Conference starts in:

Learn more about our Virtual Reality project

Welcome to visit Open Karelia

Upcoming Events
Event Dates

22nd FRUCT

15.05 - 18.05


16.05 - 18.05

XIV School-seminar "Problems of complex systems' optimization"

30.07 - 10.08

23rd FRUCT

06.11 - 09.11

You are here

WLAN 802.11s mesh network investigation

Nowadays mobile and ultra mobile devices able to maintain a wireless connection with each other and to form a client mesh network are becoming more and more spread. The basic problem lies in optimal bandwidth sharing between a management traffic and a user one. On one hand it is necessary to provide effective routing and quick reaction on unit porting/disconnection, on the other hand a high-level service of payload data transfer is extremely important too. There is 802.11s standard draft. We are going to implement simulation model of several 802.11s features. Our goal is: to find and explain 802.11s standard's limits.


Only client mesh networks without any infrastructure elements such as servers, hubs, access points etc are being considered.
We'll analyze only portable battery powered devices for ad hoc mesh networking. The main investigation directions are:

  1. Network/connection constancy in terms of power save mode;
  2. Deep and light sleep possibility;
  3. Beacon interval value Impaction to network performance with different power save schemes;

We are going to use NS2 simulation framework (or probably, other network simulator)

Project stages

January/February 2009: 802.11s standard draft analysis

February/March 2009: Giving experience witn NS2 and WLAN modules

March 2009: Improving simulator trace output

April/May 2009: Simulation Model for beacon feature

Autumn 2009: Public report on FRUCT

Winter 2009: Devices' sleep possibilities model

Spring 2010: Public report on FRUCT

Long-term plans

We are going to create models for new features and revisions of 801.11s standard. One of long-term research directions is an adequate mesh networks model development which would take into account the particular qualities of modern wireless devices and ways of their usage (content exchange, teleconferences, games etc). In the context of model development it is intended to observe current states of algorithms, standards and routing protocols realizations for Ad Hoc and Mesh networks. The model should include:

  • QoS control,
  • dynamic topology reconfiguration,
  • management traffic volume control,
  • load balancing.

Project team

Project Leader: Arina Rudakova, LETI
Industrial Tutor: Alexander Sayenko, NSN expert on WLAN/NS2
Project Professor: Kirill Krinkin, LETI

Project homepage on OSLL site is



Final deadline: 
Friday, April 30, 2010 (All day)