are 
ordered in this list with respect to the value of the attribute 
Ordering, inherited from the class OrderedNode. Special 
place is occupied by the job descriptor placed in the very 
beginning of the list ReadyList (the descriptor which 
heads the list ReadyList). This descriptor is called the 
descriptor of the current job. 

The list EventList contains descriptors of system 
events – objects of the class Event: 

class Event:OrderedNode { 
  int Event_type; 
  Task *Task_ptr; 
  Job *Job_ptr; 
} 

The attribute Event_type may have one of two values  
– zero (if the event consists in activation of a task pointed 
to by the attribute Task_ptr) or one (if the event consists 
in terminating the job pointed to by the attribute Job_ptr). 

The attribute Ordering, inherited from the class 
OrderedNode specifies the modeling time moment which 
corresponds to the given event (descriptors of system 

events are sorted with respect to this attribute in the list  
EventList). Binding descriptors of system events into a 
chained list is performed via the system attribute Next, 
inherited from the class ListNode. 

C. Initializing the Modeling Process 
Globally accessible objects TaskList, ReadyList, 

and EventList of the class ListNode are generated 
statically with the value NULL of the attribute Next. 
Besides that, global variable are generated: 

int cur_time = 0; 
context_switches = 0; 

The variable cur_time is used to track the flow of the 
modeling time. Its maximal value is specified by the 
constant TIME_LIMIT. The variable context_switches 
is used to count the number of context switches. 

Running the procedure TaskBuild() results in 
construction of the task list TaskList, the global variable 
task_number taking the respective value. 

For each task an object of the class Event is generated 
with the attribute values: 

Ordering = 0; 
Event_type = 0; 
Job_ptr = NULL; 

The attribute Task_ptr is tuned to point to the 
descriptor of the respective task; attributes Next bind the 
generated objects of the class Event in a chained list in an 
arbitrary order; the list starts with the globally accessible 
object EventList. 

With this initialization of the modeling process 
terminates, and a step-by-step processing of system event 
descriptors from the list EventList starts. 

D. Performing a Step of Modeling 
At each modeling step a descriptor of the system event 

allocated in the beginning of the list EventList (the list 
head descriptor) is processed. At this processing first 
specific actions of the current modeling step are performed: 
depending on the value of the attribute EventList these 
specific actions consist either in performing task activation, 
or in performing job termination. 

1) Task Activation: If Event_type = 0 for the head 
system event descriptor (the descriptor prescribes task 
activation) then specific actions consist in generation of the 
next job of the type EventList.Next->Task_ptr. To do 
this, a new job description is generated with the attribute 
values: 

St�rt_time = cur_time;  
Job_class = EventList.Next->Task_ptr;  
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Ordering = 
   EventList.Next->Job_class->Ordering;  
Rest_C_size = 
   EventList.Next->Job_class->C_size; 

The descriptor of the generated job is inserted in the list 
ReadyList of active jobs. Position of the job description 
in the ReadyList corresponds to the job priority. If jobs 
with equal values of the attribute Ordering are placed in 
the list of active jobs, then jobs with the lower value of the 
attribute St�rt_time are considered of higher priority.  

A new object of the type Event is inserted into the list   
EventList with the following attribute values: 

Ordering = cur_time +  
    ReadyList.Next->Task_ptr->Period; 
Event_type = 0; 
Job_ptr = NULL; 
Task_ptr = ReadyList.Next->Task_ptr; 

The place of the newly generated system event 
descriptor in the list EventList is determined by the value 
of its attribute Ordering. 

If the current job changed while task activation (the 
value of the attribute ReadyList.Next has changed) then 
the value of the global variable context_switches 
which tracks the number of context switches is incremented 
by 1. 

