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Abstract—One of the key issues that prevents creation of a
truly autonomous mobile robot is the simultaneous localization
and mapping (SLAM) problem. A solution is supposed to estimate
a robot pose and to build a map of an unknown environment
simultaneously. Despite existence of different algorithms that try
to solve the problem, the universal one has not been proposed
yet [1]. A laser rangefinder is a widespread sensor for mobile
platforms and it was decided to evaluate actual 2D laser scan
based SLAM algorithms on real world indoor environments. The
following algorithms were considered: Google Cartographer [2],
GMapping [3], tinySLAM [4]. According to their evaluation,
Cartographer and GMapping are more accurate than tinySLAM
and Cartographer is the most robust of the algorithms.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the

problem of building a map while at the same time localizing

a robot within that map without prior knowledge of the map

and the position. There are various SLAM approaches based

on data from different types of sensors. A popular setup for

mobile platforms provides:

• laser scan – a set of ranges from a platform to obstacles.

• odometry – information about platform’s displacement;

The first type of input data represents a 2D top-down view

of an environment that provides less information than a 3D

view. So typically it requires less computations to be handled,

which is more suitable for low-cost mobile platforms where

computational resources are limited.

The SLAM problem is well defined but an algorithm that

solves it for arbitrary environments has not been proposed

yet [1]. Some implemented approaches are supposed to be

used in an outdoor environment, some others – in indoor where

straight lines predominate.

In spite of differences in 2D SLAM algorithms, they use

common ideas and data structures. Information about an

environment is stored as a certainty grid which is a two-

dimensional array of identical units that at least keep their

probability of being occupied. A platform position (robot pose)

consists of coordinates and orientation. A combination of

the robot pose and the corresponding map is a world state.

The algorithms usually utilize a scan matcher component that

corrects the robot pose estimated with a raw odometry by

matching laser scan data with previous scans. A scan matcher

can be implemented in multiple ways: bundle adjustment of

scan points [5], a search of the best correlation between a

entire scan and the map [6], etc.

Fig. 1 shows a high-level scheme of a typical laser scan

based probabilistic SLAM method:

• sensor1 and sensor2 provide odometry data and laser scan

respectively;

• tracking combines the odometry with the previous robot

pose estimation;

• fMap converts a given scan to a robot pose (usually

such conversion is done with a scan matcher taking into

account already built map);

• sensor fusion merges two pose estimations;

• ⊕ adds a laser scan to the map.

The scheme specifies the algorithms based on a prediction-

correction loop that consists of the following steps: a pre-

diction of a robot pose (tracking), a correction with the data
from exteroceptive sensors (fMap + sensor fusion) and a map
update (⊕).

Fig. 1. The high-level scheme of a laser scan based SLAM

The following ideas could be found in popular 2D SLAM

methods:

• single world state hypothesis tracking;

• multiple world state hypotheses tracking;

• a world representation with a graph.

The world state can be viewed as a random variable with an

unknown probability density function (PDF) that is updated

whenever new sensor data become available [7]. The plain

single hypothesis tracking implies estimation and update of

only the most probable world state. The tinySLAM [4], L-

SLAM [8], FastSLAM [9] algorithms are examples of this
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approach. The technique is not general since an environment

may contain patterns which leads to a PDF with several

maximums. If the map is stored as a grid a position of a scan

already inserted into it cannot be changed afterwards.

The multiple hypotheses tracking keeps several states (based

on grid maps), so there is an ability to maintain a set of

probable maps until the PDF became unimodal. For example,

GMapping [3] and DP-SLAM [10] implement this idea with

a particle filter. It updates each world state (particle) indepen-

dently by the prediction-correction loop described above. The

aim of the particle filter is to approximate the PDF with a

set of elements (world states) from its domain. The set has

to be updated periodically with the resampling operation to

reflect changes in the PDF. It populates a new set of particles

in the neighborhood of the most probable states. However,

resampling suffers from a particle depletion problem: there is a

chance of the actual world state rejection. For example, to deal

with this problem GMapping tries to make resampling rarely.

Another strategy is to add new particles without considering

existing ones.

In essence, the multiple hypothesis tracking keeps several

rigid configurations of collected laser scans to provide diver-

sity of maps. Another technique is to store a map as a graph

that allows to modify scans’ spatial constraints to achieve

consistency [11].

