PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

M3-Driven Smart Space Creation Using a
DD-WRT-Based Device

Sergei Mikhailov!?, Alexey Kashevnik':?
1ITMO University, Saint Petersburg, Russian Federation
2SPIIRAS, Saint Petersburg, Russian Federation
saboteurincave @gmail.com, alexey @iias.spb.su

Abstract—The paper describes the process of smart space
creation based on integration of Smart-M3 platform with a
DD-WRT-based device. Smart-M3 is an open source platform
which implements concept of smart space. Wi-Fi router is
used as platform hosting which reduces the number of devices
participating in smart space-based scenarios. The article covers
a process of compilation and installation of Smart-M3 platform
on DD-WRT-based Wi-Fi router. Evaluation shows that smart
space organized this way can be used for scenarios with few
participants. The authors developed “Smart-M3 Control Panel”
web-service which allows users to control Smart-M3 platform by
a graphical web interface. “Smart-M3 Control Panel” user can
view the current status of platform; launch, stop, and reload it;
view information storage content and change it; download log
files; and change startup options. SocketlO interface was used
for the user interaction with web service.

I. INTRODUCTION

Smart space [1] is a set of different devices with the
opportunity of information and knowledge sharing between
them. Smart-M3 platform is an open source product which
implements this concept. The key idea of this platform is
formation of device-, domain- and vendor independent smart
space. Smart-M3 platform can be used in different scenar-
ios: [2], [3], [4], [5].

The authors have made a number of scenarios for collab-
orative mobile robots’ work based on robotic set Lego Mind-
storm EV3 using Smart-M3 [6], [7], [8], [9]. The platform is
installed on the personal computer with the Unix-like operating
system. Data exchange opportunity between mobile robots,
for example by the Wi-Fi, is required. For more convenient
utilization of devices involved in scenario the authors have
examined an opportunity to install the platform on a router
and suggested the way of doing it. Platform installation on the
router makes robotic scenarios more mobile by excluding the
use of personal computers; this reduces the number of devices
for scenario deployment.

The following platforms have been researched for smart
space creation on a router. After exploration none of platforms
are suitable for mentioned scenarios. The authors have decided
to adapt Smart-M3 platform for operating on a DD-WRT
router. By default, the router does not provide access to
memory, so it is necessary to use alternative operating systems.

The authors have compiled Smart-M3 platform on the
router but it is possible to use the cross-compilation technique
to speed up a compilation process. Some platform packages
required additional configuring or specific versions, or manip-
ulating with source code. Performance evaluation of Smart-

M3 platform on router and personal computer has shown that
the router processing power is enough for scenarios with a
small number of participants. The authors have developed the
web-service “Smart-M3 Control Panel” for control Smart-M3.
This service is installed on the router and allows end-users to
interact with platform.

The rest of the paper is structured as follows. Related
work is presented in section II. Section III describes Smart-M3
platform. Section IV gives restrictions on a router choice and
presents router preparation before Smart-M3 platform installa-
tion, which is defined in section V. Section VI describes a web-
service “Smart-M3 Control Panel” for Smart-M3 platform’s
operation. Performance comparison of Smart-M3 platform on
router and personal computer in section VII. The results are
summarized in Conclusion.

II. RELATED WORK

Platform meSchup IoT [10], [11] brings a device inter-
action concept within smart space by pluggable applications,
which work on a central server and control devices based on
the received data. The applications can work in parallel on the
central server and leave server at any moment. MeSchup IoT
platform allows to integrate devices from different manufac-
turers (Android, Arduino, .Net Gadgeteer and nRF51822-based
hardware, computers based on Windows and Linux OS) for co-
operative joint task solving. The platform has server and client
software. Client software has to be installed on devices for
sending data to the central server and getting instructions how
to act from pluggable applications. Server software deals with
applications, provides communication between participants of
the smart space and gives an access to all information from
the devices. Interaction scripts are developed in JavaScript
language.

CHROMOSOME solution [12], [13] is supposed to fa-
cilitate the integration of heterogeneous components in the
automation of industrial and everyday tasks in a smart home.
It receives data from devices in wireless networks and pro-
vides communication between autonomous automated systems
via high-level management platform. The architecture of the
platform was developed using hardware abstraction level upon
a hardware. Key services of the platform present a data-
centric way of communications, and high-level components
handle the logic of applications. A topology of system can
change during CHROMOSOME platform operation because
of entering or leaving devices. For solving this problem the
platform calculates a new lookup table without system work
interruptions. The Datacentric way of communications is based

ISSN 2305-7254

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

on “publication/subscribe” and “request/response” principles.
Interoperability between components of an application from
different developers is provided by modeling knowledge do-
main with “dictionaries” containing terms and concepts of
themes. Besides, the clarification of semantic items’ in theme,
“Dictionary” specifies the attributes of objects that describe
the subject more widely. CHROMOSOME supports Windows,
Linux and FreeRTOS operating systems.

