
Preprocessor Based Approach
for Cross-Platform Development

with Qt Quick Components

Ilya Paramonov, Andrew Vasilev,
Denis Laure, Nikita Kozhemyakin

Yaroslavl State University
Yaroslavl, Russia

Ilya.Paramonov@fruct.org
{vamonster, den.a.laure, enginegl.ec}@gmail.com

Abstract

In the paper we analyze the obstacles of cross-platform mobile development involving Qt Quick
Components library. We provide the classification of the most common issues of such a development
and propose resolution for them with the use of the specially developed tool—QML preprocessor.

Our approach is proven to be successful in development of two mobile applications supporting
both Harmattan and Symbian platforms.

Index Terms: QML, Qt Quick Components, preprocessor.

I. INTRODUCTION

Qt platform keeps running away from conventional widgets that were with us for so many
years. Declarative interfaces and focus on touch-based interfaces lead to introduction of Qt
Quick platform, that supports this behavior. It became primary successful on mobile devices:
tablets and smartphones, but fully supported on personal computers.

Qt Quick provides all basic primitives, that are necessary to build user interface from
scratch, but there are no any conventional widgets present, therefore it requires more effort to
create applications which provide familiar elements like buttons and lists, because developer
needs to create required widgets first. It definitely could be useful if project designer wants to
express functionality in a non-standard way, but it turns out to be a problem if an application
should provide some generic functionality like settings window.

Nokia initiated two projects with the target to create a set of QML elements which could
support already known interaction models, including lists, selection dialogs, calendars and
other. First QML element library is called Colibri [1], it was created within a research project.
Widgets implemented there are based solely on Qt Quick platform and therefore platform
independent. Unfortunately, these elements do not provide the satisfactory level of productivity
and stability to create even basic applications using it. The development of the library was
stopped in the January 2011, but all components are available on the project site.

The other project is called Qt Quick Components [2]. Nowadays it is the mainstream
library developed by Nokia labs. The project target is to provide items for several platforms:
Symbian, MeeGo Harmattan, and desktop. Having the library targeted at several platforms, it
seems naturally to utilize it for cross-platform development to extend the potential availability
of the application while effectively reusing the same code.

On the first look, the components for different platforms provide similar API, but actually
they only share basic architecture decisions and have separate implementations for each of

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 143 ----------------------------------------------------------------------------



the target platforms. Multiple incompatibilities in API and behavior of the same components
make really hard cross-platform development using this library. The obvious solution is to use
separate QML elements for each of the target platform. Unfortunately, this approach leads to
code duplication, as a developer should implement one idea at least two times using similar
APIs, which potentially induces errors in code and leads to maintainability issues.

It turns out that cross-platform development involving Qt Components requires more tech-
nological solution, which avoids code duplication and follows “Do not Repeat Yourself”
(DRY) principle [3]. In this paper we describe such a solution. It is based on isolation of
differences in Qt Components API and behavior inside separate components and the use of
specially developed tool (QML preprocessor) to allow sharing of the same code base in Qt
Components based applications targeted at all available platforms.

The paper is structured as following. In section II we analyze the issues of cross-platform
development due to the differences in implementation of Qt Components. As a result of the
analysis, we provide a classification of these issues. Section III is devoted to description of
the QML preprocessor, which was developed by us to cope with these issues. Our solutions
on how to resolve the cross-platform development issues related to concrete Qt Components
are presented in section IV.

II. OBSTACLES OF CROSS-PLATFORM DEVELOPMENT WITH QT COMPONENTS

We have made an analysis of API of Qt Components 1.1 for Symbian and Harmattan
platforms and defined four categories of potential problems when using them for cross-
platform development, described in details in the following subsections of this section.

The issues for a concrete component may refer only to one of these classes, but it is
common for components to have more than one potential problem belonging to different
classes. Even APIs of such common elements like Button and CheckBox differ.

A. Components implemented only for one of the target platforms
The first class of issues emerges, because there are different component sets available for

each platform. The missing components can be further subdivied into two categories.
1) Components belonging to subsystems, which were implemented solely for one platform:

Examples of such components include various Style components: LabelStyle, MenuStyle, etc.,
which are available only for Harmattan and determine the look of specific components.
Corresponding example from the Symbian platform is InfoBanner component, which provides
a way to show a notification to the user in a non-obtrusive way.

2) Components potentially useful on either platform, but not implemented on one of them:
For example, ListHeading component provides the ability to show a custom heading for
the lists. It was implemented solely for Symbian platform. Another example is ToolIcon
components, which enables a direct use of icons in a tool bar on Harmattan platform.
Unfortunately, these components are not implemented on all platforms, and it seems there is
no practical reason of such a decision.