The graph could be structured as follows: vertices contain

the combination of a robot pose and an observation, edges are

transformations between vertices. Such representation allows

to correct a transformation (provided by a scan matcher) later

during graph optimization. A map should be topologically

correct in order to be accurately refined by this optimization.

Topological correctness can be violated if a robot fails to

detect itself in an already visited vertex (the loop-closure

problem). The optimization is eventually performed when a

new loop is closed in a graph. The aim of this process is

to reduce and distribute the accumulated error among edges.

The g2o library [12], for example, can be used to perform the

optimization. The examples of methods that use graph map

are Google Cartographer [2] and Graph-Based SLAM [13].

A review of 2D laser scan based SLAM methods is pre-

sented in [14]. Five algorithms were evaluated: as the examples

of single hypotheses tracking there were HectorSLAM and

tinySLAM, multiple hypotheses SLAM was presented by

GMapping, and graph-based SLAM – by KartoSLAM and

LagoSLAM. The accuracy of the SLAM methods was evalu-

ated by a normalized distance between the occupied cells of

an output and the ground truth maps. The original tinySLAM

is claimed to have the greatest error in comparison with the

others while GMapping shows the best accuracy. However,

these results were obtained on a simulated (12.2 m× 11.7 m)

and a small real world (4.6 m× 4 m) indoor environments.

The aim of this work is to compare three SLAM algorithms:

improved tinySLAM [15], original GMapping and new Google

Cartographer. They were chosen as the implementations of the

ideas described above. In addition, Google Cartographer’s lim-

its of application are estimated using the dataset not mentioned

in the paper it introduced by.

The rest of the paper is organized as follows: Section II.

gives a brief description of the tested SLAM algorithms. Their

comparison is provided in Section III. Finally, Section IV.

concludes the paper.

II. DESCRIPTION OF ALGORITHMS

A. tinySLAM

As it was mentioned above tinySLAM tracks a single

hypothesis about the actual world state. The method is based

on a straightforward prediction-correction loop, so it has a

compact and simple implementation.

The map is stored as a grid of cells. Each cell keeps the

probability of being occupied for the part of an environment

it corresponds to. The probability is updated by the following

formula:

mapn+1(x, y) = (1− q) ·mapn(x, y) + q · value (1)

where:
• mapn(x, y) – previously estimated probability value;
• value – an observed cell occupancy: 1 if a laser beam

stops inside the cell and 0 otherwise.

• q – a quality measure of the observed value (0 ≤ q ≤ 1);

The pose is refined with a Monte-Carlo-based scan matcher.

It tries to add normally distributed (zero mean, customizable

dispersion) values to each component of the pose to find a new

pose that leads to a better correspondence between the map

and the last obtained scan. The correspondence is estimated as

a sum of occupancies of cells that contain laser scan points.

Several heuristics are implemented by tinySLAM since the

scan matcher is not robust enough. Blurring of occupied map

parts increases the probability of the cells in the neighborhood

of a scan point. The original implementation also interpolates

laser scan data to increase the number of range readings and

uses the result for scan matching.

Another heuristic is proposed in [15]. It adds laser scans to

the map with a lower “quality” value if the robot pose has been

refined by the scan matcher. Modified cell model introduced

in the paper returns the average as the final cell’s occupancy

probability.

B. GMapping

GMapping is based on Rao-Blackwellized particle filter

(RBPF) [16] that estimates a posterior p(x1:t|z1:t, u0:t) about
potential robot trajectories x1:t using observations z1:t and
odometry u0:t data. The posterior is approximated with a set of
points (particles) with corresponding probabilities (weights).

The particle with the maximal weight is treated as the actual

world state. The weight of a particle is updated with a

correspondence measure between a new scan and the map

estimated by a scan matcher.

GMapping enhances Rao-Blackwellized mapping with the

following techniques:

• improved proposal function decreases robot pose uncer-

tainty in the prediction step of prediction-correction loop;
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• selective resampling deals with the particle depletion

problem.
A grid cell model used by GMapping keeps the averages

of occupancy and position of all obstacles found by a laser

rangefinder in this cell.

GMapping uses a kind of a gradient descent method to

match scans. On each iteration several predefined directions

are tested. The position along a direction that has the maximal

matching score is chosen as the initial position for the next

iteration. The scan score is computed as follows:

score(scan, map) =
∑

p∈scan
e−

1
σ ·d(p,map)2 (2)

where:

• p – a scan point;

• d(p, map) – the minimal distance between p and an

obstacle stored in the map (one obstacle point per cell);

• σ – the predefined dispersion.