Article [14] describes the smart space creation using the
upper level ontology, which allows to interact among various
applications in different environments. Working with ontolo-
gies (storing of information, context data processing, making
queries to the information storage) was implemented by Jena2
framework for semantic web applications creation . Locating
of smart space uses event tracking and message sending based
on Siemens UPnP SDK.

Papers [15], [16] represent a solution for creating appli-
cations simultaneous operating in multiple smart spaces on
the basis of Smart-M3 platform. The solution suggests two
types of application programming interfaces: semantic end-
user application programming interfaces (S-API) and interface
of program execution (Execution API). Both interfaces work
together providing a dialogue between the smart space and
executive program (Driver Component), which in turn works
with a professional programming interface of a device. RDF-
Script is used as a programming language and allows users
to describe workflow action for applications using multiple
smart spaces. An “application executor” component monitors
the overall performance of the program and execute RDFScript
code for entrance into smart space and selected actions imple-
mentation. Smart Modeler program allows ordinary users to
make applications visually, creating a set of commands or a
set of goals to be achieved by the application.

XANA solution [17] expands a product Team Computing
[18] (TeC) by software product line (SPL) concept. This solu-
tion intends to simplify the process of creation, configuration
and deployment of applications for smart homes. SPL involves
the creation of applications with the help of smart homes
experts, and the end users complete the resulting configuration
by using parameters from specialists. TeC Platform is an event-
oriented and provides developers with a language that allows
to use charts for work in a team to achieve common goals.
XANA Solution was tested using hardware X10.

Project PECES (PErvasive Computing in Embedded Sys-
tems) [19] aims to create a platform for cooperation of
various devices that are located in different smart spaces. To
ensure interoperability between devices interacting in various
contexts, PECES used pre-designed ontologies. At the core
level of the cooperative platform there are two technologies:
Aura [20] (the creation of smart environments to provide
services) and BASE [21] (the support for the adaptation of
communication protocols and technologies). For adapting to
the constant changes in the environment the platform auto-
matically creates the device configuration and updates it using
the concept of roles and rules. The roles can be assigned to
any device, and the rules define the contextual constraints on
the assignment of roles to participate in the program. To work
with multiple smart spaces PECES project uses the following
components: “Coordinator” (a device that is responsible for
the identification of participants in smart spaces based on roles

276

and rules), “Member” (dynamic incoming and outgoing from a
smart space device, which can be used in work) and “Gateway”
(the device that provides a connection between participants of
different intellectual spaces).

The smart space organization for scenarios with no more
than twenty devices involves the usage of router based on DD-
WRT operating system. As some systems are narrow focused
(designed to work with intelligent buildings, e.g. sensors —
[10], [14], [17]) and others should be installed only a desktop
computer [12], [15], [19], they are not suitable for installing
on a router since they are too powerful.

III. SMART SPACE. SMART-M3 PLATFORM

Smart space aims to seamless integration of different
devices by developing ubiquitous computing environments,
where different participants can share information with each
other, make various computations and interact for joint task
solving.

The open source Smart-M3 platform [22] is based on
Redsib software allows to perform access to ontology oriented
information and knowledge. Smart-M3 contains kernel and
knowledge processors (KP) [23]. Kernel consists of two parts:
semantic information broker (SIB) and information storage.
SIB receives incoming requests for cooperation manipulations
with the information storage from knowledge processor and
sends back operation results.

There are different implementations of semantic informa-
tion broker, provided by different members of the commu-
nity [24]. The authors have chosen Redsib based Smart-M3
implementation as a most stable version of the platform.

All information from the information storage is kept as
a graph that is formed according of the rules of structured
data representation RDF — Resource Description Framework.
Information in the graph is described as a triplet — “subject —
predicate — object” (a subject uses a predicate to affect on an
object). The subject and the predicate can be URI (Uniform
Resource Identifier), the object can be URI link as well as
literal (some value with certain type). Knowledge processors
function on the smart space device software. Knowledge pro-
cessors interact with SIB using SSAP protocol — Smart Space
Access Protocol. SSAP protocol operations are described in
XML format.

KP can make following operations:

e Join the smart space — knowledge processor has to
register before work in SIB, that cooperates with the
smart space;

e Insert information into the smart space in the form of
RDF-triplet;

e Remove data from the smart space;

e Update information — updating consists of two steps:
data removing and then inserting new information;

e Request necessary information by pattern (Query);

e Subscribe to information — knowledge processor sub-
scribes to specific information and at the time when

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

necessary information appears in the smart space, a
notification is sent to KP;

e Unsubscribe from information;

e Leave the smart space.