B. Different APIs of the same components on different platforms
The second class of problems comes from the difference in APIs of the components having

the same name. They may have different sets of properties and methods. The classification
of these issues is quite similar to the one presented in the previous subsection.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 144 ----------------------------------------------------------------------------



1) Properties/methods related to subsystems implemented solely for one platform: It is the
situation, when a subset of the distinct properties relates to the subsystems mentioned in the
description of the case A.1. For example, several components, including ToolBar, ButtonRow,
and others, provide platformStyle property on Harmattan platform.

2) Properties/methods potentially useful on either platform, but not implemented on one of
them: For example, Switch component has pressed property on Symbian platform, but does
not have it on Harmattan platform. This difference does not allow to trace the state when the
user interacts with Switch element on Harmattan. The same problem applies to component
methods. For example, Slider component has valueChanged() signal on Symbian platform but
does not provide it on Harmattan platform. So it is needed to use property binding mechanism
instead of signal handling to process the property value change.

3) Different inheritance relationship between the same components on different platforms:
One more source of potential problems is that elements named the same way and providing
similar API may be inherited from different components. It means that the set of inherited
properties differ and the component may require specific environment to function correctly.
A brightest example of such a problem is Menu component. On Symbian platform this
component is implemented as a stand-alone component, functioning correctly in both screen
orientations: portrait and landscape. On Harmattan platform this component is inherited from
Popup element, therefore not providing satisfactory behavior in landscape orientation.

4) Components, methods, and properties having the same API and functionality, but dif-
ferent names: The example for this case is one specific property, which has different names
in SectionScroller component on different platform. It is responsible for holding a ListView
component to be scrolled. It has the name On Symbian platform it is list on Symbian and
listView on Harmattan.

C. Issues of component implementation
Even if developer limits himself/herself to the usage of the components having the same

interface, it cannot be guaranteed that the code will run without problems on both platforms.
The reason is the existence of platform-specific bugs in implementation. One example of such
a problem is the inability of QueryDialog component to display the last line of a multi-line
message, which was present in Qt Components 1.1 release for Symbian [4].

D. Missing or differently named resources
This problem relates to the name of the resources, provided by the platforms. Both Symbian

and Harmattan platforms have a notion of a theme, which describes the used colors, and
contains specific resources, such as images used to display different parts of the interface.
These resources are available to the external developers, who are encouraged to use them in
applications. The problem of cross-platform development comes from the different naming
scheme used for such resources on different platforms. For example, the name of tool bar
image showing marker of the next page on Symbian platform is called image://theme/toolbar-
next and ”image://theme/icon-m-toolbar-next-white” on Harmattan platform.

E. QML limitations and poor naming convention
The names of Qt Components libraries for each platform are different, therefore to use these

libraries it is needed to import com.nokia.symbian module on Symbian, and com.nokia.meego
on Harmattan. Importing both modules in the same code cannot solve the problem, because
QML language interpreter does not render QML elements with unresolved imports. Unfortu-
nately, conditional imports in QML are also not supported.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 145 ----------------------------------------------------------------------------



III. QML PREPROCESSOR

The classification of issues in the previous section indicates the need for a special tool or an
approach allowing creation of cross-platform QML files. Such files should contain platform-
specific information for both target platforms. The code implemented for one platform must
not interfere with the normal execution flow on another platform. As it is shown in the last
subsection of the previous section, the desired behavior is not supported by QML language.
Though it might be possible to withdraw the declarative interface description and to create
interface dynamically using JavaScript language, it would be highly inefficient.

We came up with the idea of preprocessor for QML files, which would allow to create
platform-specific files based on the single QML file. The preprocessor handles the input QML
file line-by-line. Each line of the file can be assigned to all platforms or to the specific one.
By default, all lines are not platform-specific. If a line contains in-line comment in @platform
format, it is associated with platform. There is no predefined list of platforms, but the lines of
code targeted for the same platform must have identical labels. When the preprocessor starts,
the text of the label is passed as an argument. For each input QML file the preprocessor
generates the corresponding output QML file, containing only non-marked lines of the input
file and the lines, corresponding to the selected platform. The generated files are further used
to compile and deploy an application.

The Fig. 1 illustrates the operation of the preprocessor. The part (a) of the figure contains
the description of TabButton component, which displays only one image. The component is
designed to work on two target platforms. Lines of code marked with the @symbian label
describe the creation of Image component, which displays the icon. This additional component
is required on Symbian platform due to TabButton implementation, which does not provide
iconSource property, though it is available on Harmattan platform. The part (b) of the figure
demonstrates output of the preprocessor run on this file with “symbian” as a parameter. All
platform-independent lines were left intact, but lines labeled with @meego were removed.
The (c) part of the figure demonstrates the output of the preprocessor with “meego” given
as a parameter.