2) Job Termination: If Event_type=1 for the head job 
description (i.e., the system event consists in terminating 
the current job), then specific actions consist in possible 
modification of the response time for the respective task: 

int job_resp = cur_time - 
  EventList.Next->Job_ptr->Start_time; 
if(ReadyList.Next->Task_ptr->Period < 
                                  job_resp) 
  ReadyList.Next->Task_ptr->Period = 
                                  job_resp; 

The value ontext_switches is incremented by 1. 

E. Mandatory Actions of a Modeling Step 
Upon completion of specific actions the following 

mandatory actions are performed for each step of operation 
modeling. 

1) The assumed duration of the next step of the 
modeling process is calculated: 

int step_length = 
 EventList.Next->Ordering - cur_time;    

2) If the list ReadyList of active jobs is not empty 
(ReadyList.Next is not equal to NULL) and the value of 
the attribute Rest_C_size does not exceed 
step_length, then the value of the variable 

step_length is decreased to the value Rest_C_size of 
the current job:  

step_length = ReadyList.Next->Rest_C_size; 

A new element – a descriptor of the system event 
consisting in termination of the current job – is inserted in 
the list of system events with the following attributes: 

Ordering = cur_time + step_length; 
Event_type = 1; 
Job_ptr = ReadyList.Next; 

3) For the current job the value Rest_C_size  of not 
used amount of the processor time by the job is decreased:  
ReadyList.Next->Rest_C_size -= step_length;    

4) The value of the current moment of the modeling 
time is modified: 
cur_time = EventList.Next->Ordering;    

5) The head descriptor of the system event list is deleted 
from EventList:   
EventList.Pop(); 

The new head descriptor in the list EventList of 
system events becomes the descriptor which followed the 
deleted one. 

6) Conditions for terminating the modeling session are 
checked. The session terminates either if the counter 
cur_time exceeds the maximal acceptable value 
(abnormal situation), or if there are no more active jobs 
(i.e., if the list ReadyList becomes empty – normal 
termination of the session). 

If conditions for terminating the modeling session are 
not satisfied, then upon completion of the listed mandatory 
actions transition to the next modeling step is performed. 

F. Exit from the Modeling Session 
By the moment of a normal exit from the modeling 

session the attribute R_time of each object of the type 
Task contains the response time of the respective task. The 
global variable context_switches contains the number 
of context switches within the modeling time interval of the 
length  cur_time. 

V. COMPARATIVE EFFICIENCY OF THE EDF AND RM 
SCHEDULING MODES  

The presented approach was tried to estimate the 
dependency hardness/density for the EDF and RM 
scheduling modes (the approach to constructing an 
imitational model described in section IV was extended 
with a possibility to model modes of the class S1).  
Modeling was performed for a system of ten independent 
tasks with parameters enlisted in Table I. 
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TABLE I.  TASK PARAMETERS OF THE MODELED APPLICATION  

Task �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 
Ti 100 107 114 123 132 141 151 165 174 187
Ci 7.2 7.7 8.3 8.9 9.5 10.2 10.9 11.6 12.4 13.2

Modeling results are presenting in Fig.2. The axe X 
represents reverse values to hardness, the axe Y represents 
density values. Performed experiments with the values of 
1/H not exceeding 0.46, the density values for the 
scheduling modes RM and EDF coincide. For the values of 
1/H higher than 0.46 the EDF scheduling mode turns out to 
be more efficient than RM. 
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Fig. 2. Hardness/density dependences for EDF and RM scheduling modes 

Experiments with the RM scheduling mode were 
performed for values of 1/H exceeding 1, when 
intersections of existence intervals of jobs of the same type  
occur. It was found that for values of 1/H not exceeding 
1.3, the application density for RM is preserved at the level 
of 0.72, while for 1/H exceeding 3.5 the application density 
reaches 1. 

VI. CONCLUSION  
Using the presented simulation technique allows to 

perform comparative estimates for various combinations of 
scheduling modes and protocols of access to shares 
informational resources from the side of tasks which 
compose software real-time applications. 

This work was partially financially supported by 
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