Platform Smart-M3 [22] can be loaded from the project
official repository — Sourceforge site. The Platform is rep-
resented in two options: redsib-0.9.2-src.tar.gz — archive
with the project packages source code, and rebsib-0.9.2-
amdo64.tar.gz — compiled system for Ubuntu OS version
greater than 10.04 with the architecture x86 or x64. For the
platform installation on Wi-Fi router the source code should be
compiled for DD-WRT operation system. Packages that should
be compiled:

e Libxml — library, that is XML-analyzer.

e Redland — libraries’ set, that is used for RDF work.
Redland supports work with query language SPARQL,
that is necessary for Redland operation.

e Whiteboard — package implements functionality for
cooperation of knowledge processors and semantic
information broker. It also provides package redsibd
work.

e Redsidb — realization of semantic information broker.

e Sib-tcp — realization of sockets functionality. Sockets
are required for data transfer between knowledge
processors and semantic information broker.

IV. DD-WRT/OPENWRT BASED DEVICE FOR SMART
SPACE CREATING

A Wi-Fi router with DD-WRT (http:/www.dd-
wrt.com/site/index) or OpenWRT (https://openwrt.org/)
support has been chosen as a base device. These projects use
Linux-based operating system and extend router functionality.
Setup of alternative operating system grants the access to
filesystem of the router using SSH protocol and allows
users to install additional software. Complimentary software
installation can be done by compiling the source code
of software on the router or using the cross compilation
technique (compiling the source code for another platform
which a compiler is running on) or using special package
managers.

The following factors influence on the choice of the router:
the possibility of installation DD-WRT/OpenWRT firmware
and presence of a USB port (optional requirement). Users can
check an opportunity of installation on DD-WRT/OpenWRT
project site. If the router has a low amount of non-volatile
random-access memory (less than 1 Gigabyte) then it is
necessary to choose a router with USB-slots for plugging USB
flash memory to store of Smart-M3 packages and software. An
alternative operating system should have USB support on its
own core, otherwise it is impossible to mount a flash drive.

In this article the authors used Asus RT-N16 router and
DD-WRT firmware as an alternative operating system. In-
structions for DD-WRT installation on Asus RT-N16 router
can be found on the official DD-WRT site (http://www.dd-
wrt.com/wiki/index.php/Asus_RTN16). After firmware instal-
lation, SSH access to the router can be provided by enabling

277

“Enable SSHd” option in “Service” menu in the router web
interface for Asus RT-N16 and then restarting the router.

USB flash drive has to be prepared before using it as the
software storage by drive formatting and making disk partition.
The following partition sections need to be created:

e 1-2 Gb partition with ext3 filesystem, which would be
use as libraries’ and applications’ storage (“Optware”
label or /opt);

e 64-256 Mb partition with linux-swap system, which
would be use as swap-file (“Swapfile” label);

e Rest of disk’s space partition with ext3 filesystem,
which would be use as a main storage for packages
(“Data” label or /mnt).

After the creation of the partitions, it is necessary to
enable USB support on router. That can be done through
using the router’s web interface “Services” — “USB”, and
enabling the following options: “Core USB Support”, “USB
Storage Support”’, “Automatic Drive Mount”, and choosing
/opt partition as “Disk Mount Point”. If USB flash drive
is plugged and partitions are done correctly, the information
about flash drive and mounted /opt partition is available
on “USB” menu. After these steps, it is needed to create
script startup.bash (view listing 1) at /opt partition
which allows to mount “Data” partition and increase available
amount of memory of the router /jffs partition. Moreover,
it is necessary to set the script as “Run-on-mount Script
Name” at Web GUI: “Services” — “USB”. This action runs
startup.bash script every time when the router starts
working.

Listing 1 Listing of startup.bash

1: #!/opt/bash
2: mount /dev/discs/disc0/part3 /mnt

V. SMART SPACE ORGANIZATION

Compiler GCC (https://gcc.gnu.org/) and related libraries
should be installed on router for Smart-M3 platform source
code’s compilation. These components are not available on
router by default, so they must be installed independently.
Optware packages of project NSLU2-Linux (http://www.nslu2-
linux.org/wiki/Optware/Packages?from=Unslung.Packages)
installation can help with the components’ mounting on the
router. Size increase of the file structure JFFS (Journaling
Flash File System) is necessary before the installation, that
can be done by adding to a bash script startup.bash
one single line: mount /opt/jffs /jffs. This solution
provides expansion of the file structure JFFS’s size due to
the directory /opt. Optware additional software packages
installation occurs with the script whose content are shown in
the listing 2 below:

Command ipkg-opt install produces download of
the additional software. Following packages are needed for
Smart-M3 platform’s compilation:

e ipkg-opt install buildroot (this package
includes GCC compiler)

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Listing 2 Listing of Optware packages installation
1: wget http://www.3iii.dk/linux/
optware/optware-install-ddwrt.sh
-0 - | tr -d "\r’ >
/tmp/optware—install.sh
2: sh /tmp/optware-install.sh

e ipkg-opt install optware-devel (this
package contains the number of libraries and header
files for program compilation)

e ipkg-opt install busybox (this
contains a newer version of Bash interpreter)

package

All packages will be installed in /opt directory which
will be used for further Smart-M3 platform compilation.