The use of in-line comments allows not to interfere with Qt Quick platform at the runtime,
but the presence of lines meant for different platforms prevents the usage of several QML
tools. For example, such file cannot be opened in QMLViewer or modified in the visual QML
modelling tool provided as a part of the Qt Creator IDE. The imposed restrictions are reduced
by the fact that QML language is clear enough to edit QML files directly in a text editor,
and processed files can be opened by the mentioned tools.

IV. DEALING WITH OBSTACLES

The QML preprocessor was successfully used for developing a couple of applications in our
laboratory: Smart Conference clients [5] and Octotask [6], [7]. During the development process
we encountered most of the issues described in Section II. In this section we demonstrate
how those difficulties can be resolved with the use of QML Preprocessor described in Section
III.

A. Components implemented only on one of the target platforms
There are two distinct approaches to deal with the absence of the components. According to

the first one, developers have to implement required components themselves for the platform
lacking for desired functionality. These elements should provide the same API as the missing
components. Then developed files are bundled with the application only for the corresponding

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 146 ----------------------------------------------------------------------------



TabButton {
Image { //@symbian

source: ”qrc:/icons/default” //@symbian
...
fillMode: Image.PreserveAspectFit //@symbian

} //@symbian
iconSource: ”qrc:/icons/default” //@meego

}
(a)

TabButton {
Image { //@symbian

source: ”qrc:/icons/default” //@symbian
...
fillMode: Image.PreserveAspectFit //@symbian

} //@symbian
}

(b)

TabButton {
iconSource: ”qrc:/icons/default” //@meego

}
(c)

Fig. 1. (a) Part of QML file containing preprocessor labels; (b) The same part of QML file preprocessed for Symbian
platform; (c) Same part of QML file preprocessed for Harmattan platform.

platform. This can be achieved by adding the files to the appropriate resource list in the
platform-specific section of qmake project file. Another way to deal with these problems is
to implement required logic only for one platform and conceal it from others by the means
of the preprocessor.

The first approach requires some extra investments in the first place, but it can be used
if such functionality considered to be useful. It can also be easily reused in the future
applications. For example, it should be useful to port ListItem component from Symbian
platform, because it provides a visual decoration and a set of animations, therefore forming
a specific application interface. On the other hand, porting notification subsystem looks
unreasonable, because Harmattan users will probably be frustrated by the unfamiliar data
presentation.

B. Different APIs of the same components on different platforms
There are few ways to deal with the situation: support some behavior solely for one platform

or to provide similar look and feel on both platforms. Each of them can be implemented by
the creation of a custom components or by using the QML preprocessor. When using the
first approach, developer selects the API version, which he is intended to use in the project,
and creates custom components for each platform. On one platform the custom element
simply proxies all properties and methods to the existing component, while its counterpart
for another platform proxies properties and methods of the base component, and provide

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 147 ----------------------------------------------------------------------------



ButtonRow {
...
style: TabButtonStyle { } //@meego
...

}
(a)

ToolButton {
iconSource: ”toolbar−menu” //@symbian
flat: true //@meego
Image { //@meego

anchors.centerIn: menuButton //@meego
sourceSize.height: menuButton.height //@meego
source: ”:images/menu.png” //@meego

} //@meego
}

(b)

Fig. 2. Use of QML Preprocessor to support custom look of ButtonRow component on Harmattan platform. (a) Part of a
QML file showing an emulation of iconSource property missing on Harmattan platform. (b)

additional methods to match the desired version of the API. This approach enforces reuse of
the code, but makes the client code less readable, because element names differ from the base
ones, and their role might be unclear. The developer needs to properly configure application
build environment to include correct version of the element for corresponding platform.

With the use of preprocessor a developer can provide support solely for one platform by
implementing the functionality for the platform and by placing proper labels on corresponding
lines. We have used this approach in various places to customize the look of widgets on
Harmattan platform with the use of style property. In case of having different property names
or a lack of the property on one platform, the developer implements functionality separately
for both platforms and places marks on corresponding lines of code. The resulting component
may be created as a separate component, which provides unified API for both platforms.

The proposed approach was used to substitute iconSource property in ToolButton element
on Harmattan platform. This property is used to specify a path to the image, which should
be shown on ToolButton component. It is available on Symbian platform, so corresponding
line is added and @symbian mark is placed on that line. The substitution for this property is
the Image component, which is created on top of ToolButton element. The path to the image
is setup as the value of the source property of embedded component. All lines, on which
the nested Image component is declared, are marked with @meego label. Parts of QML files
describing both cases are shown in Fig. 2.