GMapping typically requires less than 80 particles even in

large enough environments (250 m×250 m) to build accurate

maps (30 particles are used by default) [3].

C. Cartographer

Google Cartographer stores a map of an environment as a

graph where every vertex presents a submap and scans got

after the corresponding submap has been created. The edges

represent transformations between corresponding submaps. So

an optimization step to make the map consistent appears

besides a scan matching process.

Every cell of a Cartographer submap has a probability to

be occupied. It is updated in case the submap has not been

fully constructed yet. The following formula presents the rule

of updating the cell value being hit (or miss):

Mnew(cell) = odds−1(odds(Mold(cell) · odds(phit)))
where:

• Mold(·) – the old probability of the cell;
• phit – the probability of the cell being hit;
• odds(p) = p

1−p .
The main idea of the approach in the scan matching is to

minimize the cost functional. Thus the scan matching process

goes through a minimization of the following functional:

argmin
ξ

K∑

k=1

(1−Msmooth(Tξhk))
2 (3)

where:

• Msmooth(x) – the value of a cell x smoothed by values

in its neighborhood;

• hk – a cell involves a point from a laser scan;

• Tξ – the transformation matrix that shifts a point hk by
ξ;

• ξ – the offset vector (ξx, ξy, ξθ)
T .

This minimization is presented as a brute-force approach

with a branch-and-bound modification. To make this process

work fast the Ceres [17] library is used.

The optimization problem is solved by a brute-force ap-

proach too. It is required to search not only one value ξ as it
was searched in (3) but a set of all suitable transformations

between vertices. The Ceres library is used to provide these

optimizations too. These optimizations take a lot of time so

this work is done every few seconds parallelly and correct

the results that are already logged. It makes Cartographer not

real-time in the strong terms.

III. EVALUATION

The accuracy of a SLAM algorithm can be estimated by

comparison of an output trajectory with the ground truth one.

This comparison should be performed on the datasets collected

in real world environments in order to evaluate applicability

of the SLAM method.

The MIT Stata Center dataset [18] is a one of a few laser

scan datasets that provides ground truth trajectories. They can

be extracted by running a localization method on the floor plan

provided with the dataset. It contains 84 sequences but some of

them are multi-floor (unlike Cartographer, both tinySLAM and

GMapping are not supposed to work in such environments)

and some sequences are not supplied with the corresponding

floor plans. So it was selected 11 sequences to test considered

SLAM algorithms.

The Willow Garage dataset [19] does not provide ground

truth trajectories, so the accuracy of the algorithms cannot be

estimated quantitatively. In this case SLAM algorithms can

be compared qualitatively by visual matching of output maps.

The authors of Cartographer use this dataset to demonstrate

performance of the algorithm. So one representative sequence

was chosen to test tinySLAM and GMapping. To the best

of our knowledge, evaluation results on this dataset are not

publicly available for these algorithms.

Both of these datasets were collected using PR2 robot

platform equipped with the Hokuyo UTM-30LX laser scanner.

Since all of the algorithms are probabilistic their output

may vary from one run to another. So the root-mean-square

error (RMSE) between output and ground truth robot tra-

jectories should be computed to estimate accuracy of the

SLAM algorithms. This evaluation was performed on the MIT

Stata Center dataset. The trajectories were compared with the

TUM’s SLAM evaluation tool [20]. All algorithms were tested

“as is”, i.e. none of algorithms’ parameters were tweaked for

a specific sequence.

The mean and dispersion values of an RMSE over several

runs are presented in Table I and Fig. 2 visualizes the

values for some sequences. The table contains two columns

for Cartographer since it can perform the final optimization

of the robot trajectory after processing of an entire data

sequence. The “Cartographer (offline)” column contains the

RMSE values after the final optimization. The “Cartographer

(online)” column shows the RMSE of trajectory data collected

at run time. However, Cartographer was unable to optimize

trajectories for some data sequences (the “—” mark in Table I).