Router should be prepared before compilation’s start by
before_compilation.bash script’s execution. Code of
the script is given in listing 3. This script deletes all records
about custom dynamic libraries’ location and searches exe-
cutable files in /opt directory on the flash driver, that contains
compiler and accompanying libraries. These operations are
essential because they allow uniquely identify the location
of the compiler, libraries and software in /opt directory
for further successful compilation as some of the necessary
libraries are pre-installed in the file system, but they are
outdated without updating possibility. Thereafter archive with
the source code of Smart-M3 platform should be downloaded
on the flash driver.

Listing 3 Listing of before_compilation.bash script
1: unset LD_LIBRARY_PATH
2: export PATH=/opt/bin:/opt/sbin:/bin:
/sbin:/usr/sbin:/usr/bin

Compilation of Smart-M3 platform goes through the initial
dependencies resolution. Each package must be configured
for router by configure command which requires the future
location for programs and libraries’ installation in /opt
directory of flash driver as a parameter. Compilation can be
started by execution of make command after the configuration.
In the case of the successful compilation the application can
be installed with the command make install. Installation’s
common scenario is given in listing 4.

Listing 4 Common scenario of packages’ installation

1: ./configure —--prefix=/opt
2: make
3: make install

The authors will mark package that is already in the archive
with the underline, otherwise package is additional and should
be downloaded and moved to the router’s file system.

There are packages for Smart-M3 platform’s installation:

e Libxml, Raptor — these packages can be installed
according to the listing 4;

e Rasqal — uClibc is a C library, that is used in
DD-WRT firmware. It doesn’t support of rounding

278

function round (), so it is necessary to modify this
package for successful compilation and installation.
The best way to solve the problem with round function
is adding your own realization of this function to
the file src/rasqal_literal.c, then check for
existence of function round () must be deleted in the
configuration file. This operation can be done in two
ways. The first is disable the abnormal termination
in the absence of round function in system libraries
(for that the line “AC MSG ERROR([Could not find
ceil, floor, round in default libs or with -Im])” in
the file configure.ac must be deleted, command
autoreconf i in the package’s root would be
execute and then package has to be installed like in
listing 4). The second is changing the script configure
by deleting the line described above and then installing
the package like in listing 4;

e bdb — this software can be installed with the help of
package manager: ipkg-opt install libdb;

e Redland — it is necessary to configure the platform
work by specifying the location of libreries bdb and
enabling thread support, described in listing 5;

e libffi-3.2.1, gettext-0.19.2, glib 2.28.2 — this package
should be installed as described in listing 4. Later
versions are not permissible as they have redesigned
thread work and some availabilities that library uClibc
doesn’t support;

o dbus-1.10.6, dbus-glib-0.100, libuuid-1.0.3,
Whiteboard, Sib-tcp, libtool 1.14, Redsibd —
these packages can be installed according to the

listing 4.
Listing S Installation scenario of package Redland
1: ./configure —--prefix=/opt
——with-bdb=/opt --with-threads
2: make

3: make install

Sessional bus dbus and programs redsibd and
sib—-tcp should be launched for Smart-M3 platform’s work.
During router’s start sessional bus is not automatically func-
tioning, so it is necessary to create it at each start of the
platform and destroy it at the end of work.

Launch of dbus, that is used for platform’s compo-
nents’ communication, can be done by the dbus-launch
command execution. Programs redsibd and sib-tcp
require location and identifier number of session in en-
vironment variables DBUS SESSION BUS_ADDRESS and
DBUS_SESSION_BUS_PID for communication with each
other. Listing 6 has script of Smart-M3 platform’s launch.

It is necessary to store identifier numbers of processes in
file for correct platform’s shutdown. Listing 7 describes the
script of Smart-M3 platform’s turning off and disabling the
dbus session.