C. Issues of component implementation
When the developer uses a component, which does not implement the declared functionality

on one of the platforms due to an implementation error, it can be considered as the element
having different API for distinct platforms. Therefore, the developer can use one of the
proposed approaches for the previous class of problems. We faced the problem with the

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 148 ----------------------------------------------------------------------------



implementation of QueryDialog component on Symbian platform [4], which did not display
the last line of the message. The solution for this problem was to add an empty line to the
dialog message only on Symbian.

D. Missing or differently named resources
In order to deal with this kind of problems, the developer needs to design a stable naming

scheme for the required resources and used constants. The latter can be implemented as a
special component, holding necessary information as the value of properties. This way, all
components, which require resources or use some constant, will be bound with the properties
of the proposed component. With the use of QML preprocessor such information can be
placed into a single component, having two sets of properties for both platforms isolated
from each other by the means of platform labels. Without the preprocessor the developer
would need to manage two different components, which provide required constants through
identical API for each platform. We have used the first approach and introduced UiConstants
component.

E. QML limitations and poor naming convention
Qt Quick Components modules have different names for each target platform, which forces

the developer to import corresponding module, when designing QML files for one platform,
and to import distinct module for another platform. Developer cannot import both modules
simultaneously, because one of the imports could not been resolved. This problem can be
solved by the creation of a special empty modules having same names with the Qt Quick
Components modules. When the build is done for Symbian platform the empty module named
after the Harmattan module is added to the project and vice-versa. This way there would be
no problem of missing module during the execution of such application. Another way to solve
the problem is to use the QML preprocessor and place platform marks on import statements
for the corresponding platforms. This would prevent appearance of the inappropriate imports
in the production code.

V. CONCLUSION

Despite the fact that the task of cross-platform development involving Qt Quick Component
looks rather difficult, our work showed that it is possible and beneficial, as it allows to share
the same code base across the platforms.

As the use of the preprocessor extends the number of platforms the application running, it
is required to appropriately test all the functionality of the application on all target platforms.
In this case some kind of automatic testing framework is highly desirable.

There is Lighthouse technology, which allows external developers to port Qt framework to
other platforms. One of the fastest developing project based on this technology is Necessitas
[8], which is targeted to provide Qt framework and required infrastructure on Android OS.
As a part of the initiative, Qt Quick Components library is ported there too [9]. The port is
based on components developed for Symbian OS. Currently there are quite no changes of
API except for module name, but they may appear in the future, so QML preprocessor based
approach could be useful in this situation.

Nowadays, Necessitas has multiple architectural and practical limitations, which prevent
its usage in production environment, but, as a proof of concept, we have successfully added
support for Android platform into Smart Conference client project [5]. The source code of this

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 149 ----------------------------------------------------------------------------



project, as well as source code of the project Octotask, which also uses QML preprocessor,
is available from corresponding repositories (see project pages [5], [7]).

Our experience in development of the mentioned projects shows that no more than 10
percent of source code has to be implemented separately across the platforms. Such a small
value shows the effectiveness of the used approach.

In conclusion, we would like to mention that developers of Qt Quick Components are trying
to reduce segmentation of the library, which means that the number of problems presented
in this section should decrease in future releases [10].

REFERENCES

[1] “Qt Quick Colibri project,” Feb. 2012. [Online]. Available: http://projects.developer.nokia.com/colibri.
[2] “Qt Quick Components project,” Feb. 2012. [Online]. Available: http://qt.gitorious.org/qt-components.
[3] D. Thomas and A. Hunt “The Pragmatic Programmer: From Journeyman to Master,” Addison-Wesley Professional,

1999.
[4] “QueryDialog never shows last line of message,” Feb. 2012. [Online]. Available: https://bugreports.qt-

project.org/browse/QTCOMPONENTS-1090.
[5] “Smart Conference clients project,” Feb. 2012. [Online]. Available: http://yar.fruct.org/projects/sc-clients.
[6] A. Vasilev and I. Paramonov. “Concept of Octotask — Multi-source Task Collector and Manager,” in Proceedings of

the 9th Conference of Open Innovations Community FRUCT and 1st Regional MeeGo Summit Russia-Finland, 2011,
p. 244.

[7] “Octotask project,” Feb. 2012. [Online]. Available: http://yar.fruct.org/projects/octotask.
[8] “Necessitas project,” Feb. 2012. [Online]. Available: http://sourceforge.net/p/necessitas/.
[9] “Android Qt Components,” Feb. 2012. [Online]. Available: http://qt.gitorious.org/∼koying/qt-components/

android-qt-components/.
[10] “Define a baseline Item set as common API between different component style implementations,” Feb. 2012. [Online].

https://bugreports.qt-project.org/browse/QTCOMPONENTS-200.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 150 ----------------------------------------------------------------------------