It may be caused by errors in the tested implementation of the

algorithm.
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TABLE I.RMSE VALUES

Sequence Length, m Trajectory RMSE, m
GMapping tinySLAM Cartographer (online) Cartographer (offline)

2011-01-19-07-49-38 68 0.216 ± 0.012 1.280 ± 0.640 0.188 ± 0.023 0.191 ± 0.001

2011-01-20-07-18-45 76 0.219 ± 0.012 0.254 ± 0.045 0.219 ± 0.002 0.221 ± 0.001

2011-01-21-09-01-36 87 0.212 ± 0.029 0.242 ± 0.005 0.217 ± 0.003 0.205 ± 0.001

2011-01-24-06-18-27 87 0.290 ± 0.035 0.254 ± 0.006 0.217 ± 0.001 0.217 ± 0.001

2011-01-25-06-29-26 109 0.208 ± 0.008 0.260 ± 0.005 0.232 ± 0.001 0.232 ± 0.002

2011-01-27-07-49-54 94 0.266 ± 0.012 0.620 ± 0.030 0.266 ± 0.004 —

2011-01-28-06-37-23 145 2.388 ± 1.949 2.280 ± 0.750 0.360 ± 0.069 0.354 ± 0.004

2011-03-11-06-48-23 245 0.365 ± 0.208 0.860 ± 0.390 1.152 ± 0.601 1.348 ± 0.001

2011-03-18-06-22-35 80 0.145 ± 0.023 0.103 ± 0.008 0.145 ± 0.021 —

2011-04-06-07-04-17 95 0.190 ± 0.002 0.343 ± 0.025 0.201 ± 0.002 —

2011-10-20-11-38-39 264 0.352 ± 0.003 5.486 ± 2.603 2.217 ± 0.021 —

Fig. 2. RMSE values: Cartographer (C), GMapping (G) and tinySLAM (T)

The results show that, in general, GMapping and Cartogra-

pher have comparable accuracy on the short trajectories (less

than 100 m). At the same time, Cartographer has a lower

dispersion of the results, i.e. its ouptut are more predictable.

(a) Cartographer

(b) GMapping

(c) tinySLAM

Fig. 3. Maps built on the “2011-03-11-06-48-23” sequence

However, Cartographer may fail on sequences with long

featureless halls, for example, on the “2011-03-11-06-48-23”

sequence (Fig. 3a). Multiple hypotheses tracking implemented

in GMapping usually produces far more accurate results on
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(a) The map built using GMapping (b) The trajectory built using GMapping

(c) The map built using Cartographer (d) The trajectory built using Cartographer

(e) The map built using tinySLAM (f) The trajectory built using tinySLAM

Fig. 4. Maps built with different SLAMs

______________________________________________________PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 105 ----------------------------------------------------------------------------



the input of this kind (Fig. 3b). The tinySLAM method also

fails to built a consistent map on most of such sequences but

sometimes it has a better output quality than Cartographer

(Fig. 3c). A successfull completetion of the final trajectory

optimization in the Cartographer algorithm has a small impact

on the RMSE value, but it significantly reduces the dispersion

which may be useful if the quality of an environment map is

more important than the trajectory accuracy.

The quality of maps constructed by considered algorithms

was evaluated on the “2011-08-04-23-46-28” sequence from

the Willow Garage dataset. The maps and trajectories pre-

sented in Fig. 4 are the best ones over several runs of the

algorithms. According to the figure all tested algorithms are

able to build a consistent enough map, but the map built by

tinySLAM (Fig. 4e) has more artifacts than the others. It’s

worth noting that tinySLAM required the largest number of

runs to get the consistent map which means that it is less

robust. Nevertheless, all output trajectories are close enough

to each other.

IV. CONCLUSION

Three implementations of popular 2D laser scan based

SLAM algorithms were compared: tinySLAM, GMapping and

Cartographer. The evaluation was performed on two datasets

collected in real world indoor environments. The algorithms

were run using default configurations though varying some

parameters could improve accuracy, but this contradicts the

idea of a universal (arbitrary applicable) SLAM method.

It was shown that tinySLAM provides the greatest root-

mean-square error on long data sequences because it tracks

only one hypothesis and accumalates errors during evaluation.

Due to its stochastic nature, tinySLAM may estimate a world

state incorrectly, so this leads to errors in a map that cannot

be fixed. As it was expected, GMapping provides a smaller

error than tinySLAM as it keeps multiple hypothesis about

the world state simultaneously and uses a non-stochastic scan

matcher.
Cartographer and GMapping have comparable RMSE val-

ues on most input sequences. Cartographer typically has a

lower error dispersion value, so it is more robust. But it is less

accurate on other sequences, so the tested implementation is

not universal.
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[12] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard,
“G2o: A general framework for graph optimization”, in Proc. of IEEE
International Conference on Robotics and Automation, pp. 3607-3613,
2011.
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