VI. SMART-M3 CONTROL PANEL

For controlling the Smart-M3 platform the web-service
“Smart-M3 Control Panel” has been developed. It is possible

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Listing 6 Listing of Smart-M3 platform’s launch script
#!/opt/bin/bash

eval $(dbus-launch --sh-syntax)

export DBUS_SESSION_BUS_ADDRESS

export DBUS_SESSION_BUS_PID

R

redsibd &
redsibdPid=$"!
sib-tcp &
sibtcpPid=$!

echo S$redsibdPid $sibtcpPid
SDBUS_SESSION_BUS_PID >
/tmp/smartM3Pid

Listing 7 Listing of Smart-M3 platform’s shutdown script
1: #!/opt/bin/bash
2: input=‘cat /tmp>smartM3Pid‘
3: IFS=’ '’ read -a pids <<< "Sinput"
4. kill $pids[0] kill S$pids[1] kill
Spids[2]

to install “Smart-M3 Control Panel” on personal computer and
router. Web-service provides the following possibilities:

e Launch, stop and relaunch Smart-M3 platform in case
of errors and incorrect working;

e Watch current status of the platform: “running”,
“stopped”, “breakdown” (platform is not working);

e Download Smart-M3 log files;

e View platform’s information storage in real time with
possibility of filtering and sorting data (view Fig. 1);

e Add, change or remove RDF triples in the information
storage;

e Set up launch options of Smart-M3 platform. User
can choose type of RDF storage, type of subscription
storage, limit SPARQL processing threads; select port
of communication between knowledge processes and
platform; setup subscription checking interval.

Python 2.7. was chosen as development language for web-
service “Smart-M3 Control Panel”. The following technologies
and software were used:

e Flask (http://flask.pocoo.org/) — microframework for
creating web applications;

e Socket.IO (http://socket.io/) — JavaScript library,
which allows realtime, bi-directional communication
between clients and server based on websockets or
AJAX messages. The authors have used this library for
interaction realization between users and knowledge
processes on router. Python package Flask-SocketlO
brings server functionality, and package socketlO-
client 0.7.2 brings client functionality;

e Gevent (http://www.gevent.org/),
(https://greenlet.readthedocs.io) —

greenlet
these network

279

libraries were used for creating a cooperative
multitasking based on lightweight coroutines;

e Gevent-websocket 0.9.5 — plugin-extension for net-
work library gevent, which was used by Flask-
SocketlO for weboscket server’s functionality;

e jQuery (https://jquery.com/) — JavaScript library was
used for DOM manipulating;

e Python-KP (https://github.com/smart-
m3/python_kp) — knowledge processor
implementation on Python language.

System architecture of “Smart-M3 Control Panel” ser-
vice is presented on Fig 2. There are two components
of service, which is located on a router: FlaskApp and
SmartM3Watcher. FlaskApp components have included web-
server, which sends static page content as HTTP response
to users and Socket.IO-server which gets requests by special
protocol, interacts with Smart-M3 platform and sends response
back. SmartM3Watcher component monitors changes of cur-
rent status of Smart-M3 platform and information storage.
If either of them were changed, SmartM3Watcher will send
information by Socket.IO protocol to FlaskApp component and
after that FlaskApp will broadcast this changes to all users.

The source code of “Smart-M3 Control Panel” ser-
vice is located on [25]. It contains two components:
smartM3ControlPanelFlask (FlaskApp in architecture of ser-
vice) and smartM3ControlPanelWatcher (SmartM3Watcher).

Component smartM3ControlPanelFlask is structured as fol-
lows:

° smartm3_control_panel_flask.py — script
which acts as start point of application;

e app/files — this folder contains configuration
file with launch options of Smart-M3 platform and
information storage representation options. Also, this
folder serves as storage of log files;

e app/modules — this folder stores modules of the
web site. “Main” module is responsible for main
page of the site; “Storage” module takes care about
interaction between users and information storage
of Smart-M3 Platform; “Logs” module works with
log-files; “Options” module brings service options
such as launch options of Smart-M3 platform and
data representation in “Storage” module. Every mod-
ule has routes.py file which contains service routes
and events.py which includes reactions on Socket.IO-
events. Every module can represent itself as named
Socketlo-namespace thereby reducing the amount of
transmitted information by placing users in a given
namespace. Also, this directory has “smartM3KP”
module — realization knowledge processor;

e app/scripts — this folder has startup and shut-
down scripts of Smart-M3 platform for personal com-
puters and router Asus RT-N16;

e app/static — static .css and .js files are located
in this folder;

e app/templates — templates of html files are
located in this folder;

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Smart-M3 Control panel

Storage

Status Logs Options

D Wildcard remove

Show | 50 ~ | entries

Search:

Subject I Predicate Object Subject type Object type
Subject Predicate Object Subject type Object type
hasColor Yellow URI literal
Robot holdsColor Green URI literal
Word is ITMO URI literal
Showing 1 to 3 of 3 entries Previous S

Fig. 1. Smart-M3 storage page

Router

—

Computer

HTTP
<<component== El ¢

<<component>> 8]
FlaskApp

=<component== a

Browser

Socket.10 protocol

‘Web-server

<<component=> a
Socketl O-server

T~

Socket.IO protocol

<<component>> g]
SmartM3Watcher

Fig. 2. Smart-M3 Control Panel system architecture

e app/settings.py — this directory has inner set- °
ting of service including choice of running platform.

Component smartM3ControlPanelWatcher contains next
components and folders:

e smartMWatcher.py — script which acts as start
point of application;

e app/WatcherThread.py — script, which con-
tains abstract thread class, which must work in sepa- °
rate process;

280

app/WatcherStatus.py — script with thread
class, based on WatcherThread, which monitors a
current status of Smart-M3 platform and gives to the
Socket.IO server information about changes;

app/WatcherStorage.py — script with thread
class, based on WatcherThread, which monitors in-
formation storage and gives to the Socket.IO server
information about changes;

app/SmartM3KP.py — script which contains im-
plementation of knowledge processor;

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

e app/setting.py — this directory has inner setting
of service including choice of running platform.

VII. PERFORMANCE COMPARISON OF SMART-M3
PLATFORM ON ROUTER AND PERSONAL COMPUTER

Each robot in the presented scenarios operates with about
5 subscriptions and 50 RDF-triplets. In this case the infor-
mation storage can contain simultaneously not more than 100
subscriptions and about 1000 RDF-triplets.

Smart-M3 platform’s performance measurement has been
done after installation of the platform to router Asus RT-N16.
The authors have measured the speed of the RDF-triplets’
insertion, requests by queries, and they have also computed the
number of possible subscriptions. The same test has been made
on computer Acer Aspire ES-774G with using Linux Mint as
operating system, based on Oracle VirtualBox virtualization.
Bdb (Berkley DB) was chosen as storage of RDF-triples. Every
dataset was processed after running tests. Firstly, 10th and 90th
percentile was calculated, which allows to reduce noise in the
dataset. Each value that is less than the tenth percentile and
more than the ninety percentile was removed. Secondly, the
remaining data were grouped into 50 values and the mean
value of the groups have been calculated. Finally, the list of
mean values was used as graph source. These actions allow to
get a clear view of the platforms’ performance.

The first test contains measurement of triples insertion

(triple <’ someone_i’, ’'is_a’, ’something_i’>,
where ¢ is a number) and query execution speed
(triple <null, ’is_a’, ’'null’>). This cycle was

automatically repeated for 10000 times.

Insertion time on computer and router are presented at the
Fig. 3 and Fig. 4. The difference between the minimum and
maximum value (delta-value) on computer is 0.0005-0.001
seconds, and on router — 0.2 seconds. The fluctuations of
the values occur in a small range, which can be explained by
technical reasons.

0,0027

. 0,0026
20,0025
2 O
E 00024 .
-1
+ 0,0023
& 00022
= 0,0021
0,002 +rrrrrrrrrrT e

1357 91113151719212325272931333537394143454749515355575961636567697173757779818385
RDF-triplets group number

Fig. 3. Insertion time graph — personal computer

0,055

0,05

0,045

Insert time (s)
°
°
f

Processing time
(s)
o
of o
PRV

0,035

0,03

L e A A o O o R !
1357 9111315171921232527293133353739414345474951 53555759 61636567 697173757779
RDF-triplets group number

Fig. 4. Insertion time graph — router

281

Measurement of query execution on both platforms are
presented on Fig. 5 (computer) and Fig. 6 (router). Both graphs
indicate to a direct correlation between the number of triplets in
the information storage and query processing time. Computer
value range is 0.02-0.1 seconds, and router — 0.5-3.5.

o
o B
R

o
®

Request time (s)
e o 9
5 o
? R

o
©
5]

0 T T T T T T T T T T

RDF-triplets group number

Fig. 5. Query execution time graph — personal computer

oW

o » & ¢
cUrULNL WL

Request time (s)

135 7 9 11131517192123 252729 31 33 35 37 39 4143 4547 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77
RDF-triplets group number

Fig. 6. Query execution time graph — router

The second test contains measurement of maximum num-
ber of subscriptions and processing time of subscription of
Smart-M3 platform on computer and router (view Fig. 7 and
Fig. 8). The authors have created N subscription in a row,
where N — maximum number of subscriptions that was found
experimentally for both platforms. After that, the authors have
inserted a triple, which have triggered subscriptions, and have
measured subscription execution time. Maximum number of
subscriptions that is allowed for Smart-M3 platform on router
is around 650, that is little less than on computer that supports
around 1000. Computer’s delta value is 0.002 seconds, and
router’s — 0.1-0.15 second. Subscription graphs on both
platforms looks different. Router’s graph shows direct corre-
lation between subscription count and subscription execution
time and computer’s graph shows nothing special. Router’s
behaviour in this test can be explained by a low amount of
RAM and slow bandwidth of USB.

0,01
0,008 -~
0,006

5 0004
0,002
0

Processing time

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Subscriptions group count

Fig. 7. Subscribe execution time graph — computer

1 2 3 4 5 6 7 8 9 10 11
Subscriptions group count

Fig. 8.

Subscribe execution time graph — router

In all tests, router performance was less than performance
of the computer: insert values differed in 10-15 times, query

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

values differed in 25-30 times and subscriptions values dif-
fered in 4-6 times. A large gap in readings in the tests can
be explained by the different access speeds to the memory of
hard disk and USB flash drive. However, router performance
is acceptable for the scenarios mentioned in the paper, that
doesn’t require real time response of Smart-M3 platform. But
sometimes router has a significantly performance slowdown
(view Fig. 9). For example, in this period, the insertion of
8000 triplets can reach 10—40 seconds at normal values in 3
seconds. The router performance slowdown can be affected by
increased data transfer from router and swap data from RAM
to flash memory. However, this period of time does not last
very long, so it is doesn’t affect hugely of general scenario’s
flow.

%3
c

0
GE) 40
.30
c
220
=]
£
8 10
=

0

8410 8416 8422 8428 8434 8440 8446 8452 8458 8464 8470 8476
Insertion number
Fig. 9. Example of router slowdown during insertion test

VIII. CONCLUSION

The study has solved the problem of the smart space
organization on the basis of Smart-M3 platform based of DD-
WRT operating system for mobile robots’ collaborative work
scenario. This paper describes Smart-M3 platform’s integration
for router Asus RT-N16. The platforms packages compilation
runs directly on the router. The alternative way of packages
compilation is the cross-compilation on a personal computer
with the help of utilities that are provided by the firmware
developer, for compilation of applications and libraries under
the given processor architecture. Testing has revealed that
Smart-M3 platform installed on a router provides sufficient
operation speed for scenarios with a few mobile robots. Ex-
periments have shown that the suggested way of smart space
organization allows to create scenarios with twenty mobile
robots participation. Web-service “Smart-M3 Control Panel”
is described in the paper in details. It allow users to control
the Smart-M3 platform. The service provides the ability to
browse current status of the platform, turn on/off and restart
platform depending on its state, view and interact with the
content of information storage, download log files and change
the platform settings. For future work the authors are planning
to add the function to visualize the content of information
storage.

ACKNOWLEDGMENT

The presented results are part of the research carried
out within the project funded by grants ## 16-07-00462 of
the Russian Foundation for Basic Research. The work has
been partially financially supported by Government of Russian
Federation, Grant 074-U0O1.

282

(1]

[2]

[3]

(4]

[5]

(6]

(71

(8]

(1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

S. Balandin and H. Waris, "Key Properties in the Development of Smart
Spaces”, Universal Access in Human-Computer Interaction. Intelligent
and Ubiquitous Interaction Environments: 5th International Conference,
UAHCI 2009, San Diego, CA, USA, July 19-24, pp. 3-12, 2009.

D. Korzun, S. Marchenkov, A. Vdovenko and O. Petrina, ”A Semantic
Approach to Designing Information Services for Smart Museums”,
International Journal of Embedded and Real-Time Communication
Systems (IJERTCS), pp. 15-34, 2016.

D. Korzun, A. Borodin, I. Paramonov, A. Vasilyev and S. Balandin,
“Smart Spaces Enabled Mobile Healthcare Services in Internet of
Things Environments”, International Journal of Embedded and Real-
Time Communication Systems, vol. 6, iss. 1, pp. 1-27, January, 2015.

A. Kashevnik, N. Teslya, B. Padun, K. Kipriyanov and V. Arckhipov,
“Industrial Cyber-Physical System for Lenses Assembly: Configuration
Workstation Scenario”, Proceedings of the 17th Conference of the Open
Innovations Association FRUCT, Yaroslavl, Russia, 20-24 April, pp.
62-67, 2015.

A. Smirnov, A. Kashevnik, N. Shilov, H. Paloheimo, H. Waris and
S. Balandin, “Increasing Broker Performance in Smart-M3 Based
Ridesharing System” Smart Spaces and Next Generation Wired/Wireless
Networking: 11th International Conference, NEW2AN 2011, and 4th
Conference on Smart Spaces, ruSMART 2011, St. Petersburg, Russia,
August 22-25, 2011.

A. Smirnov, A. Kashevnik, N. Teslya, S. Mikhailov and A. Shabaev,
”Smart-M3-Based Robots Self-Organization in Pick-and-Place System”,
Proceedings of the 17th Conference of the Open Innovations Association
FRUCT, Yaroslavl, Russia, 20-24 April, pp. 210-215, 2015.

A. Smirnov, A. Kashevnik, S. Mikhailov, M. Mironov and M. Petrov,
“Ontology-based collaboration in multi-robot system: Approach and
case study”, /1th Systems of Systems Engineering Conference, SoSE
2016, Kongsberg, Norway, 2016.

A. Smirnov, A. Kashevnik , S. Mikhailov, M. Mironov and O. Baranuic
, "Multi-level Robots Self-organization in Smart Space: Approach and
Case Study”, Internet of Things, Smart Spaces, and Next Generation
Networks and Systems: 15th International Conference, Springer Inter-
national Publishing, pp. 68-79, 2015.

A. Smirnov, A. Kashevnik, S. Mikhailov , M. Mironov and M. Petrov,
”Smart M3-Based Robot Interaction Scenario for Coalition Work”,
Interactive Collaborative Robotics: First International Conference, ICR
2016, St.Petersburg, Russia, pp. 199-207, 2016.

T. Kubitza, "Apps for Environments: Demonstrating Pluggable Apps
for Multi-Device IoT-Setups”, Proceedings of the 6th International
Conference on the Internet of Things, IoT’16, Stuttgart, Germany, pp.
185-186, 2016.

T. Kubitza and A. Schmidt, “Towards a Toolkit for the Rapid Creation
and Programming of Smart Environments”, End-User Development: 5th
International Symposium, IS-EUD, Madrid, Spain, May 26-29, 2015.

C. Buckl, M. Geisinger, D. Gulati, F. J. Ruiz-Bertol and A. Knoll,
"CHROMOSOME: A Run-Time Environment for Plug & Play-Capable
Embedded Real-Time Systems”, SIGBED Rev., vol. 11, no. 3, pp. 36—
39, 2014.

S. Sommer, M. Geisinger, C. Buckl, G. Bauer and A. Knoll, "Re-
configurable Industrial Process Monitoring using the CHROMOSOME
Middleware”, SIGBED Rev., vol. 10, no. 4, pp. 61-64, 2013.

X. Wang, J. S. Dong, C. Chin, S. Hettiarachchi and D. Zhang, "Semantic
Space: An Infrastructure for Smart Spaces”, IEEE Pervasive Computing,
vol. 3, no. 3, pp. 32-39, 2004.

M. Palviainen, J. Kuusijdrvi and E. Ovaska, ”A semi-automatic end-
user programming approach for smart space application development”,
Pervasive and Mobile Computing, vol. 12, pp. 17-36, 2014.

M. Palviainen, J. Kuusijdrvi and E. Ovaska, “"Framework for End-User
Programming of Cross-Smart Space Applications”, Sensors, vol. 12, no.
11, pp. 14442-14466, 2012.

V. Tzeremes and H. Gomaa, ”A Software Product Line Approach
for End User Development of Smart Spaces”, Proceedings of the
Fifth International Workshop on Product LinE Approaches in Software
Engineering, PLEASE 15, Florence, Italy, pp. 23-26, 2015.

J.P Sousa, V. Tzeremes and A. El-Masri, ”Space-aware TeC: End-user
development of safety and control systems for smart spaces”, I[EEE

[19]

[20]

[21]

International Conference of Systems, Man and Cybernetics, Istanbul,
Turkey, pp. 2914-2921, 2010.

K. Selvarajah, R. Zhao and N. Speirs, “Building Smart Space Ap-
plications with PErvasive Computing in Embedded Systems (PECES)
Middleware”, GSTF Journal on Computing (JoC), vol. 1, no. 4, 2012.
D. Garlan, D. Siewiorek, A. Smailagic and P. Steenkiste, “Project
Aura: Towards Distraction-Free Pervasive Computing”, IEEE Pervasive
Computing, vol. 1, no. 2, pp. 22-31, 2002.

C. Becker, G. Schiele, H. Gubbels and K. Rothermel, "BASE — A
Micro-broker-based Middleware For Pervasive Computing”, Proceed-
ings of the Ist IEEE International Conference on Pervasive Computing
and Communication, Fort Worth, USA, pp. 443-451, 2003.

283

[22]

[23]

[24]

[25]

PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

Smart-M3. Web: https://sourceforge.net/projects/smartm3/files/Smart-
M3RedSIB_0.9.2

J. Honkola, H. Laine, R. Brown and O. Tyrkko, ”Smart-M3 Information
Sharing Platform”, Computers and Communications (ISCC), 2010 IEEE
Symposium, pp. 1041-1046, 2010.

F. Viola, A. D’Elia, D. Korzun, I. Galov, A. Kashevnik and S. Balandin,
”"The M3 Architecture for Smart Spaces: Overview of Semantic Infor-
mation Broker Implementations”. Proceedings of the 19th Conference
Open Innovations Association FRUCT, Jyviskyld, Finland, November
7-11, pp. 264-272, 2016.

Smart-M3 Control Panel at SourceForge.net. Web:
https://sourceforge.net/projects/smartm3/files/SmartM3ControlPanel

